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Introduction.

Many branches of sciences need to study and recognize geometrical object. In
medical imaging, for example, you have to figure out the shape of an organ or
a tumour (a three-dimensional object) with image of sections (two-dimensional
view). The geometrical objects studied, can have various shapes and are often
non-regular. There are many method to study them. For example a triangle can
be uniquely recognize by the coordinate of its vertices. The first problem is that
this method can be applied only on polygons. The second problem is more im-
portant : in this method we do not considerer the set independently from its place
in the space. Yet, two triangles which differ from a translation have the same ge-
ometrical properties. We want a method who describe these properties.

This report deals with recognition of sets with an approach of stochastic ge-
ometry. The aim of our study is to discover some tools of stochastic geometry
and conjectures linked to these tools. We restrain our study on compact convex
sets in the Euclidean space Rn. A set D is said convex when for all X and Y in D ,
the segment [X, Y] = {tX + (1− t)Y/t ∈ [0, 1]} is included in D .

In the first part, we study a problem of probability theory not linked to stochas-
tic geometry : the distribution of the maximum of random variables. In the sec-
ond section, we deal with the covariogram of a set and the Mathéron ’s conjecture
about recognition. In the third section we study the chord-length distribution of
a set and show how it can characterize some class of sets. In the fourth section,
we see the distance between two random points uniformly and independently
distributed in a set. These three last notions are linked but we don’t study the
links between them.
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1 Maximum of independent exponential random vari-
ables.

By N∗ we denote the set of naturals, without 0. An interval of integers is denoted
by double-brackets: J. . .K.

Let η1, . . . , ηn be n independent random variables with exponential distribu-
tion E(λi) for i in J1, nK. We want to study

ξn = max
1≤i≤n

ηi .

1.1 Distribution and Expectation.

The first characterization of a random variable is its distribution function. Let
Fn(t) be the distribution function of ξn.

Proposition 1 (Explicit form of the distribution function of ξn)

Fn(t) =
n

∏
i=1

(1− e−λit)1t≥0 , t ∈ R, n ∈N∗

1A(t) denote the indicator function of a set A, that is 1A(t) equals to 1 if t ∈ A
and 0 if t /∈ A.

Proof : For all n ∈N∗ and t ∈ R, we have

Fn(t) = P(ξn ≤ t)
= P(η1 ≤ t ∩ . . . ∩ ηn ≤ t)

=
n

∏
i=1

P(ηi ≤ t) (by independence)

=
n

∏
i=1

(1− e−λit)1t≥0

=


0 if t ≤ 0

n

∏
i=1

(1− e−λit) if t ≥ 0

�

The product can be written in the following form:

n

∏
i=1

(1− e−λit) =
n

∑
k=0

(−1)k ∑
E⊂J1,nK,|E|=k

e−t ∑l∈E λl
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n

∏
i=1

(1− e−λit) = 1 +
n

∑
k=1

(−1)k ∑
E⊂J1,nK,|E|=k

e−t ∑l∈E λl , n ∈N∗, t ≥ 0 . (?)

The sum ∑
E⊂J1,nK,|E|=k

is a sum for all subsets of J1, nK with k elements. It means

n

∏
i=1

(1− e−λit) = 1−
n

∑
i=1

e−tλi + ∑
1≤i<j≤n

e−t(λi+λj) − . . . + (−1)ne−t ∑n
i=1 λi .

Now, we are able to calculate the mathematical expectation of ξn.

Proposition 2 (Explicit form of E[ξn])

E[ξn] =
n

∑
k=1

(−1)k+1 ∑
E⊂J1,nK,|E|=k

1
∑l∈E λl

, n ∈N∗

Proof : For all n ∈N∗, we have

E[ξn] =
∫ +∞

0
(1− F(t))dt

=
∫ +∞

0
(1−

n

∏
i=1

(1− e−λit))dt

= −
∫ +∞

0

n

∑
k=1

(−1)k ∑
E⊂J1,nK,|E|=k

e−t ∑l∈E λl dt

=
n

∑
k=1

(−1)k+1 ∑
E⊂J1,nK,|E|=k

∫ +∞

0
e−t ∑l∈E λl dt

=
n

∑
k=1

(−1)k+1 ∑
E⊂J1,nK,|E|=k

1
∑l∈E λl

�

In another way, we have

E[ξn] =
n

∑
i=1

1
λi
− ∑

1≤i<j≤n

1
λi + λj

+ ∑
1≤i<j<k≤n

1
λi + λj + λk

− . . .+(−1)n−1 1
∑n

i=1 λi
.

1.2 The particular case of i.i.d random variables.

Now, we assume that the random variables (ηi)i∈N∗ are i.i.d with distribution
E(λ). In this particular case, the mathematical expectation can be greatly simpli-
fied. For each k, there are (n

k) subsets of J1, nK with k elements. So we have

E[ξn] =
1
λ

n

∑
k=1

(
n
k

)
(−1)k+1 1

k
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This sum is the partial sum of the harmonic series.

Proposition 3 (Explicit form of E[ξn] for i.i.d random variables)

E[ξn] =
1
λ

n

∑
i=1

1
i

, ∀n ∈N∗

We prove the proposition 3 by two ways : one, classical, with mathematical
induction and one, more astute, with an auxiliary function.

1.2.1 Proof by mathematical induction.

Let Pn the predicate define for n ∈N∗ :

Pn : E[ξn] =
1
λ

Hn

where Hn =
n

∑
i=1

1
i

.

Basis step. For n = 1, the result is obvious.

Inductive step. We assume that Pn is true and we want to prove Pn+1. We have

E[ξn+1] =
−1
λ

n+1

∑
k=1

(
n + 1

k

)
(−1)k 1

k

=
−1
λ

n+1

∑
k=1

[(
n
k

)
+

(
n

k− 1

)]
(−1)k 1

k

=
−1
λ

n+1

∑
k=1

(
n
k

)
(−1)k 1

k
+
−1
λ

n+1

∑
k=1

(
n

k− 1

)
(−1)k 1

k

= E[ξn] +
1
λ

n

∑
k=0

(
n
k

)
(−1)k 1

k + 1

By hypothesis, E[ξn] =
1
λ

Hn. Since (n
k)

1
k+1 = (n+1

k+1)
1

n+1 , we have

n

∑
k=0

(
n
k

)
(−1)k 1

k + 1
=

n

∑
k=0

(
n + 1
k + 1

)
(−1)k 1

n + 1

=
−1

n + 1

n+1

∑
i=1

(
n + 1

i

)
(−1)i

=
−1

n + 1
[(1− 1)n+1 − 1]

=
1

n + 1

6



Hence E[ξn+1] =
1
λ

n+1

∑
k=1

1
k

and Pn+1 is true.

1.2.2 The second proof.

The aim of this proof is to find an auxiliary function whom derivative or primitive
integral is linked to the sum we want to calculate.

We introduce gn(x) =
(1− x)n − 1

x
and Gn(x) =

∫ x

0
gn(t)dt. The domain

of gn can be extended by continuity in zero and we have

gn(x) =
n

∑
k=1

(
n
k

)
(−1)kxk−1 and Gn(x) =

n

∑
k=1

(
n
k

)
(−1)k xk

k
.

With those notations, we have

E[ξn] =
−1
λ

Gn(1).

As we know how to factorize an − bn, we have

gn(x) =
(1− x)− 1

x

n−1

∑
k=0

(1− x)k

= −
n−1

∑
k=0

(1− x)k

and ∫ 1

0
(1− t)kdt =

1
k + 1

.

So we have

G(1) = −
n−1

∑
k=0

1
k + 1

= −
n

∑
k=1

1
k

This is exactly what we wan to prove.

E[ξn] =
1
λ

n

∑
i=1

1
i

, n ∈N∗

1.3 The Laplace transform of the maximum.

An other interesting characterization of ξn is its Laplace transform.
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Definition 1 For a non negative random variable η, we define its Laplace trans-
form by

Lη : R+ → R+

s 7→ E[e−sη]

If η has a density function fη, we have

Lη(s) =
∫ +∞

0
e−st fη(t)dt , s ∈ R+

In the case of ξn, we have the following result :

Proposition 4 (Explicit form of Lξn)

Lξn(s) = 1 + s
n

∑
k=1

(−1)k+1 ∑
E⊂J1,nK,|E|=k

1
s + ∑l∈E λl

, s ∈ R+, n ∈N∗

Proof : For all n ∈N∗ and s ∈ R+, we have

Lξn(s) =
∫ +∞

0
e−ts fξn(t)dt

= [e−ts(Fξn(t)− 1)]+∞
0 + s

∫ +∞

0
e−ts(1− Fξn(t))dt

Using (?), we obtain

Lξn(s) = 1− s
∫ +∞

0

(
e−ts

n

∑
k=1

(−1)k ∑
E⊂J1,nK,|E|=k

e−t ∑l∈E λl

)
dt

= 1 + s
n

∑
k=1

(−1)k+1 ∑
E⊂J1,nK,|E|=k

1
s + ∑l∈E λl

�

In another way, we have

Lξn(s) = 1 + s

(
n

∑
i=1

1
s + λi

− ∑
1≤i<j≤n

1
s + λi + λj

+ . . . + (−1)n−1 1
s + ∑n

i=1 λi

)

In the particular case of i.i.d random variables, we have

Lξn(s) = 1− s
n

∑
k=1

(
n
k

)
(−1)k 1

s + kλ
, s ∈ R+, n ∈N∗.
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2 Covariogram.

2.1 Definition.

Let Vn be the n-dimensional Lebesgue measure in Rn. A body is a compact convex
set in Rn with inner points.

Definition 2 The covariogram of a body D is the function :

CD : Rn −→ R+

X 7→ Vn(D ∩ (D + X)) ,

where (D + X) is the translation of D by vector X.

The covariogram of a body D is invariant by translations and reflections. G.
Mathéron conjectured in 1986 that the covariogram of a convex body determines
this body among all convex bodies (up to translations and reflections). It had
been proved that for n ≥ 4 this conjecture is false and for n = 2 it is true. For
n = 3, it is still an open problem.

The covariogram could be defined for other set than bodies, but as all sets
without inner points have a covariogram identically zero, we should restrain our
study to body so as to avoid non-interesting counter-examples of Mathéron con-
jecture.

This is a first elementary result about covariogram.

Proposition 5
For any body D , CD (0) is equal to Vn(D), the volume of D .

Each vector X in Rn can be described by its polar coordinates X = (r, ω)
where r ≥ 0 and ω ∈ Sn−1, the n-dimensional unit sphere with centre the origin,
seen a the space of direction in Rn. So we use to study the covariogram as a
function of two variables : CD (r, ω).

2.2 Calculation of the covariogram for a planar disc.

A disc is one of the most simple body to calculate its covariogram because of its
symmetry. Obviously, the covariogram of a disc does not depend on the coordi-
nate ϕ ∈ S1, where (r, ϕ) are the planar polar coordinates of the vector X ∈ R2.
That is why we forget the variable ϕ for discs.

9



Theorem 6 (Explicit form for the covariogram of a disc.)
The covariogram of the disc D(R), with radius R is

CD (r) =
{

2R2 arccos( r
2R )−

r
2

√
4R2 − r2 if 0 ≤ r ≤ 2R

0 if r ≥ 2R

Proof : Let D be the disc whom centre is O, the origin, and with radius R. Obviously,
for any r ≥ 2R, CD (r) = 0. We can assume that 0 ≤ r ≤ 2R. CD (r) is the area of the
intersection, so it is two times the area of the doted domain in Figure 1.

Figure 1: Intersection of two discs.

The triangle OAO′ is isosceles, so

OC = CO′ =
r
2

.

The triangle OAC is right in C, so

θ = arccos(
r

2R
).

The area of the circular sector of centre O delimited by A and B is

A1 = θR2.

The area of the triangle OAB is

A2 = 2
1
2

r
2

R sin θ.

Hence the doted area is
A = θR2 − rR

2
sin θ.

�

The symmetries of discs make also easier to study the Mathéron conjecture for
the class of discs.
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Proposition 7
Covariogram characterizes discs in R2 amongst of all bodies in the plane.

Proof : Let D ′ be a body with the same covariogram as the disc D of centre O and radius
R. We want to prove that D ′ and D are equal, up to translations.

Let X and Y be two points distinct in D̊ ′. There is an ε > 0 so that B(X, ε) ⊂ D ′ and
B(Y, ε) ⊂ D ′. Let ~ux and ~uy the unit direction vectors of the Cartesian frame.

X = Y + (X−Y) so X ∈ D ′ ∩ (D ′ + (X−Y))

X + ε~ux = Yε~ux + (X−Y) so X + ε~ux ∈ D ′ ∩ (D ′ + (X−Y))

Xε~uy = Yε~uy + (X−Y) so X + ε~uy ∈ D ′ ∩ (D ′ + (X−Y))

As D ′ ∩ (D ′ + (X − Y)) is convex and contains a triangle, its area is not zero. So
CD ′(X − Y) 6= 0. Hence |X − Y| ≤ 2R. D ′ is contains in a disc of radius R. Up to a
translations, we can assume that D ′ is contains in the disc D .

Let X be a point of D̊ \D ′. As D̊ \D ′ is an open set, there is an ε > 0 so that B(X, ε) ⊂
(D̊ \D ′). Using the convexity of D ′, no point in the area in red can be in D ′ (Cf Figure 2).

Figure 2:

Hence D ′ ∩ (D ′+ (2R− δ) X
‖X‖ ) = ∅ and this is in contradiction with the covariogram

of D ′. So every point of D is in D ′. �

In Figure 3 , we can see the graph of the covariogram for a disc with radius
R = 1.

11



Figure 3: Covariogram for a disc with radius R = 1.

2.3 Links with probability.

The definition of the covariogram is purely geometric. Yet, it is linked to stochas-
tic problems. Let D be a body in Rn. The covariogram of D can be expressed in
terms of integral. For all X in Rn, we have :

CD (X) =
∫

Rn
1D (Y)1D+X(Y)dY

=
∫

Rn
1D (Y)1D (Y− X)dY

Now, let η1 and η2 be two independent random variables uniformly distributed
in D . They have the same density function

fη =
1

Vn(D)
1D .

Using the two following propositions 8 and 9, we can make a link between CD

and the random variable η1 − η2.

12



Proposition 8
Let η be a random variable with a density function fη(t). Then −η is also a ran-
dom variable with a density function f−η(t) and we have the relation

f−η(t) = fη(−t) , t ∈ R .

Proof : For all t in R, we have :

F−η(t) = P(−η ≤ t)
= P(η > −t)
= 1− Fη(−t− 0)

where Fη(−t− 0) = lim
x→−t
x<−t

Fη(x).

When the density exists, the distribution function is continuous so Fη(−t − 0) =
Fη(−t). The density function is the derivative of the distribution function. Hence, we
have the result. �

Proposition 9 (Sum of random variables)
If η1 and η2 are two independent random variable with density, then η1 + η2 is
a random variable with density and its density is the convolution of η1 and η2 ’s
densities.

fη1+η2 = fη1 ∗ fη2 .

Proposition 10
Let D be a body, η1 and η2 two independent random variables uniformly dis-
tributed in D . Then the density of the random vector η1 − η2 is

fη1−η2(X) =
1

V2
n (D)

CD (X) , ∀X ∈ Rn .

The calculation of a covariogram is equivalent to the calculation a density of a
random variable. We can reformulate the Mathéron conjecture in terms of prob-
ability : “does the density function of the random vector between two random points
dropped uniformly in a body D , characterize its body amongst all bodies, up to transla-
tions and reflections ?”

13



3 Chord-length distribution.

3.1 Invariant measures.

Let (X,A) be a measurable space. A measure µ, on (X,A) is a function

µ : A → [0,+∞]

so that : µ(∅) = 0 and which is σ-additive i.e µ(
+∞⋃
i=1

Ai) =
+∞

∑
i=1

µ(Ai) for all

(Ai)i∈N∗ pairwise disjoint sets in A.
The condition µ(∅) = 0 avoid the measure identically equal to +∞. For any

measure, if it exists a measurable set so that µ(A) < +∞, the σ-additivity induce
µ(∅) = 0.

For a measurable set as (Rn,B(Rn)), there are many measures but only few
have the properties that make them interesting in geometrical problems.

Definition 3 (Invariance)
Let H be a group which acts on X to the left. µ is said left-invariant with respect
to H, if we have

µ(h · A) = µ(A) , ∀h ∈ H, ∀A ∈ A .

A similar definition could be given for right-invariance. If µ is both left-
invariant and right-invariant, we say that µ is invariant.

Definition 4 (Locally finite)
µ, a measure on (Rn,B(Rn)), is locally finite if for any compact K, µ(K) < +∞ .

Let Tn be the group of translations of Rn. As Tn can be identified to Rn , the
action of t ∈ Tn on x ∈ Rn can be noted t + x. The following theorem is a very
strong result about the measures on (Rn,B(Rn)).

Theorem 11
Let µ be a measure on (Rn,B(Rn)), locally finite and invariant with respect to Tn.

Then, ∃c ≥ 0, µ = cVn .

In a certain way, it is a theorem of uniqueness. For a given scale, there is one
and only one locally finite invariant measure. The scale is given by µ([0, 1]n) =
c. It is the same matter as conversion from international system of measure to
imperial system.

14



3.2 Lines in the plane.

Let G be the set of all lines of R2 (Gerade means line in German). For more results
about G, see [8]. There are many way to parametrize a line in the plane. We use
polar coordinates. Each g ∈ G can be described by its distance from the origin
and the angle that the perpendicular direction to g makes with a fixed direction
(see Figure 4) :

g = (p, ϕ) , with p ∈ R+ , and ϕ ∈ S1 .

Figure 4:

We can note that topologically speaking, G is not equivalent to the cylinder
S1 ×R+ because the lines (0, 0) and (0, π) are the same. G is a topological space
homeomorphic to a Möbius strip. We note B(G) its Borel σ-algebra. The group
T2 acts on G but not as translations.

Proposition 12 (Action of T2 on G)
For all t ∈ T2 and g = (p, ϕ) ∈ G, we have :

t.g = (p + ‖t‖ cos(t̂, ϕ), ϕ) .

where (̂t, ϕ) is the angle between the directions of t and the perpendicular direc-
tion to g.

We have a similar result as with (Rn,B(Rn)), but less strong.

15



Theorem 13
Let µ be a measure on (G,B(G)), locally finite and invariant with respect to T2.
Then

dµ = dp m(dϕ)

where dp is the 1-dimensional Lebesgue measure and m is a measure on S1.

There is a an infinity of measures on S1, all the δϕ0 (Dirac measure on ϕ0 ∈ S1)
for example. If we want an uniqueness result, we need to ask a more constraign-
ing invariance. Let M2 be the group of rigid motions in the plane. It is the group
of translations and rotations.

Theorem 14
Let µ be a measure on (G,B(G)), locally finite and invariant with respect to M2.
Then

dµ = c dp dϕ

where dϕ is the uniform measure on S1 and c ≥ 0.

From now, we note dg = dp dϕ. It is called the density for a set of lines. A
line in G can be determined by others coordinates than p and ϕ. In those cases,
the form of dg can be obtained by changes of coordinates.

Let Ox and Oy two axes inclined with angle C (C 6= 0 mod π). The set of
lines parallel to (Ox) or (Oy) is a negligible set :

µ({g ∈ G/g � (Ox) or g � (Oy)}) = 0 .

Then we can study the parametrization with the coordinates (x, y) of intersec-
tions between g ∈ G and the axes and the corresponding expression of the den-
sity dg.

Proposition 15
If lines g ∈ G (non-parallel to any axes) are parametrized by their intersections
with the axes, then the density of lines is :

dg =

∣∣∣∣∣xy sin2(C)
σ3

∣∣∣∣∣dxdy ,

where σ is the length of the chord between the two axes.

Proof : We introduce f : (x, y) 7→ (p, ϕ), and J f its Jacobian. A result of integral calculus
give us :

dp dϕ = |det(J f )|dx dy .

16



Figure 5: Change of coordinates.

We have the following relations :

p = x cos(ϕ) = y cos(C− ϕ) and σ =
√

x2 + y2 − 2xy cos(C) .

The area of the big triangle is :

1
2

xy sin(C) =
1
2

σp .

Hence, we have

p =
xy sin(C)

σ
and ϕ = arccos(

p
x
) .

J f (x, y) =

(
∂p
∂x

∂ϕ
∂x

∂p
∂y

∂ϕ
∂y

)

We have :
∂p
∂x

= y sin(C)
y2 − xy cos(C)

σ3

∂p
∂y

= x sin(C)
x2 − xy cos(C)

σ3

∂ϕ

∂x
=

y sin(C)
σ3

−1√
x2 − p2

∂ϕ

∂y
=

−1√
x2 − p2

∂p
∂y

det(J f ) =
∂p
∂x

∂ϕ

∂y
− ∂p

∂y
∂ϕ

∂x

After a little calculus, we find the result announced. �
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3.3 Intersection of a line with a body in the plane.

Let D be a body in the plane. We note [D ] the subset of G of lines which intersect
D

[D ] = {g ∈ G/g ∩D 6= 0} .

A classical result (see [1]) state that the measure of [D ] is equal to the length of
∂D , the boundary of D :

L =
∫
[D ]

dg .

So as to understand this result, let’s play a little game. K1 and K2 are two
convex bonded bodies so that K1 contains K2. You don’t know where is K2 and
you have to draw a chord of K1 which cut K2. What is the probability of your
success?

Figure 6: Intersection of K1’s chord with K2.

According to the previous result, the probability that a random chord of K1

intersects K2, is equal to
L2

L1
, where L1 and L2 are the perimeters of K1 and K2

respectively. It is interesting to see that the probability is independent of the
bodies’ areas.

A line g ∈ [D ] produce a chord χ(g) of length |χ(g)|.

Definition 5 (Chord-length distribution.)
The chord-length distribution of a convex body D is the function :

FD : R→ [0, 1]

x 7→ 1
L

∫
{g∈[D ]/|χ(g)|≤x}

dg

This function is continuous (proved in 1965 by Sulanke) and there is no counter-
example of non absolutely continuous chord-length distributions. So we usually
consider that a density function exists.
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The explicit form of chord-length distribution is known for only few class of
convex bodies : ellipses, triangles ([5]), parallelograms ([6]) and regular polygons
([7]).

Mallows and Clark have proved in 1970 that the chord-length distribution
doesn’t characterize a convex body (up to rigid motion) by exhibiting two non-
congruent convex polygons with the same chord-length distribution. Yet, for
some class of polygon, there is a one-to-one correspondence between the poly-
gon and its chord-length distribution.

It is obvious that there is less informations in the chord-length distribution,
which is a function of R, than in the covariogram, which is a function of R2.
That is why we cannot recognize all bodies by their chord-length distribution. If
we want more informations, we should study oriented chord-length distribution.
The idea is to study the chord-length for lines with a fixed direction ϕ ∈ S1, for
example, for lines parallel to (Ox) only. The chord-length distribution is a kind
of mean value of oriented chord-length distributions, over all the directions. A
mean value is always with less informations. The link between oriented chord-
length distributions and covariogram are discussed in [4].

3.4 Recognition of a triangle by its chord-length distribution.

A triangle can be recognize among the class of triangles, by studying the mo-
ments of its chord-length distribution (see [2]). For all convex bodies, the first and
the third moments are well known. If σ denotes the length of a random chord to
the body, we have :

E[σ] =
πF
L

and E[σ3] =
3F2

L
,

where L is the perimeter and F the area of the body. If we dropped a sample of
lines (g1, . . . , gn) in a body, we obtain a sample of chord-length (σ1, . . . , σn). Using
the strong law of large numbers, we can approximate the first moments :

E[σ] ≈ 1
n

n

∑
i=1

σi and E[σ3] ≈ 1
n

n

∑
i=1

σ3
i .

Then it is possible to approximate the perimeter and the area. Unfortunately, a
body is not characterize by its perimeter and area only. For example, the rhombus
of diagonals’ lengths D = 2 and d = 1, and the rectangle with sides’s lengths

L =

√
5 + 1
2

and ` =

√
5− 1
2

have the same perimeters and the same areas (see
Figure 7).

A triangle is characterized by its sides’s lengths only. We need another data
than perimeter and area for deducing the three lengths. We could use the fact that
the longest chord is a side, and so it is the supremum of the chord-length density
support. We develop here an other way, based an the fifth moment.
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Figure 7: Two different polygons with the same perimeters and areas.

Figure 8: Triangle ∆.

For a triangle, the fifth moment is easy to calculate. Let ∆ be a triangle with
side a, b and c:

Proposition 16
The fifth moment of the chord-length for ∆ is given by the following formula :

E[σ5] =
5F2T

9L

where T = a2 + b2 + c2.

Proof : First we consider chords across a pair of line segments. Suppose two line seg-
ments along two axes inclined at angle C and that segments range over a1 ≥ x ≥ a2 and
b1 ≥ y ≥ b2, as in figure 9.

The (unnormalised) odd moments of σ are :

I2n+3 =
∫

σ2n+3dG = sin2 C
∫ a2

a1

∫ b2

b1

[x2 + y2 − 2xy cos C]nxydxdy .

Now, for the chords across the sides a and b of ∆, we have :

I5,ab = sin2 γ
∫ a

0

∫ b

0
[x2 + y2 − 2xy cos γ]xydxdy

= sin2 γ[
a4b2

8
+

a2b4

8
− 2

a3b3

9
cos γ]
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Figure 9:

Using Al-Kashi ’s formula, we can simplify the sin and the cos :

I5,ab =
4a2b2 − (a2 + b2 − c2)2

288
[a2 + b2 + 8c2] ;

Using Heron’s formula, we obtain the result :

I5,ab =
F2

18
[a2 + b2 + 8c2] .

The set of chords across ∆ is the disjoint union of the sets of chords across each pairs
of sides. So the fifth unnormalised moment of σ for ∆ is the sum of each moments for
pairs of sides. Normalising, we obtain the result announced. �

We remind the Heron’s formula:

Proposition 17 (Heron’s formula)
For a trianle of sides a, b and c, we have :

16F2 = L(L− 2a)(L− 2b)(L− 2c)

where L is the perimeter and F the area.

The sides of ∆ are the roots of the cubic polynomial equation

(X− a)(X− b)(X− c) = X3 − AX2 + BX− C = 0 ,

with
A = a + b + c , B = −(ab + ac + bc) and C = abc .

These coefficients can be expressed with the moments. We note µ = E[σ],
µ3 = E[σ3] and µ5 = E[σ5].

A =
π2µ3

3µ2 , B =
π2µ2

3
18µ4 −

27µ5

10µ3
and C =

π6µ3
3

216µ6 −
9π2µ5

20µ2 −
2
3

µ3
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If we have the chord-length distribution of a triangle, then we can calculate
its moments, the coefficients A, B and C, and resolve the polynomial equation.
Hence, a triangle is completely determined by its chord-length distribution.

3.4.1 Example of the regular triangle.

Let’s see an application of this method with the case of a regular triangle. In [5],
we can find the following result.

Proposition 18 (Chord-length distribution for a regular triangle.)
For a regular triangle of sides a, we have :

F∆(t) =


0 if t ≤ 0
( π

3
√

3
+ 1

2)
t
a if 0 ≤ t ≤ a

√
3

2
2t

a
√

3
arcsin( a

√
3

2t )− 2πt
a3
√

3
+ t

2a +
√

4t2−3a2

2t if a
√

3
2 ≤ t ≤ a

1 if t ≥ a

(see Figure 10)

Figure 10: Chord-length distribution for a regular triangle with side a = 1.
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With a software of numerical calculus, we obtain the moments and the con-
stants (see appendix A.1). The roots of the polynomial equation are :

x1 = 0.9647609 , x2 = 1.0175865+ 0.0293943i and x3 = 1.0175865− 0.0293943i

This result is very near of what we were waiting for (which is x1 = x2 =
x3 = 1). We could make the error decrease by changing the method of numerical
integration, for the moments, or changing the resolution of the cubic equation.
Yet, it seems impossible to find the exact sides’ length.
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4 Distance between two random points.

For P1 and P2, two points in Rn, we note ρ(P1, P2) the distance between them.
If P1 and P2 have the coordinates (x(1)i )1≤i≤n and (x(2)i )1≤i≤n respectively, we
have the formula :

ρ(P1, P2) =

√
n

∑
i=1

(x(1)i − x(2)i )2 .

Let D be a body in Rn and P1 and P2 two random points uniformly dropped
in D . In this case ρ(P1, P2) is a random variable. The goal of this section is to
study its distribution, i.e the function

Fρ(x) = P(ρ(P1, P2) ≤ x) =
1

V2
n (D)

∫
{(P1,P2)∈D2/ρ(P1,P2)≤x}

dP1dP2 .

We focus our study in rectangular bodies : [a1, b1]× . . .× [an, bn] ⊂ Rn.

4.1 Some preliminary results.

Let’s begin with some little results of probability that we need to study the density
of distances.

Proposition 19 (Square of a random variable)
If η is a random variable with density function fη, then η2 is a positive random
variable with density function fη2 and we have :

fη2(t) =

{
0 if t ≤ 0

1
2
√

t
( fη(
√

t) + fη(−
√

t)) if t > 0

Proof : For all t in R, we have :

Fη2(t) = P(η2 ≤ t)

=

{
0 if t ≤ 0
P(−
√

t ≤ η ≤
√

t) if t > 0

=

{
0 if t ≤ 0
Fη(
√

t)− Fη(−
√

t) if t > 0

By differentiation, we obtain the result. �
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Proposition 20 (Square root of a positive random variable)
If η is a positive random variable with density function fη, then

√
η is a positive

random variable with density function f√η and we have :

f√η(t) =
{

0 if t ≤ 0
2t fη(t2) if t > 0

Proof : For all t in R, we have :

F√η(t) = P(
√

η ≤ t)

=

{
0 if t ≤ 0
P(η ≤ t2) if t > 0

=

{
0 if t ≤ 0
Fη(t2) if t > 0

By differentiation, we obtain the result. �

4.2 A rectangle in the plane.

Let R be a rectangle of length L and width ` (l ≤ L). As the distribution of
distance is invariant with respect to rigid motions, we assume that

(x, y) ∈ R ⇔ (x ∈ [0, L] and y ∈ [0, `]) .

If P1 = (X1, Y1) is uniformly distributed in R, then X1 and Y1 are indepen-
dently uniformly distributed in [0, L] and [0, l] respectively. As P1 and P2 are
independent, then X1, X2, Y1 and Y2 are independent.

We can see a way to calculate the distribution of ρ:

• calculate the density of X1 − X2 ;

• calculate the density of (X1 − X2)
2 ;

• do the same for Y;

• calculate the density of ρ2 = (X1 − X2)
2 + (Y1 −Y2)

2 ;

• calculate the density of ρ.
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This method is very general and could be applied in Rn. The thinks that make
the calculus possible (in theory) is the independence between the the coordinates
of each point in a rectangular. If we want to study the distribution of distance in
the disc with raduis R and centre O, the Cartesian coordinates would not be well
adapted because there is a relation of dependence between x and y :

x2 + y2 ≤ R2 .

Theorem 21
The density of the distance in a rectangle in the plane, with length L and width `,
is given by the formula :

fρ(t) =



2t
F2 [t2 − 2(L + `)t + πL`] if 0 ≤ t ≤ `

2t
F2 [2L

√
t2 − `2 − 2Lt

+2L` arcsin( `t )− `2] if ` ≤ t ≤ L

2t
F2 [2L

√
t2 − `2 + 2`

√
t2 − L2

+2L` arcsin( L
t ) + 2L` arcsin( `t )

−L2 − `2 − t2 − πL`] if L ≤ t ≤
√

L2 + `2

0 otherwise

where F = L` is the area of the rectangle.

(see Figure 11)

Figure 11: The density for a rectangle with L = 2 and ` = 1.

Proof : For i = 1, 2, fXi(t) =
1
L

1[0,L](t) and fYi(t) =
1
`

1[0,`](t).
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Using propositions 8 and 9, for all t in R we have

fX1−X2(t) =
1
L2

∫
R

1[0,L](s)1[0,L](s− t)ds

=

{
0 if |t| > L
L−|t|

L2 otherwise

(see Figure 12)

Figure 12: The density of X1 − X2, for L = 1.

We denote ηX = X1 − X2 and ηY = Y1 −Y2. From proposition 19, we have

fη2
X
(t) =

{
L−
√

t
L2
√

t
if 0 ≤ t ≤ L2

0 otherwise
and fη2

Y
(t) =

{
`−
√

t
`2
√

t
if 0 ≤ t ≤ `2

0 otherwise

(see Figure 13)

Figure 13: The density of (X1 − X2)
2, for L = 1.

As ρ2 = η2
X + η2

Y, we have : fρ2(t) =
∫

R
fη2

Y
(s) fη2

Y
(t− s)ds .
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fρ2(t) =



∫ t

0

L−
√

s
L2
√

s
`−
√

t− s
`2
√

t− s
ds if 0 ≤ t ≤ `2

∫ t

t−`2

L−
√

s
L2
√

s
`−
√

t− s
`2
√

t− s
ds if `2 ≤ t ≤ L2

∫ L2

t−`2

L−
√

s
L2
√

s
`−
√

t− s
`2
√

t− s
ds if L2 ≤ t ≤ `2 + L2

All integrals are elementary, except it :

∫ b

a

ds√
s
√

t− s
=
∫ b t

2

a− t
2

du√
t
2 + u

√
t
2 − u

=
2
t

∫ b t
2

a− t
2

du√
1− ( 2u

t )
2

=
∫ 2b

t −1

2a
t −1

ds√
1− s2

= [arcsin(s)]
2b
t −1

2a
t −1

We notice that :

2 arcsin(
a√
x
) = arcsin(

2a2

x
− 1) +

π

2
.

Using the proposition 20 we find the result. �

The study of the density can reveal geometric properties of the body. For
example, it is interesting to see that the density of distance in a rectangle is con-
tinuous, derivable and that the derivative function is also continuous (except at
the boundary of the support). For a triangle, the derivative is discontinuous on
sides’ length.

In the particuliar case of a square, we have the following result.

Proposition 22
The density of the distance in a square, with length `, is given by the formula :

fρ2(t) =



2t
F2 [t2 − 4`t + π`2] if 0 ≤ t ≤ `

2t
F2 [4`

√
t2 − `2 + 4`2 arcsin( `t )− 2`2 − t2 − π`2] if ` ≤ t ≤

√
2`2

0 otherwise

where F = `2 is the area of the square.
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4.3 A cube in the space.

If the calculus for the rectangular in the plane were not to difficult, it becomes
more complicated in higher dimensions. Whereas calculating the density for any
parallelepiped, we restrain ourself to the case of the cube. We note ρ1 the distance
between two random points in a line of length `, ρ2 the distance between two
random points in a square of side’s length ` and ρ3 the distance between two
random points in a cube of side’s length `.

Using the same method as in the last part, we have

fρ3(t) = fη2
X
∗ fη2

Y
∗ fη2

Z
(t) , ∀tinR .

As we work on a cube, ηX, ηX and ηX are i.i.d. Using the associativity of the
convolution, we have

fρ3(t) = fρ2
2
∗ fρ2

1
(t) , ∀t ∈ R .

Three intervals appear : 0 ≤ t ≤ `2, `2 ≤ t ≤ 2`2 and 2`2 ≤ t ≤ 3`2.

If 0 ≤ t ≤ `2, then we have

fρ2
3
(t) =

1
`6

∫ t

0

(
s− 4`

√
s + π`2

)( `√
t− s

− 1
)

ds

=
1
`6

[∫ t

0

(
`s√
t− s

− 4`
√

s√
t− s

+
π`2
√

t− s

)
ds− t2

2
+

8
3
`t
√

t− π`2t
]

For 0 ≤ t ≤ `2, we have

fρ2
3
(t) =

1
`6

[
− t2

2
+ 4`t

√
t− 3π`2t + 2π`3

√
t
]

.

If `2 ≤ t ≤ 2`2, we must separate the integral in two, because the expression
of fρ2 change in `2. We have

fρ2
3
(t) =

1
`6

∫ `2

t−`2
fρ2

2
(s) fρ2

1
(t− s)ds +

1
`6

∫ t

`2
fρ2

2
(s) fρ2

1
(t− s)ds

We denote by I1(t) and I2(t) the two integrals.

29



I1(t) =
∫ `2

t−`2

(
s− 4`

√
s + π`2

)( `√
t− s

− 1
)

ds

=
∫ `2

t−`2

(
`s√
t− s

− 4`
√

s√
t− s

+
π`2
√

t− s

)
ds− `4 − (t− `2)2

2
+

8
3
`
(
`3 − (t− `2)3/2

)

− π`2(`2 − t`2)

= `
∫ `2

t−`2

t− u√
u

du− 4`2
[√

s
√

t− s− t arctan
(√

t− s√
s

)]`2

t−`2
+ π`3

∫ `2

t−`2

du√
u

− `4 − (t− `2)2

2
+

8
3
`
(
`3 − (t− `2)3/2

)
− π`2(`2 − t`2)

=
1
2

t2 − 2`(t− `2)3/2 − 2`t
√

t− `2 + t`2(1− π)− 2π`3
√

t− `2

+ 8`2t arctan

(√
t− `2

`

)
+ 2`4
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I2(t) =
∫ t

`2

(
4`
√

t− `2 − s + 4`2 arcsin
(

`√
s

)
− `2(π + 2)

)(
`√

t− s
− 1
)

ds

=
∫ t

`2

4`2
√

s− `2
√

t− s
− `

s√
t− s

+ 4`3
arcsin

(
√̀

s

)
√

t− s
− `3(π + 2)√

t− s

ds

− 8
3
`(t− `2)3/2 +

t2 − `4

2
− 4`2

∫ t

`2
arcsin

(
`√
s

)
ds + `2(π + 2)(t− `2)

= 4`2(t− `2)

[
arctan

(√
x− `2

t− x

)]t

`2

− `
∫ t−`2

0

t− u√
u

du

+ 4`3
(

π`+ π
√

t− `2 − π
√

t
)
− `3(π + 2)

∫ t−`2

0

du√
u
− 8

3
`(t− `2)3/2

+
t2

2
− `4

2
− 4`2

[
`
√

s− `2 + s arcsin
(

`√
s

)]t

`2
+ `2(π + 2)t− `2(π + 2)`2

We notice that

arcsin
(

`√
s

)
=

π

2
− arctan

(√
s− `2

`

)
, `2 ≤ s ≤ t.

So we have

I2(t) =
t2

2
− 2`(t− `2)3/2 − 2`t

√
t− `2 + (2π − 8)`3

√
t− `2 + t`2(π + 2)− 4π`3

√
t

+ `4(3π − 5
2
) + 4`2t arctan

(√
t− `2

`

)
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For `2 ≤ t ≤ 2`2, we have

fρ2
3
(t) =

1
`6

[
t2 − 8`t

√
t− `2 − 4`3

√
t− `2 + 3`2t− 4π`

√
t + `4(3π − 1

2
)

+12`2t arctan

(√
t− `2

`

)]
.

For 2`2 ≤ t ≤ 3`2, we have

fρ2
3
(t) =

1
`6

∫ 2`2

t−`2

(
4`
√

t− `2 − s + 4`2 arcsin
(

`√
s

)
− `2(π + 2)

)(
`√

t− s
− 1
)

ds .

As is is the same kernel as in I2, we give the result without more calculus.

fρ2
3
(t) =

1
`6

[
−1

2
t2 − t`2(π − 3) + 4`t

√
t− 2`2 + `3(2π + 6)

√
t− 2`2

− `4(2π +
13
2
) + 4`2(t− `2) arcsin

(
`√

t− `2

)

−8`2(t− `2) arctan

(√
t− 2`2

`

)
+ 4`3

∫ 2`2

t−`2

arcsin
(
√̀

s

)
√

t− s
ds


The explicit expression of the integral

∫ arcsin( √̀s )√
t− s

ds ,

is difficult to simplify. But we know from [9] that the result is

For 2`2 ≤ t ≤ 3`2, we have

fρ2
3
(t) =

1
`6

[
−1

2
t2 + 4`t

√
t− 2`2 + 4`3

√
t− 2`2 + 3(π − 1)`2t− 4π`3

√
t

+ `4(3π − 5
2
)− 12`2(t + `2) arctan

(√
t− 2`2

`

)

+12`3
√

t arctan

(√
t
√

t− 2`2

`2

)]
.
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4.4 Numerical approximations for cubes and hypercubes.

In [9] and [10], Johan Philip give the result for a box, a cube and an hypercube
in four dimensions. It is interesting to notice that Philip use the same method to
make his calculus. In the case of four dimensions, he faces integrals which cannot
be expressed with usual function.

In this part, we compare the theoretical results obtained by Philip with nu-
merical results. The idea is to implement a function convolution(f,g,t) where
f and g are two functions and t a float, which calculate an approximation of

f ∗ g(t) =
∫

R
f (s)g(t− s)ds .

We define a function eta_sq, the density of η2 for a unit segment and sqare_sq
the density of the square of the distance for a unit square. This is not a matter
as we obtained explicit expressions. We calculate the functions app_cube_sq and
app_hypercube_sq, which are approximations of the densities of ρ2 for a unit cube
and hypercube. You can see the functions in appendix A.2.

Let us begin with the unit cube. As we have explicit expression of the den-
sity, it allow to compare and to see if our numericals results are faithful. In
the Figure 14, we draw in green the density given by Philip and in red the ap-
proximation. The integration step is p=0.000001 and we calculate the values for
X=[0.0001:0.01:1.8]. It took 2 hours 42 minutes for the computer to calculate
these values.

Figure 14: Exact density of the distance in an unit cube and an approximation.

The numerical approximation fit the theoretical graph. We have only 180
points, which is very few. Yet, the time of calculation is already important. If
we increase the number of point, we face a big problems. For a reason of time,
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we must decrease the integration step, and this decrease the precision of the
calculus, irregularities appear. In Figure 15, we have a illustration of this phe-
nomenon. The integration step used isp=0.000005 and we print the values for
X=[0.0001:0.005:1.8]. The calculus took 1 hour 12 minutes.

Figure 15: Peaks on the approximation.

In the case of the hypercube, the formula given by Philip is not explicit. Hence,
we cannot compare theoretical graph and approximation. In Figure 16, we find
an approximation of the density f distance for an unit hypercube in 4 dimensions
with an integration step p=0.000001 for the range of values X=[0.0001:0.05:1.8].
The computer took 51 minutes to calculate.
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Figure 16: Approximation of the density for an unit hypercube in 4D.
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Conclusion.

This rapport accustom us with three tools of stochastic geometry : covariogram,
chord-length distribution and distance between random points in a body. Even
if we do not go into their links in depth, they are bound by very close relation.
If these relations are well-known in R2, they should be extended to other dimen-
sions. The examples we choose to illustrate this tools are particular cases which
make calculus easier, but we can see that, even with very simple body, it can
become very complicated.

For the distance between two points in a cube and hypercube, I am disap-
pointed of not being able to succeed in calculating the density. Our technique
“step by step” cannot be used to find a formula for any n. We should search for
another way. Perhaps with Fourier transform, which prevent from convolution
products.
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A Algorithms with Scilab.

A.1 Calculation of chord-length distribution ’s moments for a
triangle.

These are the functions used in part 3.4.1. First we need to define the distribution
function for a regular triangle with side’s length a = 1.

function y=F(t)
if t<=0 then y=0
elseif t<=sqrt(3)/2 then y=(%pi/(3*sqrt(3))+1/2)*t
elseif t<=1 then y=2*t*asin(sqrt(3)/(2*t ) )/sqrt(3)-2*%pi*t/(3*sqrt(3))+t/2

+(sqrt(4*t*t -3))/(2*t )
elseif t>1 then y=1
end

endfunction

The function moment(n,p) calculate the nth moment of the distribution F.

function m=moment(n,p)
x=[0:p:1]
m=0
N=length(x)
for i=1:N

m=m+p*n*x(i)^(n-1)*(1-F(x(i)))
end

endfunction

It is based on the simplest methods of numerical integration : the rectangle
method. The integration’s step is p. This function could be easily improve by
changing the method of numerical integration, but this does not concern us.

A.2 Disance between two random points.

The function convolution(f,g,t) is based on the rectangular method. The float
p is the step of integration.

function h=convolution(f,g,t)
p=0.000005
x=[0.0001:p:5]
s=0
for i=1:length(x)

s=s+p*f(x(i) )*g(t -x( i ) )
end
h=s

endfunction
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The interval of integration is x=[0.00001:p:2.1] because we know that in our
problem, all functions have their support in [0, 2.1] and we need to exclude 0 for
numerical reasons.

The density of η2 for a of length ` = 1 is given by the function eta_sq,

function y=eta_sq(t)
if ( t<=0)|(t>1) then y=0

else y=(1-sqrt( t ) )/sqrt(t )
end

endfunction

and the density of ρ2 for the unit square is given by the function square,

function y=square_sq(t)
if t <=0 then y=0

elseif t<=1 then y=t-4*sqrt(t )+%pi
elseif t<=2 then y=4*sqrt(t-1)+4*asin(1/sqrt(t ) ) - t -2-%pi

else y=0
end

endfunction

function y=square(t)
y=2*t*square_sq(t*t*sign(t ) )

endfunction

Then the approximations of densities of the square of the distance for an
unit cube and an unit hypercube are given by the function app_cube_sq and
app_hyper_sq

function y=app_cube_sq(t)
y=convolution(square_sq,eta_sq,t)

endfunction

function y=app_hyper_sq(t)
y=convolution(square_sq,square_sq,t)

endfunction

To plot the density of the distance (and not the square of the distance), we just
use

X=[0.0001:0.005:1.8]
for j=1:length(X)

Z(j )=2*X(j)*app_cube_sq(X(j)*X(j))
end
plot(X,Z)

The exact density of the distance for an unit cube is given by cube
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function y=cube(t)
if t<=0 then y=0
elseif t<=1 then y=t*t*(4*%pi-6*%pi*t+8*t*t-t*t*t )
elseif t<=sqrt(2) then y=(6*%pi-1)*t-8*%pi*t*t+6*t*t*t+2*t*t*t*t*t+24*t*t*t

*atan(sqrt( t*t -1)) -8*t*(1+2*t*t )*sqrt( t*t -1)
elseif t<=sqrt(3) then y=(6*%pi-5)*t-8*%pi*t*t+6*(%pi-1)*t*t*t - t*t*t*t*t+8

*t*(1+t*t )*sqrt( t*t -2)-24*t*(1+t*t )*atan(sqrt( t*t -2))+24*t*t*atan(t*sqrt( t*
t -2))
else y=0
end

endfunction

B List of useful integrals.

These are non-elementary integrals we use in the part 4.3. These expressions fit
for `2 ≤ x ≤ t. We found these expressions in [11].

∫ √
x√

t− x
dx = t arctan

( √
t√

t− x

)
−
√

x
√

t− x (1)

∫
arcsin

(
l√
x

)
dx = `

√
x− `2 + x arcsin

(
`√
x

)
(2)

∫ arcsin
(

l√
x

)
√

t− x
dx = −2

√
t− x arcsin

(
l√
x

)
− ` arctan

(
`2 + t− 2x

2
√

x− `2
√

t− x

)

+ i
√

t log

(
i`2(x− 2t) + 2`

√
t
√

x− `2
√

t− x + itx
`
√

tx

)

We deduce this integral from (1)

∫ √x− `2
√

t− x
dx = (`2 − t) arctan

(√
x− `2
√

t− x

)
−
√

x− `2
√

t− x
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