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Avant-Propos

Entre 2003 et 2008 j’ai enseigné à l’École normale supérieure de Lyon un cours
de licence intitulé “Intégration et Analyse de Fourier” ; puis à partir de 2025 à
l’Unversité Rennes I un cours intitulé “Intégrale de Lebesgue”. Le second tour de
piste a été l’occasion, avec une vingtaine d’années de recul, de reprendre et améliorer
le jeu de notes incomplètes issues du premier tour.

Sans chercher à être un ouvrage de référence, l’ouvrage constitue cependant une
synthèse ambitieuse puisqu’il entremêle trois courants de pensée scientifiques ma-
jeurs, résonnant bien au-delà de la pensée mathématique : le calcul intégral, l’ana-
lyse harmonique et l’analyse fonctionnelle. L’analyse harmonique, ou analyse en
fréquences, quantifie la régularité au moyen du calcul intégral, et l’analyse fonction-
nelle est née avec les espaces d’intégration avant de se développer dans l’analyse
de la régularité : ce sont donc des domaines fortement interconnectés, au regard de
l’histoire comme du présent.

Comme toujours en sciences, ces théories ont été des œuvres collectives, influen-
cées par les autres développements scientifiques et même philosophiques, pleines
d’aller-retour complexes ; mais trois mathématiciens en particulier en sont devenus
les figures emblématiques : Joseph Fourier (1768-1830) a fondé l’analyse en fré-
quences, Henri Lebesgue (1875-1941) a établi la théorie moderne de l’intégration,
Stefan Banach (1892-1945) incarne le nouveau vent d’analyse fonctionnelle abstraite
qui a soufflé de l’Europe de l’est au mitan du vingtième siècle. Nés dans des mi-
lieux modestes, orphelins de père, ou de mère, ou des deux, ces trois là ne sont pas
partis gâtés par le sort, et pourtant leurs noms résonnent aujourd’hui avec la plus
grande force dans l’océan agité des idées et des techniques. Le traité de Fourier sur
l’équation de la chaleur (1811), la note de Lebesgue sur l’intégration (1901), l’ou-
vrage de Banach sur les opérations linéaires (1932) sont des jalons majeurs dans
l’histoire des sciences. Et n’importe où dans le monde, quand on parle de “mesure
de Lebesgue”, “analyse de Fourier” ou “espaces de Banach” cela évoque des champs
gigantesques, pleins de glorieux accomplissements – et, pour les deux derniers, de
problèmes ouverts. La puissance visionnaire de ces pionniers justifie que j’évoque
leurs “Poèmes mathématiques” – une expression employée par Lord Kelvin, le plus
puissant physicien de son temps, pour qualifier l’œuvre de Fourier.

Les théories de Lebesgue, Fourier et Banach ne sont pas seulement faites de défi-
nitions et théorèmes, ce sont aussi des méthodes et des points de vue, avec lesquelles
toute analyste doit se familiariser. Tous les problèmes mathématiques que j’ai ren-
contrés dans ma vie de chercheur faisaient intervenir une combinaison de ces trois
visions. Pour les présenter dans cet ouvrage, j’ai longuement remanié les présenta-
tions et les preuves. Un premier défi était de rassembler de façon cohérente les bases
de trois théories souvent dispersées, et dont j’ai moi-même appris les fondamentaux
dans les excellents ouvrages de Gramain, Brezis, Rudin et Körner. Le second défi
était d’aller suffisamment loin pour couvrir tous les outils, parfois subtils, utiles à la
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pratique mathématique courante, et dans le bon niveau de généarlité, sans sacrifier
à la pédagogie. Enfin, par cohérence avec mes propres choix, je souhaitais que le
tout fût assemblé sans recours à l’axiome du choix – ne serait-ce que parce que cet
axiome, du moins dans sa version générale, est inutile pour développer ces sujets, et
plus généralement à l’essentiel de l’analyse.

La bibliographie est volontairement réduite à un petit nombre d’ouvrages et
articles : ceux que j’ai moi-même utilisés régulièrement au cours de ma carrière.
Quelques points de repère historiques seront fournis à différents endroits du traité.

Je remercie ceux qui m’ont aidé, au long des années, à la rédaction de ces notes
par leurs commentaires, rectifications et aides ponctuelles, en particulier Luigi Am-
brosio, Guillaume Aubrun, Haïm Brézis, Nassif Ghoussoub, Étienne Ghys, Baptiste
Huguet, François Japiot, Sébastien Martineau, Julien Melleray, Quentin Mérigot,
Forte Shinko, Jean-Claude Sikorav.



Choix de présentation

Ce bref chapitre est destiné aux lectrices déjà familières avec la matière enseignée
et qui souhaiteraient savoir les choix pédagogiques de ce cours. Il peut être omis sans
conséquence.

Touit au long de l’ouvrage, la lectrice est encouragée à se méfier de l’axiome
du choix, et à éviter son usage. Aucun des théorèmes du cours ne l’utilise. Toute
l’analyse classique peut se construire sans la forme forte de l’axiome du choix. Un
bref chapitre préliminaire est consacré à une mise au point sur ce sujet.

Il existe deux grands cadres pour développer la théorie de la mesure : celui des
espaces polonais (métriques séparables complets) et celui des espaces localement
compacts. Le premier choix est le cadre pertinent pour la théorie des probabilités
[Billingsley, Dudley, Parthasarathy], le second est privilégié par les admirateurs des
espaces topologiques [Bourbaki, Halmos, Rudin]. Sans surprise, j’ai choisi le point
de vue polonais, beaucoup plus important pour les applications, tout en gardant
pourtant une place pour quelques énoncés emblématiques dans le cadre localement
compact non métrique. Les démonstrations seront complètes dans le cas métrique, et
seulement esquissées dans le cas non métrique (par exemple le théorème de Tychonov
et le lemme d’Urysohn non métriques seront admis).

La régularité des mesures est abordée dès le premier chapitre, de même que di-
verses propriétés reliant topologie et théorie de la mesure. Des théorèmes d’extension
à la Carathéodory sont présentés dans la foulée. J’ai pris soin d’énoncer une version
du Théorème de Carathéodory qui soit suffisamment générale pour être utilisable
dans le théorème d’existence de la mesure produit, dans celui de l’existence de la
mesure de Lebesgue, mais aussi dans le Théorème de représentation de Riesz. En
effet, les démonstrations classiques du Théor ème de Riesz, soit reprennent en fait
des arguments du Théorème de Carathéodory, soit s’appuient explicitement sur la
forme classique de ce dernier mais doivent alors y ajouter de délicats ingrédients
supplémentaires ; la présentation adoptée ici évite cet écueil.

La linéarité de l’intégrale de Lebesgue est d’ordinaire établie comme corollaire du
Théorème de convergence monotone ; cette approche est économe, mais a l’inconvé-
nient pédagogique de commencer à traiter des propriétés de l’intégrale par passage à
la limite, avant de parler de la propriété plus fondamentale (au cahier des charges de
toute notion d’intégrale !) de linéarité. J’ai donc dans un premier temps établ la li-
néarité par un argument qui copie la preuve du Théorème de convergence monotone,
et juste après j’ai fait le lien avec l’approche de Riesz, basée sur les formes linéaires.
La discussion duThéorème de convergence monotone est reprise par la suite, dans
un nouveau chapitre consacré aux propriétés de l’intégrale.

Une place importante a été accordée au théorème d’Egorov, qui en pratique
se révèle souvent plus maniable que le théorème de convergence dominée. En fait,
comme rappelé dans ces notes, on pourrait choisir le théorème d’Egorov comme
point de départ de la théorie des passages à la limite ; mais il est plus naturel de
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réserver ce rôle au théorème de convergence monotone, pour son analogie formelle
avec la propriété d’additivité dénombrable.

Les liens entre théorie de la mesure et logique axiomatique d’une part, théorie de
la mesure et théorie des probabilités d’autre part, sont esquissés. Cela dit, je présente
et démontre les principaux résultats techniques qui sont utiles en probabilités, y
compris les subtils théorèmes d’existence de Kolmogorov et de Ionescu Tulcea, ou la
loi du 0-1 de Hewitt et Savage (et celles de Kolmogorov et de Borel).

Je ne recommande pas la complétion de Lebesgue, qui n’apporte de justifications
qu’à la marge (sauf peut-être dans la théorie des processus stochastiques), et au prix
d’une augmentation considérable de la tribu. Ne pas compléter demande un peu
d’attention aux négligeables (qui ne sont plus des ensembles de mesure nulle, mais
des parties incluses dans des ensembles de mesure nulle). L’opération de complétion
est donc présentée mais non recommandée en général. Ce choix est similaire à celui
de Carlen et Loss dans leur traité d’analyse.

L’étude des tribus et mesures produits (dans le cadre d’un produit fini ou infini)
aurait pu être exposée dès le début du cours, puisque le concept d’intégrale n’est
pas, strictement parlant, nécessaire à leur introduction. Cependant, j’ai suivi l’usage
qui consiste à ne pas séparer cette étude du théorème de Fubini, aussi parce que la
construction est facilitée par le concept de fonction mesurable. Pour compenser cette
faiblesse de plan, j’ai annoncé dès le début les rudiments sur les tribus produits, et
le résultat d’existence de mesure produit dès après le théorème de Carathéodory,
avec dans un cas particulier une démonstration qui annonce également le théorème
d’existence de Kolmogorov.

Après ce passage en revue des résultats majeurs, un chapitre d’approfondisse-
ment, plus avancé, est consacré à une introduction à la théorie descriptive des en-
sembles ; vifs remerciements à Julien Melleray et à Forte Shinko pour m’avoir pa-
tiemment permis de me retrouver dans le jardin foisonnant que constitue ce sujet. Le
chapitre se termine par un exposé sur la sélection mesurable, incluant la preuve des
théorèmes de sélection dans les ensembles à coupes dénombrables, à coupes ouvertes
et à coupes compactes. Pour la première fois en version cours, un argument rela-
tivement élémentaire est présenté pour le théorème de Lusin–Novikov de sélection
mesurable dans les sections dénombrables, suivant un travail très récent de Shinko.

Ensuite un chapitre spécifique est consacré à la mesure de Lebesgue dans l’espace
euclidien. La théorie de Riemann y est rappelée et les liens avec celle de Lebesgue
sont explorés. L’intégrale de Riemann ne doit pas être sous-estimée, c’est le plus
souvent elle qui permet d’effectuer les calculs pratiques. Ce chapitre accueille aussi
une discussion assez précise sur la mesurabilité et la non-mesurabilité, en rapport
avec les paradoxes de Banach–Tarski et l’axiome du choix.

Les mesures de Hausdorff sont absentes de la plupart des traités introductifs
(à l’exception notable de [Billingsley]). Mais l’importance de ce concept dans de
nombreuses branches des sciences, et la popularité du concept de mesure fractale ou
de dimension fractale, motivent amplement leur étude dès ce niveau.

L’analyse fonctionnelle est développée dans les espaces de Banach, avec des hy-
pothèses systématiques de séparabilité ou de dénombrabilité. Ainsi, le théorème de
Hahn–Banach n’est démontré que dans le cadre des espaces vectoriels normés sé-
parables – un cadre “restreint” mais suffisant pour toutes les applications que j’en
connais, et encore une fois cela évite le recours à l’axiome du choix dans sa version
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forte. On pourra voir dans ce choix une régression assumée : par endroits, la pré-
sentation s’apparente plus au traitement originel de Banach, dans les années 1930,
qu’à la théorie des espaces vectoriels topologiques développée dans les années 1950
et 1960.

L’uniforme convexité des espaces de Lebesgue Lp (p > 1) est démontrée à partir
des inégalités de Hanner plutôt que des inégalités de Clarkson ; on obtient ainsi des
estimations essentiellement optimales du module de convexité. Je propose au passage
une nouvelle démonstration très simple des inégalités de Hanner, par application
directe de l’inégalité de Jensen.

Dans le chapitre d’analyse fonctionnelle, j’ai également inclus et démontré des
énoncés de compacité dont je sais par expérience que la démonstration est difficile
à trouver dans les ouvrages de référence, malgré leur importance. Outre le classique
Théorème de compacité de Prokhorov dans l’espace des mesures, j’ai donc inclus les
théorèmes de compacité de Dunford–Pettis et de Schur, qui ont trait à la compacité
faible L1. Le critère de compacité pour des mesures signées (une question pourtant
naturelle) semble n’être traité que dans les ouvrages pointus de Bogachev (merci
à Luigi Ambrosio pour cette référence) ; j’en ai extrait une version simplifiée qui
couvre le cadre des espaces métriques localement compacts.

L’analyse hilbertienne est d’abord traitée comme un cas particulier de l’analyse
de Banach, avant de faire l’objet d’un chapitre d’approfondissement spécifique.

L’analyse harmonique est introduite en même temps que l’analyse par convolu-
tion, et dans le cadre des groupes localement compacts, métrisables et σ-compacts.
C’est dans ce contexte que sont énoncés les grands résultats comme le Théorème
de Pontryagin ou celui de Haar. Cet entre-deux, plus général que celui des espaces
modèles et plus restreint que celui des groupes topologiques localement compacts,
m’a semblé le bon dosage pour couvrir les problèmes que l’on rencontre d’ordinaire
en analyse.

L’analyse de Fourier dans les espaces modèles, avec son cortège de points de vue
et ses identités merveilleuses, fait ensuite l’objet d’un chapitre spécifique d’appro-
fondissement.

L’approximation est l’un des piliers de l’analyse, et toutes les techniques de ce
cours (Lebesgue, Fourier, Banach, Hilbert) viennent avec leur point de vue en la
matière. Un chapitre est dédié à cette question fondamentale, sans aucune prétention
d’exhaustivité.

La fonction maximale de Hardy–Littlewood n’est pas toujours introduite dans
les cours de théorie de la mesure (mais elle est bien traitée dans celui de Rudin), et
j’ai souhaité lui donner une place encore plus visible dans un chapitre spécifique qui
prépare la discussion de la désintégration.

Le chapitre sur la désintégration referme le mouvement ouvert par l’intégration.
Il traite aussi bien du Théorème de Radon–Nikodym (comme il est d’usage) que
du problème plus général de désintégration de la mesure (beaucoup moins traité et
d’ordinaire réservé aux ouvrages de probabilité avancée). J’ai choisi des conventions
faisant apparaître Radon–Nikodym comme un cas particulier de cette désintégration
plus générale. Ce chapitre continue avec des énoncés de reconstruction de la den-
sité de Radon–Nikodym dans des espaces localement compacts ; on y trouve aussi
bien le théorème classique de densité de Lebesgue (reconstruction ponctuelle), que
des énoncés légèrement moins précis mais plus simples de reconstruction L1. Les
probabilités conditionnelles y trouvent aussi leur place.
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La théorie de Brunn–Minkowski, et les inégalités géométriques, au confluent de
l’analyse et de la géométrie, sont d’habitude réservés aux ouvrages spécialisés ; mais
il s’agit de matériaux importants, en ligne directe avec le problème historique de
l’isopérimétrie, dont tout le monde devrait avoir des notions, ne serait-ce que pour
la culture générale ; cela justifiait aussi un chapitre spécifique.

Le dernier chapitre est un chapitre d’ouverture : moins axé sur la rigueur et
la généralité, il présente des théories, problèmes et applications issues des analyses
de Lebesgue, Fourier et Banach. Il pourra être consulté pour la culture scientifique
comme pour les techniques qui y sont exposées.



Notations et conventions

Outre des notations très classiques, j’utiliserai les conventions suivantes :

Logique et axiomatique :
A \B : complémentaire de B dans A
P(X) : ensemble des parties de X
1A : fonction indicatrice de A ; 1A(x) = 1 si x ∈ A, 0 si x /∈ A
proj : la projection ; si (x, y) ∈ X × Y , alors projX(x, y) = x.
Si P est une propriété dépendant d’une variable x, {P} pourra désigner {x; P (x)}

(par exemple {f = 0} désignera le lieu d’annulation de f).

Ensembles :
N : l’ensemble des nombres entiers naturels non nuls : N = {1, 2, 3, . . .}
N0 : l’ensemble des nombres entiers naturels ou nuls : N0 = {0, 1, 2, 3, . . .}
Z : l’ensemble des entiers positifs ou négatifs
R : l’ensemble des nombres réels
C : l’ensemble des nombres complexes
ensemble dénombrable = ensemble fini ou en bijection avec N

Calculs dans Rn :
〈x, y〉 : produit scalaire de x et y
|x| : norme euclidienne du vecteur x (valeur absolue si n = 1)

Fonctions :
f+ : partie positive de f , i.e. max(f, 0)
f− : partie négative de f , i.e. max(−f, 0)

Topologie :
A : fermeture topologique de A
Int(A) : intérieur topologique de A
Br(x) = B(x, r) : boule ouverte de centre x, de rayon r
Br](x) = B[x, r] : boule fermée de centre x, de rayon r
d(x,A) : distance de x à A, i.e. inf{d(x, y); y ∈ A}
oscx(f) : oscillation de f en x, i.e. la limite du diamètre de f(Br(x)) quand r → 0

Notations de théorie de la mesure :
µ∗ : mesure extérieure associée à la fonction d’ensembles µ
σ(F) : tribu engendrée par F
f#A : tribu image de A par f
f#µ : mesure image de µ par f
A⊗ B : tribu produit des tribus A et B
µ⊗ ν : mesure produit (tensoriel) des mesures µ et ν
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C(A1, . . . , AN) : cylindre de base A1, . . . , AN

Si µ est une mesure sur R, j’abrègerai souvent µ[[a, b]] en µ[a, b], µ[[a, b[] en µ[a, b[,
etc.

Convexité :
Φ∗ : transformée de Legendre de la fonction Φ
p′ : exposant conjugué de p : p′ = p/(p− 1)

Espaces fonctionnels :
C(X,R) = C(X) : espace des fonctions continues de X dans R
Cb(X,R) = Cb(X) : espace des fonctions continues bornées
C0(X,R) = C0(X) : espace des fonctions continues tendant vers 0 à l’infini
Cc(X,R) = Cc(X) : espace des fonctions continues à support compact
Lp(X, dµ) : espace de Lebesgue des fonctions p-sommables sur (X,µ)
(Je ne distingue pas typographiquement entre l’espace des fonctions définies par-

tout, et celui des fonctions définies presque partout)
‖f‖∞ : supremum essentiel de |f |

Calcul différentiel :
∇T : matrice Jacobienne de T : Rn → Rm (gradient de T si m = 1)
∇2f : matrice Hessienne de f
∆f : Laplacien de f (trace de ∇2f)
“la lectrice” = “le lecteur ou la lectrice” (même convention que Körner)
Je désignerai les références par le nom de leur auteur, suivi le cas échéant d’un

numéro : par exemple [Falconer1], [Falconer2] pour désigner les deux ouvrages de
Falconer mentionnés dans la bibliographie en fin d’ouvrage.



Mise au point axiomatique

L’analyse classique, comme l’essentiel de l’édifice mathématique, repose sur les
axiomes de Ernst Zermelo et Abraham Adolf Fraenkel, soit le système de Zermelo–
Fraenkel (ZF), qui permet de définir et manipuler des ensembles, de les comparer
et de les mettre en correspondance avec des propriétés, de construire les entiers, et
partant les rationnels et les réels, et tout ce qui s’ensuit. Personne n’a jamais réussi
à démontrer que ZF est exempt de contradiction, mais c’est un acte de foi dont
s’accommodent toutes les sciences mathématiques à ce jour (même si quelques non-
croyants existent, comme le prouve le fait que le grand théoricien Edward Nelson a
sérieusement cru trouver une absurdité dans ces axiomes, avant de se rétracter).

Il y a cependant débat pour un autre axiome, l’axiome du choix, ajouté à ZF
pour former l’axiomatique ZFC. Cet axiome dit que Pour toute famille d’ensembles
non vides, il existe une fonction de choix, c’est à dire une façon de choisir un élément
dans chacun des membres de la famille. Autrement dit, si (Ax)x∈X est une famille
d’ensembles, tous non vides, indexée par l’ensemble X , alors il existe une application
f qui à tout x ∈ X associe f(x) ∈ Ax. Autrement dit encore : Si tous les Ax sont
non vides, alors leur produit est non vide.

On peut se représenter les Ax de façon imagée comme des arbres, chacun pousse
au point x et chacun a au moins une feuille, on veut cueillir une collection mathé-
matique de feuilles, exactement une pour chaque arbre.

FIGURE

Ainsi présenté, l’axiome semble naturel. Il pose pourtant de nombreux problèmes.
D’abord, il implique le principe de bon ordre, et lui est même équivalent : Tout
ensemble peut être muni d’un bon ordre, c’est à dire un ordre total et strict dans lequel
toute partie non vide admet un élément minimal (comme dans N où toute partie
non vide admet un plus petit élément) ; l’idée que l’on puisse ordonner ainsi tous
les éléments de R défie l’imagination. L’axiome du choix est également équivalent
au plus obscur Lemme de Zorn : Tout ensemble partiellement ordonné, dans lequel
toute chaîne totalement ordonnée admet au moins un majorant, possède au moins
un élément maximal. Selon une célèbre plaisanterie du mathématicien Jerry Bona,
“l’axiome du choix est évidemment vrai, le principe de bon ordre évidemment faux,
et qui peut dire ce qu’il en est du lemme de Zorn ?” (évidemment une blague puisque
les trois énoncés sont équivalents)

Ensuite, l’axiome du choix est “hautement non constructif”, car il n’y a aucune
indication, en pratique, de la recette que l’on pourrait suivre pour construire la
fonction f . Par définition, dire qu’un ensemble est non vide, c’est qu’il contient au
moins un élément et alors on peut le choisir ; face à une collection finie d’ensembles
non vides, on applique ce raisonnement pour chacun des ensembles considérés. Mais
si la collection est infinie, on ne peut réitérer le raisonnement une infinité de fois, on
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a besoin d’un axiome supplémentaire pour effectuer cette infinité de choix, et plus
l’ensemble X est de grande cardinalité, plus l’acte de foi est exigeant.

Enfin l’axiome du choix implique des paradoxes choquants, comme on le discutera
avec Banach–Tarski ; le petit ouvrage de Wagon présente très bien ces questions.

Mais si l’on s’interdit tout axiome du choix pour des ensembles infinis, on se
heurte rapidement á d’autres paradoxes choquants ; et bien des raisonnements par
récurrence, pourtant naturels, cessent d’être valables. On est ainsi amené à demander
au minimum qu’un produit dénombrable d’ensembles non vides soit non vide (axiome
du choix dénombrable). Mais cela n’est pas encore tout à fait suffisant pour mettre
en forme les raisonnements habituels par récurrence : la bonne hypothèse, introduite
par le mathématicien allemand-suisse Paul Bernays en 1942, est l’axiome du choix
dépendant : Si X est un ensemble non vide, et pour tout x ∈ X on se donne une
partie non vide F (x) de X, alors il existe une suite (xn)n∈N ∈ XN telle que pour
tout n, xn+1 ∈ F (xn).

Voici une reformulation commode. Soit (An)n∈N une famille dénombrable d’en-
sembles non vides ; pour tout n et tous x1, . . . , xn−1 dans A1 × . . . × An−1 on se
donne une partie Fn(x1, x2, . . . , xn−1) ⊂ An. On suppose que xi ∈ Fi(x1, . . . , xi−1)
pour tout i ≤ n implique Fn(x1, . . . xn−1) non vide. Alors on peut trouver une fonc-
tion f définie sur N, telle que f(n) ∈ Fn(f(1), f(2), . . . , f(n− 1)) pour tout n ∈ N.
Autrement dit : Si à chaque étape on peut choisir un élément de An en fonction des
choix précédents, alors il existe une suite faite de tels choix successifs.

Tout en évitant les paradoxes, la théorie résultante, ZF+CD (Zermelo–Fraenkel
avec Choix Dépendant) permet de construire toute l’analyse réelle classique, y com-
pris la théorie de la mesure, la théorie des équations aux dérivées partielles, la théorie
des probabilités, le calcul des variations, la géométrie différentielle, l’analyse non lisse
moderne, l’analyse fonctionnelle dans les espaces de Banach séparables, etc. C’est
le cadre que j’ai moi-même adopté à partir du milieu des années 2000 pour tous
mes articles et ouvrages, et que je recommande vivement. Qu’on aime ou pas les
raisonnements non constructifs, le simple fait que l’on puisse se passer de l’axiome
du choix incite à ne pas l’utiliser.

Et donc, cet ouvrage n’utilise pas l’axiome du choix, mais seulement
l’axiome du choix dépendant.

Comme la plupart des ouvrages de référence utilisent l’axiome du choix complet
(ZFC), certains de leurs énoncés deviennent indémontrables dans ZF+CD ; mais
comme on le verra dans le présent cours, cela ne présente aucune gravité et n’entrave
en rien nos objectifs et applications.

Pour la lectrice, ne pas utiliser l’axiome du choix rend certains énoncés un peu
plus exigeants, mais ne complique en rien les démonstrations, au contraire. Utiliser
ZF+CD veut dire que l’on s’autorise tous les raisonnements intuitifs faisant inter-
venir des suites avec choix successifs ; en pratique on n’y pensera même pas – alors
que l’usage intelligent du lemme de Zorn est subtil, voire obscur.

D’autres axiomes sont parfois ajoutés à ZF : axiomes de grand cardinal en parti-
culier. Ils n’offrent pas d’intérêt particulier pour le présent cours, mais seront parfois
cités pour expliquer tel ou tel contre-exemple.



CHAPITRE I

Introduction : Aperçu historique et motivation

Commençons par une présentation à grands traits de la théorie de l’intégration à
travers les âges, et ses plus célèbres contributeurs. J’insisterai plus particulièrement
sur quelques concepts et destins.

I-1. D’Archimède à Lebesgue
Dans l’histoire des sciences et des concepts, l’intégration précède de beaucoup

la dérivation. La quantité de corde nécessaire à une clôture, de petits pavés pour
quarrer une mosaïque, de métal pour fondre une pièce de ferronnerie, demandaient
des calculs additifs sur des longueurs, aires et volumes, en lien avec les mesures phy-
siques. Les longueurs et les aires sont déjà présentes dans les très anciens théorèmes
de l’Égypte et de la Mésopotamie anciennes : théorème de Pythagore, nombre π,
formules d’Héron d’Alexandrie, calculs de volumes de polyèdres... Les Grecs anciens
connaissaient aussi la solution du problème isopérimétrique, d’ailleurs présente
dans la légende de Didon d’Énée : à périmètre donné, c’est le cercle qui a la plus
grande surface (et dans un demi-espace, c’est le demi-cercle).

Cette tradition culmine avec Archimède, le grand génie des sciences de l’Anti-
quité. Il était si fier de l’un de ses calculs d’aire qu’il en a fait graver le croquis sur sa
tombe : une sphère inscrite dans un cylindre, dont la hauteur est égale au diamètre,
rappelant que l’aire de la sphère (4πR2, si R est le rayon) est aussi la surface latérale
du cylindre, ou encore le double de la surface des disques en haut et en bas. Ce même
dessin a d’ailleurs été reproduit au revers de la médaille Fields !

C’est aussi à Archimède que l’on doit la plus ancienne évocation du très impor-
tant problème de passage à la limite dans une suite de calculs intégraux. Il s’agit
d’approcher π comme limite du périmètre de polygones réguliers quand le nombre de
côtés augmente. Il en tire une valeur approchée de π à 0,01% près (via un polygone
à 96 côtés) et la formule de l’aire du disque. Quelque temps plus tard, Zénodore
s’appuie sur les raisonnements d’Archimède pour démontrer des énoncés de nature
isopérimétrique : à nombre de côtés et périmètre fixés, ce sont les polygones réguliers
qui ont la plus grande surface ; et à surface fixée, c’est la sphère qui enclôt le plus
grand volume.

Les techniques de l’Antiquité sont reprises et amplifiées par les mathématiciens
du monde arabo-perse, qui dominent la pensée scientifique du Moyen-Âge. Au 9e
siècle, Thabit ibn Qurra (Thabet) propose une méthode de calcul d’aire proche de
la sommation en tranches, avec épaisseur variables, qui sera la base de l’intégrale de
Riemann.

À l’époque de la grande renaissance mathématique, au début du 17e siècle, les
précurseurs du calcul intégral comme Bonaventura Cavalieri, Gilles Personne de
Roberval, Evangelista Torricelli, Isaac Barrow, René Descartes, Pierre de Fermat,
Blaise Pascal rivalisèrent d’ingéniosité pour mettre au point des méthodes générales
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et calculer les longueurs et aires de courbes notables. La cycloïde alors fascinait
les scientifiques. Galilée détermina expérimentalement (au poids !) que l’aire sous
le graphe en vaut 3πR2, ce que Roberval fut le premier à démontrer (R le rayon
de la roue qui tourne pour engendrer la cycloïde). Christopher Wren prouva que
la longueur du graphe est de 8πR. Pascal en fit un défi sous le pseudonyme de
Dettonville. La mode était aux calculs explicites et ingénieux.

C’est sous la plume de Pascal que l’on trouve la plus ancienne trace d’un signe
intégral : un S allongé, S comme somme ou summa, notation qui fut reprise par
Leibniz et connut une extraordinaire popularité. Moi-même, j’ai écrit ce symbole
des centaines de milliers de fois dans ma carrière, et il s’est si bien incrusté dans
mon cerveau que sa forme s’impose machinalement à mon esprit dès que je réfléchis
à un raisonnement...

Les calculs d’aires, de longueurs et de volumes se développèrent au cours des
siècles. Dès que le calcul différentiel fut établi, on identifia la recherche de primitives
comme une méthode de calcul d’intégrale. L’intégration joue un rôle majeur dans la
théorie de la gravitation universelle d’Isaac Newton. Elle apparaît à d’innombrables
reprises dans les travaux de Leonhard Euler, y compris dans ses célèbres fonctions
Beta et Gamma. L’heure est alors toujours à la recherche de relations et d’identités
remarquables.

Un jour de 1800, le génie allemand Carl Friedrich Gauss calcule la moyenne
arithmétique-géométrique de 1 et

√
2... avec 18 décimales ! Pour rappel, cette moyenne

s’obtient en partant des deux nombres 1 et
√
2 à l’étape 1, et à chaque nouvelle étape

on calcule les moyennes arithmétique et géométrique des deux nombres de l’étape
précédente. Pressentant quelque chose d’intéressant dans ce nombre, Gauss joue
avec... et se convainc numériquement que c’est exactement 2π/L, où L est la lon-
gueur de la lemniscate de Bernoulli, courbe d’équation polaire ρ =

√
cos(2θ). C’est

une magnifique relation, qu’il mettra quelques mois à démontrer en la mettant en
correspondance aussi avec les intégrales d’Euler. Encore et toujours des relations
exactes pour des courbes particulières... Mais c’est fascinant de se dire que Gauss
connaissait par cœur la longueur de la lemniscate !

Une grande mutation s’accomplit dans l’analyse tout au long du dix-neuvième
siècle : le passage du particulier au général, du lisse au non-lisse. Cauchy, puis
Weierstrass reprennent l’analyse sur ses bases ; Cantor d’́eveloppera la théorie des
ensembles et des cardinaux ; Poincaré initiera la théorie et la classification des équa-
tions différentielles générales. La fonction de Weiestrass (1872), continue mais nulle
part différentiable, est emblématique de ce nouvel état d’esprit où les constructions
reposent sur l’axiomatique plutôt que sur les formules. Dans ce vaste mouvement,
deux contributions à la théorie de l’intégration sont particulièrement importantes :
celles de Joseph Fourier (1811) et Bernhard Riemann (1854).

Né en 1768 à Auxerre, Joseph Fourier est le douzième enfant d’un père tailleur.
Orphelin à neuf ans, il manifeste des talents prodigieux en mathématique, mais
sa basse extraction l’empêche de les développer et il se destine à la religion. La
Révolution française lui offre l’opportunité de reprendre les sciences, tout en menant
aussi une carrière dans la politique et l’administration. Un temps emprisonné dans les
convulsions de la Terreur, il échapppe de peu à la mort, enseigne dans des institutions
d’enseignement supérieur, entre à l’Académie des sciences, participe activement à
l’expédition d’Égypte, et devient sous Napoléon le second préfet de l’Isère, où il
se révèle extraordinairement actif. Coïcidence ou pas, lui qui était légendairement
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frileux – plus couvert en plein été qu’un explorateur des régions polaires, nous dit
un collègue dans son éloge funèbre – se passionna pour la modélisation de la chaleur,
le grand œuvre de sa vie. Ce n’était pas le seul de ses centres d’intérêt puisqu’il fut
également, avec un siècle d’avance, un pionnier de la programmation linéaire.

Les contributions de Fourier à la modélisation de la chaleur lui valent le titre de
père de la physique mathématique [Dhombres]. On lui doit les premières discussions
claires des échanges de chaleur par diffusion, convection et par effet de serre. Il
établit l’équation de la chaleur par raisonnement phénoménologique, détermina ce
que nous appelons maintenant les fonctions propres, et montra comment exprimer
n’importe quelle fonction dans ce que nous nommons maintenant séries et intégrales
de Fourier, grâce aux formules intégrales

f̂)(ξ) =

∫
e−2iπξ·x dx.

C’est un acte fondateur pour l’étude des équations aux dérivées partielles linéaires,
mais aussi le premier lien entre régularité et intégration, et les prémices de l’analyse
fonctionnelle. Son mémoire, soumis en 1811 avec la devise Et ignem regunt numeri
(“même le feu est régi par les nombres”), paru en 1822 après bien des déboires
politico-universitaires, est un jalon important dans l’histoire des sciences. C’est la
naissance de l’analyse de Fourier qui révolutionnera les sciences et les techniques,
aujourd’hui l’un des piliers de toute l’industrie numérique.

Quant à Bernhard Riemann, c’est un fils de pasteur allemand, prodigieuse-
ment doué ; exactement comme son maître Gauss, il se destine à la théologie, avant
d’être séduit par la beauté mathématique. Timide et fragile, peu doué pour les af-
faires humaines, il plane haut au-dessus de ses contemporains. Sa carrière ne dure
qu’une dizaine d’années, mais l’ensemble des concepts nommés en son honneur donne
le vertige : surfaces de Riemann, sphère de Riemann, géométrie riemannienne, cour-
bure de Riemann, fonction zêta de Riemann, Hypothèse de Riemann, problème de
Riemann... et bien sûr l’intégrale de Riemann, qui permet d’intégrer nombre de
fonctions, régulières ou non. La mort de Riemann dans sa quarantième année contri-
bue à en faire un personnage romantique inspirant, objet d’une forme de dévotion,
au point que des intellectuels et artistes se recueillent à l’occasion sur sa tombe.

Après Riemann, l’intégration est solidement définie et prend toute sa part dans
le formidable développement de l’analyse réelle et complexe, et bien sûr de l’analyse
fréquentielle à la Fourier. Mais dès la fin du 19e siècle, les limitations de la théo-
rie de Riemann sont apparentes et il devient nécessaire de la généraliser. Thomas
Joannes Stieltjes, Camille Jordan, William Young font des propositions, mais c’est
finalement un groupe de jeunes mathématiciens français, pasionné par la description
des ensembles et des fonctions, qui décroche le gros lot : René Baire, Émile Borel
et Henri Lebesgue. Et au sein de ce groupe, c’est Lebesgue qui aura l’honneur de
donner à l’intégration sa forme moderne.

Né dans une modeste famille picarde touchée par le malheur et la maladie, fils
d’un ouvrier typographe d’une mère institutrice, Henri Lebesgue n’a que trois ans
quand la tuberculose emporte son père et ses deux sœurs, et le laisse invalide. Il ma-
nifeste de vrais dons pour les sciences et sa mère se démène pour qu’il puisse suivre
des études dans les meilleurs établissements. À l’École normale supérieure, il retrou-
vera d’autres jeunes passionnés comme Baire et Borel, issus de milieux modestes
mais accédant à la recherche internationale.
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Une génération après le contre-exemple de Weierstrass, l’heure est aux fonctions
irrégulières, un concept qui va dominer toute la science du 20e siècle. Dans quelques
années, d’ailleurs, Louis Bachelier en fera la base de son étude mathématique des
cours de la bourse, et Albert Einstein et Marian Smoluchowski feront le lien entre les
trajectoires hautement chaotiques du mouvement brownien, et la théorie atomique
de Ludwig Boltzmann. Aux yeux de la jeune garde, l’irrégulier est la règle et non
l’exception. Pour protester contre la théorie traditionnelle, lisse, des surfaces déve-
loppables (surfaces isométriques au plan euclidien), le jeune Lebesgue froisse son
mouchoir et constate à haute voix que le résultat ne satisfait pas les conclusions des
théorèmes du cours !

Bien plus exigeante sur la rigueur, cette nouvelle génération apprend à manier
avec virtuosité les concepts de la théorie des ensembles et de la topologie naissante
– ouverts, fermés, continuité, opérations dénombrables. Pour mesurer un ensemble,
Baire inaugure la voie topologique (intersections d’ouverts et unions de fermés).
Borel et Lebesgue, quant à eux, attaquent la voie métrique (recouvrement par des
boules et des pavés), qui s’avère bien plus efficace. Leur démarche aboutit aux deux
concepts fondamentaux sur lesquels est bâti l’édifice moderne : mesure de Borel
(1895) et intégrale de Lebesgue (1901). La note fondatrice de Lebesgue aux
Comptes rendus de l’Académie des sciences, développée dans le Cours Peccot, est un
acte fondateur pour l’ensemble de la communauté scientifique qui se réappropriera
cet outil.

À dire vrai, il est difficile de démêler les mérites respectifs de Borel et Lebesgue,
d’autant que la coopération enthousiaste de leurs jeunes années laissera la place à
d’amères querelles de priorité, envenimées par la grande déprime de la guerre, et
par l’inégalité considérable de carrières. En effet, Borel a tous les honneurs de la
société, allié à des personnalités influentes (Appell, Painlevé), et menant une car-
rière universitaire et politique qui le verra maire, député et ministre, et militant
de la cause européenne ; évoluant au cœur de la vie intellectuelle de son temps, il
dirige l’École normale supérieure, fonde l’Institut Henri Poincaré et aura une réelle
influence en France sur la recherche industrielle, sur le développement des probabi-
lités, des statistiques, des sciences de la décision – alors que Lebesgue, méprisant les
mondanités, mène une carrière bien plus modeste et laborieuse. Baire pour sa part
voit son parcours prématurément interrompu par la maladie et finira sa vie dans la
détresse matérielle et psychologique.

La théorie de Borel et Lebesgue est restée remarquablement stable depuis : si l’on
compare la note de Lebesgue de 1901 à un cours moderne d’intégration, on reconnaît
les mêmes angles d’approche et les mêmes architectures de raisonnements. En effet,
cette théorie a tenu toutes les promesses : elle a facilement accueilli dans son écrin
trois siècles d’analyse des infiniment petits, de calcul des probabilités, d’analyse des
variations – dont bien sûr l’analyse fréquentielle de Fourier.

C’est tout naturellement que la nouvelle théorie intègre aussi les travaux menés
à la fin du 19e siècle sur les volumes et les surfaces des solides convexes, dans la
veine du problème isopérimétrique, par les chercheurs du monde germanique : le
Suisse Jakob Steiner (reconnu en son temps comme le plus universel des géomètres),
l’Allemand Hermann Brunn et le Juif polonais-lithuanien-russe-allemand Hermann
Minkowski (génie profond et original, camarade proche de David Hilbert, également
père de la géométrie de l’espace-temps relativiste).



INTRODUCTION 19

I-2. Le nouveau découpage en tranches
Le jeune Lebesgue était connu pour son style imagé et son humour, et la citation

que voici l’illustre bien.
Je dois payer une certaine somme ; je fouille dans mes poches et j’en sors des

pièces et des billets de différentes valeurs. Je les verse à mon créancier dans l’ordre
où elles se présentent jusqu’à atteindre le total de ma dette. C’est l’intégrale de
Riemann. Mais je peux opérer autrement. Ayant sorti tout mon argent, je réunis les
billets de même valeur, les pièces semblables, et j’effectue le paiement en donnant
ensemble les signes monétaires de même valeur. C’est mon intégrale.

Ainsi présentée, l’idée de départ de Lebesgue semble très simple. Comme dans
le cas de l’intégrale de Riemann, il s’agit d’approcher l’aire sous le graphe de la
fonction par une union de rectangles. Mais ces rectangles sont définis de manière
très différente : Riemann en fait un découpage en tranches verticales, et Lebesgue
en tranches horizontales. Pour Riemann ce sont les variations de la fonction sur son
domaine de définition qui comptent, pour Lebesgue ce sont les variations des valeurs.
Dans le cas de Riemann, la base (le côté horizontal du rectangle) est toute simple
(un petit segment, disons) et la fonction définit la hauteur (le côté vertical) ; pour
Lebesgue, au contraire la hauteur est toute simple et c’est la fonction qui définit
la base ; en fait cette base peut être tourmentée, de sorte que plusieurs rectangles
partagent un même côté vertical. C’est ici que l’intégrale de Lebesgue va gagner
toute sa complexité : alors que dans l’intégrale de Riemann, une brique élémentaire
est un simple rectangle, dans celle de Lebesgue, il pourra s’agir de plusieurs ou même
d’une infinité de rectangles.

Figure 1. Procédé de Riemann vs. procédé de Lebesgue
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I-3. Forces et faiblesses de l’intégrale de Lebesgue
Extrême généralité

Le cadre classique le plus simple pour définir une intégrale est celui des fonctions
en escalier sur un intervalle [a, b], ou sa complétion pour la topologie de la conver-
gence uniforme, l’espace des fonctions réglées (admettant une limite finie à droite
et à gauche). La théorie de Riemann permet d’atteindre une plus grande généralité,
mais Riemann lui-même a conscience que les conditions à imposer sur les fonctions
sont encore relativement fortes. Il démontre en effet qu’une fonction f : [a, b] → R
est intégrable si et seulement si, pour tout α > 0 donné, on peut choisir une dé-
composition de [a, b] en sous-intervalles suffisamment fins pour que la somme des
longueurs des sous-intervalles sur lesquels l’oscillation de la fonction dépasse α soit
arbitrairement petite [Kahane, p. 64]. L’idée de Lebesgue n’est pas très loin...

De fait, Lebesgue montre qu’une fonction f : [a, b] → R est Riemann-intégrable
si et seulement si l’ensemble de ses points de discontinuité est de mesure nulle, au
sens où on peut l’inclure dans une union d’intervalles ouverts dont la somme des
longueurs est arbitrairement petite.

Ces conditions peuvent sembler assez faibles, puisqu’elles autorisent par exemple
une fonction qui ne serait discontinue qu’en une quantité dénombrable de points.
Mais il est facile de construire des fonctions bornées “naturelles” ne remplissant pas
ces conditions : le contre-exemple qui vient tout de suite à l’esprit est la fonction
indicatrice de Q, ou sa restriction à un segment. Plus généralement, un ensemble
est mesurable au sens de Riemann (c’est à dire, sa fonction indicatrice est inté-
grable) si et seulement si sa frontière est de mesure nulle. Or dans de nombreux
problèmes d’analyse, on rencontre des fonctions dont les discontinuités ne peuvent
être négligées, et des ensembles dont la frontière est “étalée”.

Mais dans la théorie de Lebesgue, la classe des fonctions intégrables est beaucoup
plus grande. En fait, comme Robert Solovay le démontrera en 1970, il est impossible
de construire (sauf à utiliser l’axiome du choix dans sa version complète) une fonction
bornée non intégrable, ou un ensemble non mesurable. Cette grande généralité est
l’un des plus grands avantages de la théorie de Lebesgue.

L’exemple de la fonction indicatrice de Q ∩ [0, 1] est révélateur : bien que dis-
continue partout, cette fonction est très facile à décrire en fonction de ses valeurs.
Dans la théorie de Riemann, on tenterait vainement de découper le segment [0, 1]
en tout petits intervalles où cette fonction ne varie guère ; dans celle de Lebesgue,
on partage [0, 1] en seulement deux morceaux qui sont assez complexes (totalement
discontinus) mais sur chacun desquels la fonction est effectivement constante.

De façon similaire, quand on s’intéresse à l’analyse de Fourier, le cadre de Borel
et Lebesgue apporte une extraordinaire généralité : en fait, comme le montreront
Lennart Carleson (1966) et Richard Hunt (1968), toute fonction p-sommable au sens
de Lebesgue (1 < p <∞) est la limite de sa série de Fourier en dehors d’un ensemble
de mesure de Lebesgue nulle.

Solution du problème des primitives

C’est par ce problème que Lebesgue motive sa construction dans sa note de 1901.
L’intégrale de Riemann permet d’intégrer des fonctions discontinues, mais ne permet
pas d’intégrer n’importe quelle fonction dérivée, même bornée ! Si donc f est une
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fonction continue sur [a, b] et dérivable sur ]a, b[, il n’est pas garanti que l’identité

(1) f(b)− f(a) =

∫ b

a

f ′(t) dt

ait un sens. En fait, au début du siècle, divers auteurs (Volterra, Köpcke, Brodén,
Schoenflies) construisent des classes de fonctions dérivables, dont la dérivée est bor-
née mais non Riemann-intégrable [Hawkins, pp. 57 et 108-110].

Au contraire, dans la théorie de Lebesgue, la dérivation et l’intégration de-
viennent des opérations inverses, sous des hypothèses simples. C’est ainsi que l’iden-
tité (1) est automatiquement vérifiée dès que f est continue sur [a, b] et dérivable
sur ]a, b[, de dérivée bornée.

Insensibilité à la topologie
Dans l’intégrale de Riemann, un rôle particulier est joué par les propriétés de

régularité, en un sens très lâche, des fonctions que l’on veut intégrer (variation
importante au voisinage d’un point...) On a déjà mentionné, par exemple, des critères
d’intégrabilité faisant intervenir l’ensemble des points de discontinuité. La topologie
de l’espace de définition des fonctions (en l’occurrence la droite réelle) intervient
donc. Cela se reflète sur les généralisations abstraites : pour adapter la construction
de Riemann à des espaces plus généraux, on est tout de suite amené à faire des
hypothèses de nature topologique assez fortes.

Au contraire, comme le comprend le mathématicien autrichien Johann Radon
vers 1913, l’intégrale construite par Lebesgue peut être adaptée à un cadre extrême-
ment général, sans qu’aucune hypothèse topologique ne soit faite sur l’espace d’inté-
gration, et l’expérience montre que l’on peut construire ainsi des théories maniables.
Le cas échéant, cet espace pourra même être un espace fonctionnel de dimension infi-
nie. En 1921 un exemple spectaculaire et d’importance considérable est fourni par le
mathématicien Norbert Wiener (américain d’origine juive polonaise, enfant prodige
et père de la cybernétique, par ailleurs militant de la paix et de la cause animale).
Wiener construit une mesure sur l’espace C([0, 1],Rd) des fonctions continues sur
[0, 1] à valeurs dans Rd ; bien sûr c’est un espace de dimension infinie, séparable mais
pas localement compact. Cette mesure de Wiener est une mesure “gaussienne”,
d’importance capitale en probabilités et en physique où elle modélise le mouvement
brownien.

Fluidité du passage à la limite
Peut-on échanger les opérations limite et intégrale ? C’est un problème classique,

déjà en germe dans Archimède, et source de milliers d’exercices dans le cadre de
l’intégrale de Riemann. Mais dans la théorie de Riemann on ne peut même pas
formuler le problème de manière suffisamment générale, car une limite de fonctions
Riemann-intégrables n’est pas forcément Riemann-intégrable, même si ces fonctions
sont uniformément bornées ! Pour s’en convaincre, on peut noter que la fonction
indicatrice de [0, 1]∩Q, non intégrable au sens de Riemann, est limite de limites de
fonctions continues puisque

1Q(x) = lim
n→∞

lim
m→∞

[cos(2πn!x)]m.

Cela ne dit pas si une limite de fonctions continues peut ne pas être Riemann-
intégrable invalide, mais cela invalide, par l’absurde, l’hypothèse que la classe des
fonctions Riemann-intégrable est fermée sous l’action de la limite.
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Au contraire, l’intégrabilité au sens de Lebesgue est effectivement stable par pas-
sage à la limite dans de nombreuses situations, et pour lequel l’échange intégrale-
limite est presque automatique, sous des hypothèses simples et faciles à vérifier. Il
suffit par exemple que ces fonctions soient définies sur un intervalle fixé et unifor-
mément bornées. Ce bon comportement par rapport aux limites trouve un intérêt
même dans le cadre des fonctions Riemann-intégrables ! Pour s’en convaincre, on
pourra méditer sur l’exercice suivant :

Soit (fn)n∈N une suite de fonctions continues [a, b] → [0, 1], convergeant ponc-
tuellement (simplement) vers 0. Alors

∫ b

a
fn −→ 0.

Cet énoncé a bien sûr un sens dans le cadre de l’intégrale de Riemann, pourtant
sa démonstration au moyen d’outils classiques est délicate (l’hypothèse naturelle
dans cette théorie est la convergence uniforme et non la convergence simple) ; alors
que la théorie de Lebesgue résout le problème sans douleur !

Mauvais traitement des compensations
Pour puissante qu’elle soit, la théorie de Lebesgue est impuissante à traiter la

“semi-convergence” des intégrales, c’est-à-dire les situations où une fonction f se
trouve être intégrable du fait de compensations entre valeurs positives et négatives,
alors que sa valeur absolue |f | n’est pas intégrable. D’autres théories sont plus habiles
à tirer parti des compensations : ainsi les intégrales M (intégrale de Denjoy-Perron)
ou M2 présentées dans [Zygmund, T.2, pp.83–91].

Pourquoi alors ces théories alternatives ne se sont-elles pas imposées face à celle
de Lebesgue ?

D’une part, parce que dans l’immense majorité des applications, le mauvais trai-
tement des intégrales semi-convergentes s’avère sans gravité : il s’agit en fait de si-
tuations relativement exceptionnelles, que l’on peut traiter à la main. D’autre part,
parce que ces théories alternatives sont moins souples que l’intégrale de Lebesgue,
et plus exigeantes sur la topologie de l’espace de départ.

Difficuté de calcul
Par nature, les tranches sont beaucoup moins explicites dans la théorie de Le-

besgue que dans celle de Riemann ; de sorte que c’est cette dernière théorie qui
prévaut dans le domaine de l’analyse numérique, et en général des calculs explicites.
Cela n’amène pas à abandonner l’intégrale de Lebesgue pour les applications, mais
à travailler en va-et-vient entre les deux notions : on profite de la nature construc-
tive de l’intégrale de Riemann, de la généralité et de la fluidité de l’intégrale de
Lebesgue, et on passe de l’une à l’autre en utilisant leur compatibilité, c’est à dire
le fait que l’intégrale de Lebesgue se ramène à l’intégrale de Riemann dans la classe
des fonctions Riemann-intégrables.

I-4. Un grand édifice
Une fois les fondations établies, de nombreux mathématiciens perfectionnent et

généralisent la théorie de Borel et Lebesgue au cours du vingtième siècle, en par-
ticulier (par ordre chronologique approximatif) Beppo Levi, Pierre Fatou, Guido
Fubini, Leonida Tonelli, Dimitri Egorov, Mikhaïl Souslin, Constantin Carathéo-
dory, Giuseppe Vitali, Nikolaï Nikolaïevitch Lusin, Johann Radon, Frigyes et Marcel
Riesz, Ernst Sigismund Fischer, Felix Hausdorff, Andreï Nikolaïevich Kolmogorov,
et Abram Samoïlovitch Besicovitch.
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Mais ce sont aussi de nouveaux points de vue et théories qui émergent. L’his-
toire de la théorie de la mesure est associée au développement de la théorie des
probabilités, à celui de l’analyse harmonique moderne et même à celui de la logique
axiomatique.

Pour commencer, la généralité de l’intégrale de Lebesgue et sa stabilité par pas-
sage à la limite en font un cadre idéal pour formaliser les espaces de fonctions, des
espaces géométriques dans lesquels chaque point est une fonction. C’est la naissance
de l’analyse fonctionnelle, qui vise à soutenir l’étude des fonctions par des raison-
nements de nature géométrique, analytique ou synthétique se tenant dans des espaces
de fonctions. L’idée était déjà en germe dans Fourier ; mais ce sont des disciples de
Lebesgue, l’École mathématique de Lwów (aujourd’hui Lviv en Ukraine), qui
vont la mettre au point.

L’école de Lwów désigne un groupe de plusieurs dizaines de mathématiciens polo-
nais travaillant dans l’entre-deux guerres à Lwów, également en collaboration étroite
avec leurs compatriotes de Cracovie et Varsovie. L’acte fondateur du groupe est la
rencontre fortuite, à l’université de Cracovie, entre l’enseignant Hugo Steinhaus et
l’étudiant Stefan Banach, qui discutait avec son camarade Otto Nikodym précisé-
ment sur la mesure de Lebesgue. C’était le point de départ d’une série de recherches
qui ont placé la Pologne au plus haut niveau de l’analyse fonctionnelle avant que son
école soit écrasée par la Seconde Guerre mondiale, prise en étau entre les mâchoires
allemande et russe.

Parmi eux, le plus brillant, reconnu par tous comme le chef de file, était le
phénomène Stefan Banach. Né en 1892 à Cracovie dans une famille pauvre, aban-
donné par sa mère à sa naissance, il poursuit des études supérieures dans la Pologne
tout juste indépendante et devient en 1919 l’un des fondateurs de la Société ma-
thématique de Pologne. Gagnant rapidement ses galons de résolveur de problème,
il devient au sein du groupe de Lwów le plus ardent animateur d’un joyeux sémi-
naire qui se tient au Café écossais et où l’on enchaîne problèmes de mathématique et
boissons. En 1924 il publie avec Alfred Tarski ce que l’on appelle désormais le para-
doxe de Banach–Tarski ; en 1927 les théorèmes de Hahn–Banach (avec Hans Hahn)
et Banach–Steinhaus (avec Hugo Steinhaus). Puis en 1932 qu’il publie son grand
œuvre, Théorie des opérations linéaires, ouvrage majeur de l’histoire mathématique
où l’analyse fonctionnelle est développée selon une forme toujours d’actualité. Dans
le même temps, sous l’impulsion en particulier de Kazimierz Kuratowski, Alfred
Tarski et Wacław Sierpiński, ce groupe développe la théorie de la mesure dans les
espaces métriques séparables complets, avec une profondeur telle qu’on les appelle
depuis “espaces polonais”.

Dans la foulée, en 1933 le mathématicien russe Andreï Nikolaïevich Kolmogorov
publie son ouvrage Fondations de la théorie des probabilités : il y montre que la
théorie de Lebesgue est un parfait écrin pour refonder tout le calcul des probabili-
tés, initié au 17e siècle par Pascal et Fermat, et perfectionné ensuite par les Daniel
et Jacob Bernoulli, Abraham De Moivre, Pierre-Simon de Laplace, Henri Poincaré,
etc. Le mathématicien polonais Stanislaw Ulam, également de l’École de Lwów (plus
tard l’un des pères de la Bombe H) était arrivé aux mêmes conclusions que Kolmo-
gorov ; et le terrain avait bien sûr été préparé par la découverte de la mesure de
Wiener. Aujourd’hui encore, l’axiomatique probabiliste est restée la même que celle
de Kolmogorov, basée sur la théorie de la mesure de Borel et Lebesgue.
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Presque en même temps, le Français Jean Leray (en 1933, dans le cas particu-
lier des équations de Navier–Stokes incompressibles) et le Russe Sergueï Lvovitch
Sobolev (en 1935) utilisent la théorie de Lebesgue pour donner un sens aux dérivées
partielles de fonctions non nécessairement différentiables. L’idée est d’exploiter la
formule d’intégration par parties∫

∂f

∂xj
φdx = −

∫
f
∂φ

∂xj
dx

pour définir ∂jf comme fonctionnelle linéaire sur l’espace des fonctions φ conti-
nûment différentiables et à support compact. L’objectif est de construire ainsi, via
l’intégration, des solutions généralisées d’équations aux dérivées partielles. Cette ap-
proche est très naturelle du point de vue physique (en témoigne le fait que James
Clerk Maxwell l’avait utilisée à l’occasion en théorie cinétique des gaz dès les années
1860). Leray raconte que le vieillissant Lebesgue avait voulu le dissuader de se lan-
cer dans des recherches aussi ardues... mais son article est entré dans l’histoire. Ces
travaux annoncent la théorie des distributions de Laurent Schwartz, cadre concep-
tuel utilisé aujourd’hui presque universellement dans le domaine des équations aux
dérivées partielles.

Simultanément à l’étude par Leray de Navier–Stokes incompressible, l’analyste
suédois Torsten Carleman exploite toute la puissance de l’intégration de Lebesgue
pour effectuer la première étude mathématique de l’équation de Boltzmann (en
l’occurrence, pour un gaz spatialement homogène de sphères dures).

Il se sera donc écoulé exactement une génération entre la découverte de l’intégrale
de Lebesgue, et la naissance de trois grandes branches qui s’appuient dessus : analyse
fonctionnelle (Banach), théorie moderne des probabilités (Kolmogorov), solutions
généralisées des équations de la physique mathématique (Leray, Sobolev, Carleman).

À cette liste on peut ajouter une quatrième branche qui s’est développée vers
l’intérieur de la théorie ensembliste de Borel et Lebesgue, pour décrire la nature et
la structure des ensembles mesurables, sous l’influence des écoles russe et polonaise :
c’est la théorie descriptive des ensembles. Les initiateurs en sont deux mathémati-
ciens russes influencés par l’école française de Darboux, Borel, Hadamard, Poincaré :
il s’agit de Dimitri Egorov et son élève Nikolaï Nikolaevitch Luzin. (Tous deux se-
ront persécutés pour leurs convictions religieuses, l’un mourra d’une grève de la
faim, l’autre sera la cible d’un violent procès politico-scientifique qui aurait pu lui
être fatal.) C’est en 1930 que Luzin publie en français le premier traité consacré à
ce sujet : Leçons sur les ensembles analytiques et leurs applications.

Par-dessus la guerre est passée, marquant tous nos protagonistes. Banach s’ac-
commode de l’occupation soviétique, mais après l’invasion nazie en est réduit à
héberger des poux pour les recherches médicales... il meurt d’un cancer du poumon
juste après la fin de la guerre. Kolmogorov (re)devient une véritable institution dans
son pays, et l’un des mathématiciens les plus féconds du 20e siècle pour ses travaux
en probabilité, mécanique, théorie de la complexité. Également en Russie, Sobolev
est impliqué dans le programme atomique soviétique et travaille au développement
universitaire de la Sibérie. Après avoir été fait prisonnier, Leray devient un pionnier
de la toplogie algébrique et l’une des figures tutélaires de la mathématique fran-
çaise. Quant à Carleman, adhérent aux idées racistes propagées par les mouvements
fascistes, il termine sa carrière dans l’isolement.
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Après guerre commence une nouvelle période mathématique, sous l’effet des
forces puissantes qui accélèrent le progrès scientifique : grands programmes de re-
cherche nationaux, guerre froide, essor des grandes universités américaines, course à
l’espace, essor de l’informatique, recherche industrielle, grands programmes d’équi-
pement civils et militaires, etc. Toutes les branches mathématiques se développent
à grande vitesse. C’est le cas en particulier pour celles qui sont directement liées à
l’intégration : équations aux dérivées partielles, systèmes dynamiques, analyse nu-
mérique, analyse fonctionnelle, analyse harmonique, calcul des variations, théorie
géométrique de la mesure, analyse convexe, analyse non lisse dans l’espace euclidien
et dans les espaces métriques... À travers ces sujets en plein essor, l’intégration de
Lebesgue devient ainsi l’un des piliers de tout l’édifice mathématique moderne.

Parmi ces directions variées, l’analyse harmonique a été significativement trans-
formée avec la théorie des ondelettes, qui renouvelle la théorie de Fourier. Initiée
par l’intuition révolutionnaire de l’ingénieur français Jean Morlet dans les années
80, cette théorie s’est développée en un corpus complet allant des applications les
plus terre à terre (la motivation initiale était la prospective pétrolière) au cœur de
l’analyse réelle. Deux ”maîtres ondelettistes” en particulier ont engrangé quantité de
récompenses internationales au 21e siècle : le français Yves Meyer et la belge Ingrid
Daubechies (hélas elle n’est que la première femme citée dans cette histoire, dont la
prédominance masculine reflète des biais de genre et stéréotypes qui ont imprégné
nos sociétés depuis des siècles ! mais elle est une protagoniste majeure, et fut même
présidente de l’Union mathématique internationale).

Impossible de boucler ce tour d’horizon sommaire sans mentionner que la logique
également a été durablement influencée par l’analyse de Borel et Lebesgue. On a déjà
mentionné les noms du logicien polonais Alfred Tarski (paradoxe de Banach–Tarski,
1924) ; après-guerre, ce sera l’Américain Richard Solovay (théorème de Solovay sur
les ensembles mesurables, 1970). Ainsi la théorie de l’intégration s’est-elle retrouvée
à jouer un rôle transversal et universel en mathématique, depuis les couches les plus
théoriques jusqu’aux plus appliquées.





CHAPITRE II

Mesures

Ce chapitre est consacré aux mesures, selon le point de vue ensembliste de Borel :
une mesure sur un ensemble X est une fonction σ-additive d’ensembles, définie sur
une tribu A de parties de X, dites parties mesurables ; le triplet (X,A, µ) est appelé
espace mesuré (section II-1). Après leur définition abstraite, une liste d’exemples est
présentée (section II-2.

Les mesures qui nous intéresseront le plus sont les mesures boréliennes, sur la
tribu engendrée par la topologie ; pour aller plus loin nous aurons besoin de quelques
rappels de topologie (section II-3).

Viennent alors les notions majeures qui constituent le cœur du chapitre : (a) sous
des hypothèses minimales, les mesures boréliennes sont régulières, c’est à dire qu’on
peut bien approcher les ensembles, au sens de la mesure, soit par des ouverts soit par
des compacts (section II-4) ; (b) on peut définir le support d’une mesure et qualifier
sa concentration ou sa diffusivité ; (c) de puissants théorèmes permettent d’étendre
de façon unique des mesures définies seulement sur des parties simples (théorèmes
d’extension de Carathéodory et de Kolmogorov, section II-6, la démonstration du
théorème de Kolmogorov étant remise au Chapitre IV), (d) on peut compléter les
espaces de mesure en ajoutant, si on le souhaite, les ensembles négligeables.

Cette théorie générale est appliquée à la droite réelle pour obtenir la mesure
originelle de Lebesgue sur la droite réelle et sur l’espace euclidien (section ??).

Je terminerai par l’étude de recouvrements par de petites boules (section II-8),
une technique dont la pertinence sera démontrée bien plus tard, dans le Chapitre ??.

Seule les sections II-1 et II-2 sont indispensables à la compréhension de la suite
du cours, car elle présentent les concepts clés et les exemples majeurs.

II-1. Espaces mesurables et mesurés
En quête de définition
Les notions d’“intégrale” et de “volume” vont de pair. Si l’on sait intégrer des

fonctions, alors on peut définir le volume d’un ensemble A comme l’intégrale de l’in-
dicatrice de A. Et réciproquement, si l’on sait définir les volumes des ensembles, alors
on peut définir l’intégrale d’une fonction en additionnant les volumes des “petites
tranches superposées” sous le graphe de la fonction.

FIGURE de découpage en tranches
En d’autres termes, une bonne théorie d’intégration doit mener aux deux iden-

tités liées 
vol(A) =

∫
1A

∫
f =

∫ +∞

0

vol({f ≥ t}) dt
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où {f ≥ t} est l’ensemble des x tels que f(x) ≥ t, et f est supposée positive.
La théorie d’intégration de Lebesgue se développe sur le concept de mesure,

introduit par Borel quelques années avant les travaux de Lebesgue pour quantifier les
tailles des ensembles. En fonction du contexte, on peut penser à une mesure comme
à un volume, ou une surface, ou une longueur, ou quelque chose d’autre. Dans tout
ce chapitre, on se concentrera donc sur la mesure des ensembles, et ce n’est que dans
le chapitre suivant qu’on considèrera l’autre versant, celui des fonctions.

Avant de préciser la définition d’une mesure, cherchons à établir un cahier des
charges. On souhaite définir une mesure comme une fonction µ qui associe à un
ensemble A une “masse” positive (finie ou infinie), notée µ[A] (ma convention) ou
µ(A).

C’est bien le minimum d’imposer qu’une telle fonction soit additive : si A et B
sont disjoints, alors la mesure de A ∪ B doit être la somme des mesures de A et de
B. Cette relation fondamentale implique les règles de calcul habituel des longueurs,
des surfaces ou des volumes : par exemple,

- si A ⊂ B, on peut appliquer la relation d’additivité à B = (B \ A) ∪ A et
trouver que

µ[B] = µ[A] + µ[B \ A] ≥ µ[A];

la mesure µ est donc une fonction croissante d’ensembles ;
- en utilisant les identités A ∪ B = (A \ B) ∪ B et A = (A \ B) ∪ (A ∩ B), on

obtient facilement la formule d’usage courant
(2) µ[A ∩ B] <∞ =⇒ µ[A ∪ B] = µ[A] + µ[B]− µ[A ∩ B].

Enfin, en pratique on connaîtra la valeur de µ sur certains ensembles particuliers,
ou bien on imposera certaines propriétés d’invariance. Par exemple, pour définir le
volume usuel dans R3 il est naturel de demander que le volume d’un pavé soit égal
au produit des longueurs de ses côtés (volume euclidien), et d’imposer que le volume
soit invariant par rotation et translation, ou plus généralement par isométrie.

Ce cahier des charges paraît raisonnable, et on aimerait le prendre pour base
de notre étude. Le théorème suivant (qui découle des travaux de Banach, Tarski et
Solovay) pourra donc apparaître comme un choc décourageant : Il est impossible
de démontrer l’existence d’une fonction d’ensembles µ : P(R3) → [0,+∞] additive,
invariante par rotation et translation, telle que µ[[0, 1]3] = 1.

Une fois le choc passé, il n’est pas très difficile de trouver un remède. Au lieu de
définir une mesure comme une fonction sur P(X), l’ensemble de toutes les parties
d’un ensemble X, on va la définir sur un sous-ensemble de P(X), constitué de
parties que l’on appelle “mesurables”. On aura alors des relations du type de (2),
mais seulement quand on reste dans la classe des parties mesurables. La mesure µ
n’est pas définie sur les parties non mesurables, l’expression µ[A] n’a même pas de
sens si A n’est pas mesurable.

Nous sommes donc menés à nous intéresser aux classes de parties stables par
union, intersection, soustraction : on les appellera des algèbres. Les algèbres sont
le cadre naturel sur lequel définir des fonctions additives d’ensembles.

Définir les mesures sur des algèbres donne beaucoup moins de contraintes, donc
beaucoup plus de flexibilité. Mais alors on en a même trop ; même pour des situations
toutes naturelles, dans l’espace euclidien par exemple, on manque de bons résultats
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d’unicité, et il n’y a pas de consensus sur leur utilisation [Dudley, p 112]. En outre il
est difficile, dans ce cadre, de démontrer les passages à la limite que l’on rencontre
sans cesse dans les intégrations, et qui passionnaient déjà Archimède.

Le remède proposé par Borel et Lebesgue, aussi bien pour donner plus de rigidité
à la théorie, que pour traiter plus facilement les passages à la limite, consiste à
imposer dès la définition que ces mesures soient non seulement additives, mais aussi
dénombrablement additives. Autrement dit, on requiert que la mesure d’une union
dénombrable de parties disjointes (au sens fort, c’est à dire deux à deux disjointes)
soit égale à la somme des mesures de toutes les parties.

Pourquoi s’arrêter en si bon chemin et ne pas imposer cette relation d’additivité
pour une union quelconque de parties, pas forcément dénombrable ? En fait, une telle
théorie serait tout simplement triviale. Par exemple, supposons que la mesure des
singletons soit nulle ; comme un ensemble est l’union de ses éléments, tout ensemble
serait alors de mesure nulle.

De façon remarquable, entre l’additivité pour les unions finies qui est trop lâche,
et l’additivité pour les unions quelconques, qui est triviale, il y a une ligne de crête
qui chemine à merveille, c’est l’additivité dénombrable. Pour lui donner sens, il va
falloir renforcer la définition des algèbres, en imposant de plus la stabilité par les
opérations ensemblistes dénombrables ; c’est ce que l’on appelle les σ-algèbres, ou
tribus.

II-1.1. Algèbres.
Définition II-1 (Algèbre). Soit X un ensemble quelconque, et soit P(X) l’en-

semble de toutes les parties de X. Un sous-ensemble A de P(X) est appelé une
algèbre (ou algèbre de parties de X) si

(i) ∅ ∈ A ;
(ii) A ∈ A =⇒ X \ A ∈ A ;
(iii) A,B ∈ A =⇒ A ∪ B ∈ A.
Remarque II-2. D’autres variantes équivalentes de ces trois axiomes sont pos-

sibles. Par exemple, à titre d’exercice on pourra vérifier que la réunion des axiomes
(i)-(iii) ci-dessus est équivalente à la réunion des quatre axiomes suivants : (i’)
∅, X ∈ A, (ii’) Si A,B ∈ A, alors A ∪ B ∈ A, (iii’) Si A,B ∈ A, alors A ∩ B ∈ A,
(iv’) Si A,B ∈ A, alors A \B ∈ A.

Remarque II-3. Une algèbre est automatiquement stable par union finie, inter-
section finie, différence et différence symétrique. (Pour rappel, la différence de deux
ensembles A et B est A\B, tandis que leur différence symétrique est (A\B)∪(B\A).)
En somme, une algèbre est un ensemble de parties dans lequel on peut effectuer
toutes les opérations ensemblistes classiques.

Exemples II-4. (i) Algèbres triviales. Si X est un ensemble quelconque,
alors on peut toujours définir la plus petite algèbre de parties de X, savoir
{∅, X} ; et la plus grande, qui est tout simplement P(X). Ni l’une, ni l’autre
ne sont fort intéressantes, on les appelle souvent triviales.

(ii) Algèbre engendrée par une partie. Si A ⊂ X, la plus petite algèbre contenant
A est {∅, X,A,X \ A}.

(iii) Algèbres associées à des partitions. Si X est un ensemble quelconque, on
appelle partition Π de X une collection finie de parties non vides, deux à
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deux disjointes, dont la réunion est X tout entier. Si Π est une partition de
X, alors l’ensemble A de toutes les réunions finies d’éléments de Π constitue
une algèbre de parties de X. Son cardinal est 2#Π, où #π est le cardinal de Π.
C’est bien sûr une généralisation de (ii), qui correspond à une partition en 2
éléments. On peut montrer que toute algèbre finie est associée à une partition :
pour cela, on identifie les éléments de Π comme les éléments minimaux de A.

(iv) Algèbres associées à des familles stables par intersection. Une famille F
est dite stable par intersection si l’intersection de deux membres A et B de
F est elle-même un élément de F (en conséquence de quoi l’intersection d’un
nombre fini arbitraire d’éléments de F est également un élément de F). Soit
X un ensemble quelconque, et soit F une famille de parties de X, qui (a) est
stable par intersection, (b) contient X et (c) telle que le complémentaire de
tout élément de F est une union finie d’éléments de F ; alors l’ensemble A
de toutes les unions finies d’éléments de F est une algèbre de parties de X
(exercice).

(v) Algèbre engendrée par les pavés. C’est un cas particulier de (iv). On se donne
(Xk)1≤k≤K une famille finie d’ensembles et pour chaque Xk on se donne une
algèbre Ak de parties de Xk. On pose X =

∏
Xk, le problème est de définir

une algèbre “naturelle” sur X. Pour cela on considère la famille F formée des
pavés, i.e. les P =

∏
Ak, où chaque Ak est un élément de Ak. La famille F

est alors stable par intersection, et le complémentaire d’un pavé peut s’écrire
comme une union finie de pavés : par exemple, pour K = 2 on a
(X1 ×X2) \ (A1 × A2) =(X1 \ A1)× (X2 \ A2)

∪ (X1 \ A1)× A2 ∪ A1 × (X2 \ A2).

D’après (iv), on sait alors que l’ensemble des unions finies de pavés forme
une algèbre de parties de X : voir l’illustration sur la figure 1, dans l’espace
produit X = R2.

1

2

3

4

Figure 1. La différence symétrique de deux pavés est une union finie
de pavés

(vi) Algèbre engendrée par les cylindres. C’est encore un cas particulier de
(iv), et une généralisation de (v), d’une importance considérable en théorie
des probabilités. Il s’agit de définir une algèbre naturelle sur un produit infini
d’ensembles dont chacun est muni d sa propre algèbre. Je vais commencer par
considérer le cas simple d’un produit dénombrable d’ensembles finis Xk munis
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Figure 2. Deux membres de l’algèbre engendrée par les pavés dans
R× R

de leur algèbre P(Xk). (Le choix “trivial” où chaque Xk est l’espace {0, 1} est
déjà hautement non-trivial !) L’espace X =

∏
Xk est donc l’espace des suites

(xk)k∈N telles que xk ∈ Xk pour tout k, et on va alors définir un cylindre
élémentaire comme une partie de X qui “ne dépend que d’un nombre fini de
coordonnées” : pour tout K et tout choix de (a1, . . . , aK) ∈ X1 × . . . × XK ,
on posera donc

CK(a1, . . . , aK) = {x ∈ X; ∀k ∈ {1, . . . , K}, xk = ak}.
On vérifie facilement (exercice) que la famille de ces cylindres est stable par
intersection, et que le complémentaire d’un cylindre élémentaire est une union
finie de cylindres élémentaires. Par (iv), on sait donc que l’ensemble des unions
finies de cylindres élémentaires forme une algèbre.

Cette construction se généralise comme suit au cas où l’ensemble des
indices n’est pas forcément dénombrable, et où les Xk ne sont pas forcé-
ments finis. Soit (Xt)t∈T une famille d’ensembles, indexée par un ensemble
T quelconque ; pour chaque Xt on se donne une algèbre At de parties de
Xt. Pour tout entier K et tout choix de (t1, . . . , tK) dans TK , pour tout
j ∈ {1, . . . , K} on choisit Atj dans Atj et on définit le cylindre élémentaire
C(t1,...,tK)(At1 , . . . , AtK ) par la formule

C(t1,...,tK)(At1 , . . . , AtK ) =

{
x ∈

∏
t∈T

Xt; ∀j ∈ {1, . . . , K}, xtj ∈ Atj

}
.

Ici la base du cylindre C dans les variables (t1, . . . , tK) est At1 × . . . × AtK .
L’ensemble des unions finies de cylindres élémentaires est alors une algèbre.

Exercice II-5. Soit X = {a, b, c} un ensemble à 3 éléments. Déterminer toutes
les algèbres de parties de X.

II-1.2. Sigma-algèbres. Les algèbres sont stables par toutes les opérations en-
semblistes classiques (union, intersection, différence) appliquées à des familles finies
de parties ; pour les σ-algèbres c’est la même chose, mais appliquées à des familles
dénombrables. (Pour mémoire, j’appelle “dénombrable” un ensemble qui est soit fini,
soit en bijection avec N ; d’autres auteurs appellent “dénombrable” un ensemble qui
est en bijection avec N ; c’est une question de convention sans importance.)



32 CHAPITRE II (1er janvier 2026)

Définition II-6 (σ-algèbre). Soit X un ensemble quelconque, et soit P(X)
l’ensemble de toutes les parties de X. Un sous-ensemble A de P(X) est appelé une
σ-algèbre (ou σ-algèbre de parties, ou tribu) si

(i) ∅ ∈ A ;
(ii) A ∈ A =⇒ X \ A ∈ A ;
(iii) [∀k ∈ N, Ak ∈ A] =⇒

⋃
k∈N

Ak ∈ A.

Remarque II-7. Une σ-algèbre est une algèbre : on le voit en prenant A1 = A,
A2 = B, Ak = ∅ pour tout k ≥ 3. Une σ-algèbre est automatiquement stable par
intersection dénombrable, comme on le voit en passant aux complémentaires
dans (iii). En fait une σ-algèbre est le cadre

Exemple II-8. Les algèbres triviales sont aussi des σ-algèbres. Toute algèbre
finie est une σ-algèbre ; c’est le cas en particulier de celles qui sont associées à une
partition.

Exemple II-9. L’ensemble des unions finies d’intervalles de R est une algèbre,
mais ce n’est pas une σ-algèbre. Idem pour l’ensemble des unions finies de pavés de
R2.

Exercice II-10. Soit X un ensemble infini. Montrer que l’ensemble des parties
finies ou cofinies (cofini = dont le complémentaire est fini) est une algèbre, mais pas
une σ-algèbre.

Remarque II-11. La lectrice familière avec la topologie aura remarqué une
certaine analogie entre la notion de σ-algèbre et celle de topologie. Rappelons que,
par définition, une topologie sur un ensemble quelconque X est un sous-ensemble
O de parties de X tel que (i) ∅, X ∈ O, (ii) O1, O2 ∈ O =⇒ O1 ∩ O2 ∈ O,
(iii) ∀i, Oi ∈ O =⇒ ∪Oi ∈ O. Noter que dans (iii), la famille I indexant les Oi

est arbitraire (pas nécessairement dénombrable). Autrement dit, une topologie est
stable par intersection finie et union quelconque, alors qu’une σ-algèbre est stable
par intersection dénombrable et union dénombrable – et passage au complémentaire.

Les éléments de O sont appelés des ouverts, et leurs complémentaires sont appelés
des fermés. L’exemple le plus important de topologie est la topologie définie par une
distance : on définit un ouvert comme une union de boules ouvertes. Des rappels
plus détaillés seront effectués dans la section II-3.

Dans la suite, je privilégierai la dénomination de “tribu” pour désigner les σ-
algèbres.

Définition II-12 (espace mesurable). On appelle espace mesurable un couple
(X,A), où A ⊂ P(X) est une σ-algèbre. Les éléments de A seront alors appelés
parties mesurables ou ensembles mesurables.

Par abus de langage, on dira souvent que X est un espace mesurable. Bien sûr,
cette terminologie n’a de sens que si l’on fait référence implicite à une certaine tribu :
après tout, n’importe quel espace X est mesurable quand on le munit d’une tribu
triviale.

Considérer des σ-algèbres plutôt que des algèbres est séduisant car on obtient
ainsi des familles riches qui se comportent bien vis-à-vis des unions infinies, limites,
etc. Mais en pratique, les tribus ne seront pas explicites ; on ne les maniera pas
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directement, on préfèrera les voir comme des “limites”, dont le comportement est
dicté par une famille “dense” beaucoup plus simple, et on travaillera seulement sur
cette dernière famille. Cela n’a de sens que si la tribu est complètement déterminée
par cette fameuse famille ; c’est l’objet du concept qui suit, à la fois élémentaire et
fondamental à la théorie.

Proposition II-13 (tribu engendrée par une famille). Soit X un ensemble quel-
conque, et soit F un sous-ensemble quelconque de P(X). L’intersection de toutes
les σ-algèbres contenant F est une σ-algèbre, et c’est la plus petite qui contienne F .
On l’appelle tribu engendrée par F et on la notera σ(F).

La démonstration de cette proposition est laissée en exercice. (Ne pas oublier de
montrer que l’intersection apparaissant dans l’énoncé n’est pas vide.)

Exercice II-14. Soit F une famille de parties d’un ensemble X, stable par
passage au complémentaire. Montrer que σ(F) est la plus petite classe contenant F
qui soit stable par intersection dénombrable et union dénombrable. Indication : Si
A est une classe vérifiant les propriétés précédentes, on pourra montrer que {A ∈
A; X \ A ∈ A} ⊃ σ(F).

Exemple II-15 (Tribu engendrée par les intervalles). Tout ouvert de R peut
s’écrire comme union disjointe dénombrable d’intervalles ouverts, qui sont ses compo-
santes connexes (cette union est dénombrable car chacun de ces intervalles contient
au moins un rationnel). La σ-algèbre engendrée par les intervalles ouverts de R
contient donc tous les ensembles ouverts, et c’est par conséquent la σ-algèbre engen-
drée par les ouverts de R ; on l’appelle tribu borélienne ou tribu des boréliens
de R. Elle contient tous les ouverts, donc tous les fermés, mais aussi les unions dé-
nombrables d’ensembles ouverts ou fermés, les unions dénombrables d’intersections
dénombrables d’unions dénombrables d’intersections dénombrables d’ensembles ou-
verts ou fermés, etc. — et plus encore.

Cette richesse est donc à la fois une force et une faiblesse : il est en pratique
impossible de “décrire” ce qu’est un ensemble borélien “générique” dans R. On peut
se les représenter par le procédé itératif suivant, transfini, c’est à dire qu’il fait in-
tervenir des cardinaux plus grands que celui de N (d’habitude noté ℵ0). À l’étape 0,
on considère les ouverts et les fermés. À l’étape 1, les unions dénombrables d’inter-
sections dénombrables d’ouverts et de fermés. À l’étape j, les unions dénombrables
d’intersections dénombrables des ensembles apparaissant à l’étape j − 1. Et l’on
continue... une infinité de fois ; en fait, on s’arrête dès que l’on atteint un ordinal
non dénombrable.

C’est d’une complexité insaisissable... Pourtant, la tribu borélienne réelle n’est
pas si peuplée : elle a “seulement” la puissance du continu, son cardinal est c = 2ℵ0 , la
puissance du continu (qui est au moins égal à ℵ1 le premier cardinal strictement plus
grand que ℵ0 ; l’égalité entre c et ℵ1 étant le plus célèbre des problèmes indécidables).
Au sens de la théorie des ensembles, la tribu borélienne est aussi peuplée que la droite
réelle, et il n’y a donc “pas plus” de boréliens que d’ouverts – alors que l’ensemble
des parties de R est phénoménalement plus grand, de cardinal 2c. Les boréliens, bien
que très complexes, gardent une certaine régularité, bien plus (“infiniment plus”) que
des parties quelconques de R.

Voici les exemples les plus importants de tribus :
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Exemples II-16. (i) Tribu induite par restriction : Soit (X,A) un es-
pace mesurable, et Y ∈ A. Alors l’ensemble des éléments de A qui sont inclus
dans A définit une tribu de parties de A, appelé tout naturellement la res-
triction de A à A.

(ii) Tribu borélienne abstraite : soit X un espace topologique abstrait (i.e.
quelconque). On définit sa tribu borélienne B(X) comme la σ-algèbre engen-
drée par les ouverts de X. C’est également, bien sûr, la σ-algèbre engendrée
par les fermés de X. Et par l’Exercice II-14, c’est la plus petite classe stable
par union et intersection dénombrable qui contienne les ouverts et les fermés.

(iii) Tribu borélienne réelle : Dans le cas où X = Rn, on peut trouver de
nombreuses familles génératrices beaucoup plus restreintes que la collection
de tous les ouverts ou tous les fermés. Par exemple :

- les pavés fermés
∏

[ak, bk] ;
- les pavés ouverts

∏
]ak, bk[ ;

- les pavés semi-ouverts
∏

[ak, bk[ ;
- les cubes fermés

∏
[ak, ak + c] (ou ouverts, ou semi-ouverts) ;

- les cubes dyadiques fermés
∏

[mk2
−ℓk , (mk+1)2−ℓk ], mk, ℓk ∈ N (ou

ouverts, ou semi-ouverts) ;
- les boules ouvertes (ou fermées) dans Rn.

En dimension n = 1, toutes ces familles se ramènent à une seule : la famille
des intervalles de R.

(iv) Tribu produit : Cette construction suit celle de l’Exemple II-4(v). Soient
X et Y deux espaces mesurables, avec leurs tribus respectives A et B. On
appelle pavé mesurable un ensemble de la forme A×B, où A ∈ A et B ∈ B. La
tribu engendrée par les pavés mesurables est appelée tribu produit, et notée
A ⊗ B. Cette construction se généralise facilement au produit d’un nombre
fini d’espaces mesurables. La tribu produit est facile à définir, mais on ne
peut guère la décrire explicitement : elle contient les pavés, les intersections
dénombrables d’unions dénombrables de pavés, etc.

(v) Tribu cylindrique : Si maintenant X =
∏
Xt est un produit infini (dé-

nombrable ou non) d’espaces Xt dont chacun est muni d’une tribu At, alors
on peut munir X de la tribu engendrée par les cylindres élémentaires, sui-
vant la construction de l’Exemple II-4(vi). Il s’agit en fait de la généralisation
naturelle du concept de tribu produit. C’est la tribu classique que l’on uti-
lise d’ordinaire sur un produit infini. Ce n’est pas la seule tribu possible, et
certaines constructions alternatives font l’objet de recherches récentes (contri-
butions de Boris Tsirelson, par exemple) ; mais la tribu cylindrique est bien
celle que l’on utilise dans la quasi-totalité des cas.

Exemple II-17 (Boréliens de R). Soit R = [−∞,+∞] la droite réelle complétée,
c’est à dire à laquelle on adjoint −∞ et +∞. On en fait un espace topologique en
considérant la topologie engendrée par tous les intervalles ouverts et par {−∞} et
{+∞}. Alors les boréliens de R sont engendrés par les intervalles de la forme [a,+∞]
(a ∈ R), ou par les intervalles de la forme ]a,+∞] ; ce sont aussi les boréliens de R
auxquels on s’autorise à adjoindre −∞ ou +∞.
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Démonstration. ]Preuve de l’Exemple II-17] Vérifions-le par exemple pour la
famille F des intervalles [a,+∞]. On a {+∞} = ∩n∈N[n,+∞], donc {+∞} ∈ σ(F).
Le complémentaire de [a,+∞] est [−∞, a[ donc tous les intervalles de la forme
[−∞, b[ appartiennent aussi à σ(F). C’est donc aussi le cas de {−∞} = ∩n∈N[−∞, n[.
De même pour un intervalle ]a, b[ puisqu’il peut s’écrire ∪n∈N[a+1/n, b[. Donc σ(F)
contient les unions dénombrables d’intervalles ouverts, c’est à dire les ouverts de R ;
et comme il contient aussi {−∞} et {+∞}, par adjonction σ(F) contient tous les
ouverts de R, et donc tous les boréliens de R, ce qui conclut la preuve. □

Exemple II-18. ConsidéronsX = {0, 1}N, où chaque facteur est muni de la tribu
triviale. Alors les singletons sont mesurables pour la tribu cylindrique. En effet, si
x ∈ {0, 1}N alors {x} = ∩Ck où

Ck =
{
y ∈ {0, 1}N; ∀j ≤ k, yj = xj

}
.

Mais aussi, tout sous-ensemble dénombrable de {0, 1}N est mesurable. Ou encore,
par exemple, si on se donne α ∈ [0, 1], l’ensemble des (xn)n∈N tels que le nombre
moyen d’occurrences de 0 dans (xn)1≤n≤N tende vers α (c’est à dire les (xn)n∈N tels
que N−1#{j ∈ {1, . . . , N}; xj = 0} → α quand N → ∞) est encore mesurable,
de même que tous les autres ensembles auxquels vous pourrez penser. En fait, on
peut montrer qu’il est impossible de décrire une partie de {0, 1}N qui ne soit pas
mesurable pour la tribu cylindrique.

Remarque II-19. La construction de la tribu produit est très similaire à celle
de la topologie produit, qui sera rappelée dans la section II-3.4. Ces constructions
abstraites sont très simples, mais cachent certaines subtilités, que nous aurons l’oc-
casion de retrouver en étudiant l’intégrale sur les espaces produits, au Chapitre IV.
Pour se donner une idée des problèmes proprement vertigineux que l’on peut ren-
contrer, la lectrice peut se poser la question suivante. Étant donnés X et Y deux
espaces topologiques, munis de leur tribu borélienne, il existe deux tribus naturelles
sur X × Y : la tribu borélienne (pour la topologie produit), et la tribu produit (des
tribus boréliennes). Ces deux tribus coïncident-elles ?

Exercice II-20. Démontrer l’assertion faite dans l’Exemple II-16(ii), selon la-
quelle la tribu borélienne de Rn est engendrée par les pavés ouverts bornés. Il suffit
bien sûr de vérifier que tout ouvert appartient à la tribu T engendrée par les pavés
ouverts. On pourra montrer successivement que

- T contient les pavés ouverts non bornés ;
- T contient les pavés fermés ;
- T contient les pavés semi-ouverts ;
- T contient les ouverts.
On pourra noter que tout ouvert s’écrit comme une réunion dénombrable dis-

jointe de pavés (obtenus en considérant des maillages de plus en plus fins, par
exemple).

Exercice II-21. Soient m,n ∈ N. En utilisant le résultat de l’exercice II-20,
montrer que B(Rm)⊗ B(Rn) = B(Rm × Rn).

II-1.3. Mesures. Les tribus sont le cadre naturel pour définir les mesures,
introduites par Borel : ce sont des fonctions d’ensembles vérifiant l’axiome de σ-
additivité.
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Figure 3. Approximation d’un ouvert de Rn par une union de petits pavés

Définition II-22. Soit (X,A) un espace mesurable. On appelle mesure (ou
mesure σ-additive, ou mesure positive) sur X une application µ définie sur A, à
valeurs dans [0,+∞], telles que

(i) µ[∅] = 0 ;
(ii) Pour toute famille dénombrable (Ak)k∈N d’ensembles mesurables disjoints,

(3) µ
[⋃
k∈N

Ak

]
=
∑
k∈N

µ[Ak].

Le triplet (X,A, µ) est alors appelé un espace mesuré.

Remarques II-23. La somme apparaissant au membre de droite de (3) converge
toujours dans [0,+∞]. À la place de l’axiome µ[∅] = 0, on aurait pu imposer que
µ n’est pas identiquement +∞ ; en effet, cela impose a = µ[∅] < +∞, mais alors
en choisissant Ak = ∅ pour tout k, on a a = ∞ · a, d’où a = 0. Bien sûr, les
mesures vérifient toutes les règles habituelles des fonctions additives d’ensembles,
comme discuté en début de chapitre ; en particulier, une mesure µ est une fonction
croissante d’ensembles, et pour toutes parties mesurables A,B,

µ[A ∩ B] <∞ =⇒ µ[A ∪ B] = µ[A] + µ[B]− µ[A ∩ B].

Remarque II-24. Dans la définition on a imposé que les Ak soient disjoints ;
par là on entend deux à deux disjoints, c’est à dire que pour tous i, j ∈ N on a
Ai ∩ Aj = ∅. L’exercice suivant aborde le cas d’ensembles non disjoints.

Exercice II-25. Soit µ une mesure. Montrer que pour toute famille dénombrable
(Ak) de parties mesurables,

µ
[⋃
k∈N

Ak

]
≤
∑
k∈N

µ[Ak].
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Pourquoi l’inégalité doit-elle être en général stricte ?

Si (X,A, µ) est un espace mesuré, par abus de notation, on dira souvent que
(X,µ) est un espace mesuré, la tribu A étant alors implicite ; ou même que X est
un espace mesuré, la tribu A et la mesure µ étant alors implicites.

Notons tout de suite certaines opérations simples qui peuvent être effectuées sur
les mesures :

Proposition II-26 (Opérations sur les mesures). (i) Si µ1 et µ2 sont des mesures
définies sur le même espace mesurable, alors µ1 + µ2 est une mesure.

(ii) Si µ est une mesure et α un nombre réel positif, alors αµ est une mesure.
(iii) Si (X,A, µ) est un espace mesuré, et Y une partie mesurable de X, alors µ

induit sur Y une mesure par restriction à la tribu des parties mesurables de X qui
sont incluses dans Y . Cette mesure ν, restriction de µ à Y , est notée

ν = µ|Y ou ν = µbY .
(iv) Si (µn)n∈N est une suite croissante de mesures définie sur un même espace

mesurable (c’est à dire : pour tout A et pour tout n, µn[A] ≤ µn+1[A]), alors limµn

est une mesure.

Exercice II-27. Démontrer la propriété (iv) ci-dessus, et montrer par un contre-
exemple que la conclusion est en général fausse pour une suite décroissante.

Grâce aux axiomes des σ-algèbres, les propriétés exprimées en termes d’unions
disjointes peuvent être reformulées en termes d’unions croissantes, ou d’intersections
décroissantes. Rappelons qu’une suite (Ak)k∈N d’ensembles est dite croissante si on
a Ak ⊂ Ak+1 pour tout k, et décroissante si on a Ak+1 ⊂ Ak pour tout k.

Proposition II-28. Soit (X,A, µ) un espace mesuré.
(i) Soit (Ak)k∈N une famille croissante de parties mesurables, alors

µ
[⋃
k∈N

Ak

]
= lim

k→∞
µ[Ak] = sup

k∈N
µ[Ak].

(ii) Soit (Ak)k∈N une famille décroissante de parties mesurables, l’un au moins
des Ak étant de mesure finie. Alors

µ
[⋂
k∈N

Ak

]
= lim

k→∞
µ[Ak] = inf

k∈N
µ[Ak].

Démonstration. Démontrons (i). Si µ[Aℓ] tend vers l’infini quand ℓ → ∞,
alors forcément µ[∪Ak] = ∞, et l’assertion est vraie. Dans le cas contraire, la suite
croissante µ[Aℓ] converge vers une limite finie quand ℓ → ∞. On écrit alors ∪Ak

comme réunion disjointe de B0 = A0 et des Bj = Aj \ Bj−1, pour 1 ≤ j ≤ k. Par
σ-additivité,

µ[∪Ak] = µ[A0] +
∑
j≥1

µ[Bj].

La série de droite est donc convergente, et

µ[A0] +
∑
j≥1

µ[Bj] = lim
ℓ→∞

(
µ[A0] +

∑
1≤j≤ℓ

µ[Bj]

)
= lim

ℓ→∞
µ[Aℓ].
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Pour démontrer (ii), supposons sans perte de généralité que A0 est de mesure
finie ; alors µ définit par restriction une mesure sur A0, et on peut appliquer la partie
(i) de la proposition à la famille croissante (A0 \ Ak). □

Exercice II-29. Montrer que la propriété (i) est en fait équivalente à l’axiome
de σ-additivité. Trouver un contre-exemple à la propriété (ii) si l’on ne suppose pas
que l’un des Ak est de mesure finie. (On pourra utiliser la fonction “cardinal” sur
N.) Faire l’analogie avec un contre-exemple classique de topologie montrant qu’une
intersection décroissante de fermés peut être vide.

Je conclurai cette section avec une liste de mesures importantes. Attention : si
la construction des σ-algèbres est souvent un exercice facile grâce à la notion de
tribu engendrée, la construction des mesures peut poser des problèmes bien plus
considérables. Dans la liste ci-dessous, les deux premiers exemples sont faciles à
construire, mais les suivants sont beaucoup plus subtils ; pour l’instant, j’admettrai
leur existence, et ce n’est que dans la suite du chapitre que viendront les outils
puissants qui permettent de les réaliser.

II-2. Quelques mesures célèbres
(i) L’exemple non trivial le plus simple d’une mesure est ce que l’on appelle une

masse de Dirac : soit X un espace mesurable, et x un point de X, on note
δx la mesure définie par

δx[A] =

{
1 si x ∈ A,

0 si x /∈ A.

Autrement dit δx[A] = 1A(x). On peut se représenter cette mesure comme une
“masse ponctuelle” située au point x0. Cette mesure est nommée en l’honneur
de Paul Dirac, grand théoricien de la physique quantique, qui la maniait dans
de nombreux calculs formels. Malgré sa simplicité, la masse de Dirac peut
être considérée est une sorte de “brique élémentaire” des mesures : de larges
classes de mesures peuvent en effet être “approchées” par des combinaisons
de masses de Dirac. On peut les interpréter comme les points extrémaux de
l’espace convexe des mesures de probabilité ; et toute mesure peut être vue
comme une combinaison convexe de masses de Dirac.

(ii) La mesure de comptage n’est autre que la fonction “cardinal”, à valeurs
dans N ∪ {+∞}. C’est aussi

∑
x∈X δx.

(iii) La mesure de Lebesgue λn dans Rn est la mesure de référence naturelle
dans un cadre euclidien. Elle correspond aux notions habituelles de longueur
(n = 1), surface (n = 2) ou volume (n = 3), et les généralise en toute
dimension. On peut la définir en spécifiant le volume des pavés, ou celui
des boules, selon les formules vues précédemment. Par exemple on peut dire
que λn est l’unique mesure borélienne telle que µ

[∏
i[ai, bi]

]
=
∏

i(bi − ai).
(Attention, à ce stade je n’ai prouv’́e ni l’existence ni l’unicité, et cele n’a rien
d’évident ; j’approfondirai la construction de la mesure de Lebesgue dans la
section II-8, puis dans le chapitre VI.)

(iv) Les mesures à densité : Soit f une fonction continue par morceaux, po-
sitive, des variables x1, . . . , xn ; cela induit sur Rn une unique mesure µ telle
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que pour tout pavé P =
∏
[ai, bi],

µ[P ] =

∫ b1

a1

. . .

∫ bn

an

f(x1, . . . , xn) dx1 . . . dxn.

On verra plus tard que l’on peut aussi considérer des fonctions f bien moins
régulières.

(iv) Les mesures de Hausdorff permettent de définir des notions de “volume d-
dimensionnel” dans un espace de dimension n : longueur d’une courbe tracée
dans R3, etc. A chaque dimension d ≥ 0 (entière ou non) est associée une
mesure de Hausdorff ; quand d n’est pas entier on parle souvent de mesure
fractale. La mesure de Hausdorff n-dimensionnelle dans Rn coïncide avec la
mesure de Lebesgue, ce qui n’est pas évident a priori ; quant à la mesure de
Hausdorff 0-dimensionnelle, ce n’est autre que la mesure de comptage. Les
mesures de Hausdorff se définissent naturellement dans des espaces métriques
arbitraires et pas seulement dans Rn.

(v) La mesure de Haar est une autre généralisation de la mesure de Lebesgue ;
on la construit sur un groupe topologique localement compact (on reviendra
sur ces concepts). La mesure de Haar est caractérisée par certaines propriétés,
dont la principale est l’invariance vis-à-vis de l’action du groupe (disons action
à gauche) c’est-à-dire l’action des translations τa : x 7−→ (a.x). Par exemple,
la mesure de Haar sur le groupe localement compact Rn n’est autre que
la mesure de Lebesgue. Un autre exemple est le tore Rn/Zn, que l’on peut
identifier à [0, 1[n ; il s’agit d’un groupe compact, et sa mesure de Haar est
encore la (restriction de la) mesure de Lebesgue.

(vi) La mesure de volume, sur une variété riemannienne (M, g) de classe C2

(se reporter à un cours de géométrie différentielle pour ces notions !), est
encore une autre généralisation de la mesure de Lebesgue. On peut la définir
comme la mesure de Hausdorff n-dimensionnelle, où n est la dimension de la
variété, dans l’espace métrique (M,d), où d est la distance géodésique associée
à g. De façon équivalente, on peut écrire vol (dx) =

√
det g dx1 . . . dxn dans

une carte. Si M est une sous-variété de codimension 1 dans Rn+1, on peut
utiliser encore une autre définition équivalente : pour X ⊂ M on considère
Xε = {x ∈ Rn+1; d(x,X) ≤ ε} pour ε > 0, et on définit vol [X] comme la
limite de |Xε|/ε quand ε → 0, où |Xε| est la mesure (n + 1)-dimensionnelle
de Xε.

(vii) La mesure de Wiener, définie sur X = C([0, T ],Rd) (muni de la topologie
de la convergence uniforme), où d ∈ N et T > 0 est fixé. Cette mesure
est intimement liée au mouvement brownien, qui gouverne les trajectoires
très chaotiques de petites particules dans un fluide. On peut la comprendre
intuitivement ainsi : soit une particule partant d’un point donné (l’origine)
et décrivant une trajectoire brownienne, observée sur l’intervalle de temps
[0, T ] ; alors la probabilité pour que la trajectoire de cette particule possède
une certaine propriété (P) est la mesure (de Wiener) de l’ensemble de tous
les chemins qui possèdent cette propriété. La mesure de Wiener est l’unique
mesure de Borel W sur X qui vérifie la condition cylindrique suivante : Pour
tout K ∈ N et toute suite strictement croissante (t1, . . . , tK) dans (0, T ], pour
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tous pavés P1, . . . , PK dans Rd,

W
[{
x ∈ X; x(t1) ∈ P1, . . . , x(tK) ∈ PK

}]
=

∫
P1

dx1 . . .

∫
PK

dxK exp

[
−
( |x1|2

2t1
+

|x2 − x1|2

2(t2 − t1)
+ . . .+

|xK − xK−1|2

2(tK − tK−1)

)]
.

La construction de cette mesure en 1921 par Norbert Wiener marquait l’aboutisse-
ment d’une démarche sur l’intégration en dimension infinie entamée quelques années
plus tôt par René Gateaux et Paul Lévy. La mesure de Wiener a été l’un des pre-
miers grands succès de la théorie de Lebesgue appliquée à des espaces de dimension
infinie.

II-3. Rappels de topologie
Dans la section II-1, les concepts topologiques ne jouaient aucun rôle, sauf pour

la définition des tribus et mesures de Borel. Mais dans toute la suite du cours, on
maniera des mesures de Borel de façon plus subtile, et la topologie s’invitera avec
insistance. Pour préparer cela, je vais brièvement passer en revue les notions utiles ;
la lectrice pourra compléter elle-même les démonstrations, ou bien les retrouver dans
les ouvrages d’introduction à la topologie.

Préliminaires
Soit X un ensemble quelconque ; on le munit d’une topologie en lui associant une

famille O de parties de X, appelées ouverts, telles que
(i) l’ensemble vide et X sont des ouverts,
(ii) l’intersection de deux ouverts est un ouvert,
(iii) la réunion d’une famille quelconque d’ouverts est un ouvert.

L’intersection d’un nombre fini d’ouverts, une union quelconque d’ouverts sont
donc des ouverts. On peut se représenter un ouvert comme un ensemble qui “entoure”
chacun de ses points ; ou encore, comme un ensemble dont aucun point n’est frontière.

Le complémentaire d’un ouvert est appelé fermé. L’ensemble vide, l’espace X
tout entier, l’union d’un nombre fini de fermés, une intersection quelconque de fermés
sont fermés.

Si une partie V contient un ouvert contenant un élément x, on dit que V est
voisinage de x.

On dit qu’un espace topologique X est séparé (terminologie anglo-saxonne :
espace de Hausdorff) si, étant donnés deux éléments distincts x et y de X, on peut
toujours leur trouver des voisinages disjoints.

Soit F une famille de parties de X. L’intersection de toutes les topologies sur X
contenant F est une topologie, et c’est la plus petite qui fasse de tous les éléments
de F des ouverts. On l’appelle topologie engendrée par F .

Un ensemble A ⊂ X étant donné, on définit l’adhérence A de A comme le plus
petit fermé contenant A, c’est-à-dire l’intersection de tous les fermés contenant A ;
et l’intérieur de A, Int(A), comme le plus grand ouvert contenu dans A, c’est-à-dire
l’union de tous les ouverts contenus dans A. La frontière de A est A\ Int(A) ; il est
commode pour l’intuition de se représenter l’adhérence de A comme “A avec toute
sa frontière”.

Une partie A est dite dense dans X si A = X.
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Si X est un espace topologique, un sous-ensemble arbitraire A de X devient lui-
même un espace topologique si on le munit de la topologie définie par les intersections
de A avec les ouverts de X. Cette topologie est dite topologie induite.

On dit qu’une suite (xn)n∈N converge vers x ∈ X si, pour tout voisinage V de
x on peut trouver N ∈ N tel que n ≥ N =⇒ xn ∈ V . En d’autres termes, pour
n assez grand, xn est confiné dans n’importe quel voisinage de x fixé a priori. On
dit alors que x est la limite de la suite (xn) et on note xn −→ x. On appelle valeur
d’adhérence de (xn) tout x ∈ X qui peut être obtenu comme limite d’une suite
extraite (xk(n))n∈N.

Etant donnés deux espaces topologiques X et Y , on dit qu’une fonction f : X →
Y est continue si f−1(O) est un ouvert de X, pour tout ouvert O de Y . Si X n’est
pas a priori muni d’une topologie, on appelle topologie engendrée par f la plus petite
topologie qui rende f continue : c’est l’ensemble de toutes les images réciproques
d’ouverts de Y par f .

Un espace topologique X est dit connexe si on ne peut le séparer en deux
ouverts disjoints non vides. Un espace topologique arbitraire étant donné, on peut
toujours le décomposer en composantes connexes, qui sont les plus grands (au sens
de l’inclusion, vue comme ordre partiel) ensembles connexes contenus dans X. Un
point x ∈ X est dit isolé si le singleton {x} est un ouvert, ou de manière équivalente
si sa composante connexe est réduite à lui-même.

La notion de voisinage est une abstraction extrême de la notion de “proximité” :
des voisinages emboîtés autour d’un point x, définissent les points qui sont de plus en
plus proches de x. Une fonction est continue si elle préserve la proximité. Quant aux
composantes connexes, ce sont en quelque sorte les parcelles disjointes de l’espace,
telles que l’on puisse se déplacer “continûment” à l’intérieur d’une même parcelle,
sans pouvoir passer de parcelle en parcelle.

Les topologies que l’on rencontre le plus souvent sont celles qui sont engendrées
par une métrique ; elles font l’objet de la section suivante.

De manière générale, de nombreuses métriques peuvent être associées à une
même topologie (elles sont alors dites équivalentes du point de vue topologique) ;
par exemple, il suffit de remplacer une distance d par g(d), où g est n’importe quelle
fonction strictement croissante ; ce qui laisse penser que le concept de topologie est
plus satisfaisant que celui de métrique.

Cependant,

(a) en général, une topologie abstraite non métrique peut présenter des propriétés
“pathologiques” du point de vue de l’analyse ;

(b) une métrique permet de quantifier la notion de “proximité” (la distance donne
une valeur), ce qui est précieux dans bien des problèmes pratiques ;

(c) en analyse, on peut (presque) toujours se ramener à des topologies métriques.
Tous les problèmes que j’ai jamais rencontrés, que ce soit en physique mathématique,
en probabilité, en géométrie différentielle, et en tout cas en théorie de la mesure,
peuvent se formuler en n’utilisant que des topologies métriques. Cela n’est pas vrai
dans d’autres domaines mathématiques : par exemple, la topologie de Zariski, très
utile en géométrie algébrique, est résolument non métrique. Mais dans un cours
d’intégration, il est tout à fait légitime de se restreindre aux topologies métriques.
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II-3.1. Espaces métriques. Soit X un ensemble quelconque ; on dit qu’une
application d : X ×X → R+ est une métrique, ou distance, si elle satisfait aux deux
axiomes

(i) ∀x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) ;
(ii) [d(x, y) = 0] ⇐⇒ x = y.

On appelle espace métrique un couple (X, d), où d est une distance sur l’en-
semble X. Par abus de langage, on dira souvent que X est un espace métrique, la
distance d étant alors implicite.

Un exemple très particulier est la topologie triviale, où toutes les parties de
X sont ouvertes ; elle correspond à la métrique triviale d(x, y) = 1x ̸=y.

Soient (X, d) un espace métrique, x ∈ X et r ≥ 0. On définit la boule ouverte
Br(x) = B(x, r), centrée en x et de rayon r, et la boule fermée Br](x) = B[x, r],
par les formules

Br(x) := {y ∈ X; d(x, y) < r}; Br](x) := {y ∈ X; d(x, y) ≤ r}.

Si (X, d) est un espace métrique, on introduit une topologie séparée sur X en
définissant les ouverts comme les unions de boules ouvertes. On a alors les propriétés
suivantes :

- les boules ouvertes sont ouvertes, les boules fermées sont fermées ;
- V est voisinage de x si et seulement si il existe r > 0 tel que Br(x) ⊂ V ;
- O est ouvert si et seulement si il est voisinage de tous ses points ;
- f : (X, d) → (X ′, d′) définie entre deux espaces métriques est continue si et

seulement si
∀x ∈ X ∀ε > 0 ∃δ > 0; ∀y ∈ X d(x, y) ≤ δ =⇒ d′

(
f ′(x), f ′(y)

)
≤ ε.

Les suites sont souvent d’une aide précieuse dans les espaces métriques ; plusieurs
des propriétés mentionnées précédemment admettent des caractérisations simples en
termes de suites convergentes. Ainsi,

- une suite (xn)n∈N à valeurs dans X converge vers x ∈ X si et seulement si
d(xn, x) −→ 0 quand n→ ∞ ;

- l’adhérence d’un ensemble A ⊂ X est l’ensemble de toutes les limites de suites
à valeurs dans A ; en particulier, un ensemble F est fermé si et seulement si il est
stable par passage à la limite : les assertions xn ∈ F , xn −→ x ∈ X impliquent
x ∈ F ;

- une fonction f définie entre espaces métriques est continue si et seulement si
elle préserve les limites : f(xn) −→ f(x) dès que xn → xn.

Si A est une partie d’un espace métrique (X, d) et x ∈ X, on pose d(x,A) =
inf{d(x, y); y ∈ A} : c’est la distance de x à A. L’adhérence de A est l’ensemble des
points qui sont à distance nulle de A ; en particulier, si F est un fermé, les assertions
d(x, F ) = 0 et x ∈ F sont équivalentes.

II-3.2. Régularité des espaces topologiques. La zoologie des espaces topo-
logiques est très riche ; les propriétés d’usage le plus courant sont la séparabilité, la
compacité et la complétude.

Un espace topologique X est dit séparable s’il admet une famille dénombrable
dense. Dire qu’un espace métrique X est séparable revient à dire qu’il existe une
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famille (xk)k∈N, telle que pour tout x ∈ X il existe une application n→ k(n), définie
de N dans N, telle que xk(n) −→ x.

Une suite (xn)n∈N dans un espace métrique (X, d) est une suite de Cauchy si
d(xm, xn) −→ 0 quand (m,n) → ∞ ; en d’autres termes,

∀ε > 0 ∃N ∈ N; n,m ≥ N =⇒ d(xm, xn) ≤ ε.

Un espace métrique (X, d) est dit complet si toute suite de Cauchy dansX converge.
Un espace topologique X séparé est dit compact si, de tout recouvrement de X

par une famille d’ouverts (Oi)i∈I , on peut extraire un sous-recouvrement fini, i.e. il
existe une famille finie J ⊂ I telle que X ⊂ ∪j∈JOj. Si X est un espace topologique
séparé et K une partie de X, on dit que K est un compact de X si la topologie
induite par X sur K en fait un espace topologique compact.

Si X est un espace topologique séparé, et A un sous-ensemble de X, on dit que
A est précompact 1 si son adhérence A est compacte.

Un espace métrique (X, d) étant donné, on appelle diamètre de X le supremum
de d sur X ×X ; l’espace X est dit borné si son diamètre est fini.

Les propriétés suivantes se prouvent sans difficulté :
- un espace compact est fermé ; une partie fermée d’un compact est compacte ;
- l’union de deux compacts est un compact, et le produit de deux compacts aussi ;

plus généralement, une union finie de compacts et un produit fini de compacts sont
des compacts (on parlera plus tard des produits infinis) ;

- l’image par une fonction continue d’un compact est un compact ; en particulier,
une fonction continue sur un compact, à valeurs dans R, est bornée et atteint ses
bornes ;

- si K1 et K2 sont deux compacts dans un espace métrique (X, d), alors il existe
x1 ∈ K1 et x2 ∈ K2 tels que

d(x1, x2) = inf
{
d(y1, y2), y1 ∈ K1, y2 ∈ K2

}
(en effet la fonction distance atteint son infimum sur le compact K1 ×K2) ;

- un espace métrique compact est complet et borné ;
- un espace métrique (X, d) est compact si et seulement si toute suite (xn)n∈N

dans X admet une valeur d’adhérence (théorème de Bolzano–Weierstrass) ;
- une fonction f continue entre un espace métrique compact (X, d) et un espace

métrique (Y, d′) est automatiquement uniformément continue : pour tout ε > 0
il existe δ > 0 tel que

∀x, y ∈ X d(x, y) ≤ δ =⇒ d′
(
f(x), f(y)

)
≤ ε.

On peut alors définir le module de continuité de f par

mf (δ) := sup
{
d′(f(x), f(y)); d(x, y) ≤ δ

}
:

c’est une fonction croissante, continue, vérifiant mf (0) = 0.

1. J’adopte ici la terminologie anglo-saxonne (precompact) au lieu de la terminologie française
courante “relativement compact”. En français on réserve d’habitude le terme “précompact” pour
ce qui sera appelé plus loin “totalement borné”. La différence est minime : en effet, dans un espace
métrique séparable complet, il est équivalent de dire qu’une partie est relativement compacte, ou
qu’elle est totalement bornée ; Cf. le Théorème II-39.
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Exemples II-30. Une partie finie est compacte. Une partie bornée et fermée de
Rn, ou de n’importe quelle variété de dimension finie, est compacte. L’espace Rn

tout entier est complet mais pas compact.

Intuitivement, une partie compacte est une partie “petite” au sens imagé où,
quand on cherche à l’explorer (au moyen des valeurs d’une suite, par exemple), on
revient toujours sur ses pas (il existe un x près duquel on revient une infinité de fois
arbitrairement près). La topologie moderne s’est développée sur la base des concepts
d’ouvert et de compact.

Les définitions suivantes introduisent les hypothèses de régularité les plus utilisées
en théorie de la mesure.

Définition II-31 (σ-compacité). Un espace topologique X est dit σ-compact s’il
est union dénombrable de compacts.

Définition II-32 (compacité locale). Un espace topologique X est dit locale-
ment compact si tout x ∈ X admet un voisinage compact.

Définition II-33 (espace polonais). Un espace topologique X est dit polonais
si c’est un espace métrique séparable et complet.

Remarque II-34. Un espace polonais localement compact est automatiquement
σ-compact (exercice).

Exemple II-35. L’espace Rn, et plus généralement n’importe quelle variété rie-
mannienne lisse complète de dimension finie (munie de sa distance géodésique), sont
tous localement compacts, σ-compacts et polonais. En revanche, C([0, 1],Rn) (muni
de la norme du supremum), est polonais mais n’est ni localement compact, ni σ-
compact ; en fait tous les compacts y sont d’intérieur vide.

Remarque II-36. Les spécialistes de théorie de la mesure moderne utilisent des
notions plus fines : espaces de Lusin, espaces de Suslin, etc., dont les espaces polonais
sont des cas particuliers.

II-3.3. Théorèmes d’extension et de séparation. Voici maintenant quelques
théorèmes d’extension qui nous serviront dans la suite du cours :

- Si (X, d) et (Y, d′) sont des espaces métriques complets, et f est une application
uniformément continue sur une partie A de X, à valeurs dans Y , alors elle admet
un unique prolongement continu de A dans Y . Ce prolongement peut se définir par
l’identité f(lim xn) = lim f(xn).

- Si (X, d) est un espace métrique et F0, F1 sont deux fermés disjoints de X,
alors la fonction f valant 0 sur F0 et 1 sur F1 admet un prolongement continu à X
tout entier, à valeurs dans [0, 1]. Pour le voir, il suffit de poser

f(x) :=
d(x, F0)

d(x, F0) + d(x, F1)

(Si F0 (resp. F1) est vide, on pose f ≡ 1 (resp. f ≡ 0).) Bien sûr, on en déduit que
pour tous a0, a1 réels distincts, une fonction qui vaut a0 sur F0 et a1 sur F1 admet
un prolongement continu à valeurs dans [a0, a1].

- Si (X, d) est un espace métrique et A un ensemble quelconque de X, alors
toute fonction lipschitzienne f : A → R admet un prolongement lipschitzien à X
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tout entier (a priori non unique). Pour le voir, il suffit de poser
f(x) = inf

y∈A

[
d(x, y) + f(y)

]
.

- Si (X, d) est un espace métrique et F est un fermé de X, alors toute fonction
continue f : F → R admet un prolongement continu (a priori non unique) à X tout
entier, vérifiant supX f = supF f , infX f = infF f . C’est le Théorème d’extension
de Tietze–Urysohn, dont je vai esquisser la démonstration.

Preuve du Théorème de Tietze–Urysohn. En décomposant f en f+ et
f−, on se ramène au cas où f est à valeurs positives.

Si f est bornée, on peut sans perte de généralité supposer que f est à valeurs
dans [0, 1]. On construit alors une série d’approximations continues à f , comme
suit. On introduit d’abord une fonction g1 continue, à valeurs dans [0, 1/2], qui vaut
identiquement 0 sur le fermé {f = 0} et identiquement 1/2 sur le fermé {f ≥ 1/2}.
On a alors 0 ≤ f − g1 ≤ 1/2 sur F . On introduit ensuite g2, à valeurs dans [0, 1/4],
identiquement égale à 0 sur le fermé {f − g1} = 0 et identiquement égale à 1/4 sur
le fermé {f − g1} ≥ 1/4 ; on a alors 0 ≤ f − g1 − g2 ≤ 1/4 sur F .

Par récurrence, on construit ainsi une suite de fonctions (gn)n∈N telle que |gn| ≤
2−n et |f − (g1 + . . .+ gn)| ≤ 2−n sur F . Cette série converge uniformément dans X
tout entier vers une fonction continue g, qui coïncide avec f sur F .

Si maintenant f est non bornée, on applique le résultat précédent à f̃ := f/(1 +
f), construisant ainsi une fonction continue g̃ sur X, à valeurs dans [0, 1]. L’ensemble
F ′ := {g̃ = 1} est un fermé disjoint de F , on peut donc trouver une fonction h
continue, à valeurs dans [0, 1], valant 0 sur F ′ et 1 sur F ; la fonction hg̃ est alors à
valeurs dans [0, 1[, et g := (hg̃)/(hg̃ − 1) est une extension continue de f . □

Enfin, voici pour conclure un résultat utile de séparation : soient F0 et F1 des
fermés disjoints dans un espace métrique ; alors on peut trouver des ouverts disjoints
O0 et O1 tels que F0 ⊂ O0, F1 ⊂ O1. En effet, on sait construire une fonction continue
f à valeurs dans [0, 1], valant 0 sur F0 et 1 sur F1 ; il suffit de poser O0 = {x; f(x) <
1/3}, O1 = {x; f(x) > 2/3}.

II-3.4. Espaces produits. Si (Xt)t∈T est une famille d’espaces topologiques,
indexée par un ensemble quelconque, considérons leur produit cartésien X =

∏
Xt :

c’est l’ensemble des fonctions x définies sur T , telles que x(t) ∈ Xt pour tout t.
Dans cet ensemble on peut définir les cylindres : si Atk est une partie de Xtk , pour
1 ≤ k ≤ K, alors

C(t1,...,tK)(At1 , . . . , AtK ) := {x ∈ X; xtk ∈ Atk}.

On peut alors définir la topologie produit comme la topologie engendrée par les
ouverts cylindriques, i.e. les ouverts de la forme C(Ot1 , . . . , OtK ), chaque Otk étant
un ouvert de Xtk .

Si l’ensemble T est quelconque, la topologie produit est en général non métrique ;
un exemple typique est [0, 1][0,1]. En revanche, un produit dénombrable d’espaces
métriques reste un espace métrique. Précisons un peu les choses. Soit (Xk, dk)k∈N
une famille dénombrable d’espaces métriques, et X =

∏
Xk. La topologie produit

sur X est engendrée par les cylindres de la forme C(A1, . . . , An), où chaque Ai est
un ouvert de Xi. Dire qu’une suite (xk)k∈N d’éléments de X converge vers x ∈ X
revient donc à dire que pour tout indice i, la suite (xki )k∈N converge vers xi quand
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k → ∞. Il est alors facile de vérifier que X est un espace métrique quand on le munit
de la distance

dX(x, y) = sup
i∈N

[
2−i di(xi, yi)

1 + di(xi, yi)

]
.

(Noter que la distance di/(1 + di) est topologiquement équivalente à di, tout en
étant automatiquement bornée.) En pratique, la convergence dans l’espace X est la
“convergence composante par composante”.

Théorème II-37 (produits dénombrables d’espaces métriques). Soit (Xk, dk)k∈N
une famille dénombrable d’espaces métriques, et soit X =

∏
Xk, muni de la topologie

produit. Alors
(i) Si chaque Xk est compact, alors X est compact ;
(ii) Si chaque Xk est polonais, alors X est polonais.

Remarque II-38. Si l’on admet l’axiome du choix, alors l’énoncé (i) se généra-
lise à des familles arbitraires de compacts, éventuellement non dénombrables ; c’est
un célèbre résultat de topologie générale appelé théorème de Tychonov. La dé-
monstration de ce théorème est un remarquable exercice d’“abstract nonsense”, que
l’on pourra trouver dans de nombreux ouvrages de référence, par exemple [Dunford-
Schwartz]. La preuve de l’énoncé (i) est beaucoup plus simple car on peut utiliser à
la fois la métrique et la dénombrabilité.

Démonstration. (i) C’est l’occasion d’introduire le concept d’extraction dia-
gonale (ou argument diagonal de Cantor), qui servira souvent par la suite. Soit
(xn)n∈N une suite d’éléments de X ; chaque xn est une suite (xnk)k∈N, avec xnk ∈ Xk.
De la famille des (xn1 )n∈N, à valeurs dans le compact K1, on peut extraire une sous-
suite convergente, notée xφ1(n)

1 . De la famille xφ1(n)
2 , à valeurs dans le compact K2, on

peut extraire une sous-suite convergente notée xφ1◦φ2(n)
2 . Par récurrence, on construit

des applications strictement croissantes φk : N → N, telles que la suite xφ1◦...◦φk(n)
k

est convergente dans Xk. On pose alors
φ(n) = φ1 ◦ φ2 ◦ . . . ◦ φn(n).

Pour tout k ≤ n, on peut écrire
φ(n) = (φ1 ◦ . . . ◦ φk) ◦ ψk(n),

où ψk est une fonction croissante. Il s’ensuit que, pour n ≥ k, la suite (x
φ(n)
k ) est

extraite de x
φ1◦...◦φk(n)
k , et converge donc dans Xk vers une limite xk ∈ Xk. Par

définition de la topologie cylindrique, la suite (de suites) xφ(n) converge vers la suite
x = (xk)k∈N. La suite (xn)n∈N admet donc x pour valeur d’adhérence, ce qui prouve
la compacité de X.

(ii) Soit dn une métrique rendant Xn complet ; on vérifie alors que la métrique

d(x, y) := sup
n∈N

[
2−n dn(xn, yn)

1 + dn(xn, yn)

]
métrise la topologie produit de X et le rend complet.

Par ailleurs, si (xnk)k∈N est une suite dense dans Xn, on vérifie que la famille des
suites

(xk11 , x
k2
2 , . . . , x

kN
N , x1N+1, x

1
N+2, x

1
N+3, . . .)
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où (k1, . . . , kN) ∈ NN et N ∈ N, est dénombrable, et dense dans X (c’est une suite
de suites !). L’espace X est donc séparable. □

II-3.5. Quel cadre topologique pour la théorie de la mesure ? Même
si leurs fondements axiomatiques présentent des similitudes, théorie de la mesure
et topologie font souvent mauvais ménage, et peuvent mener à des descriptions
qualitatives très différentes. Ainsi, un ensemble peut être “gros” pour topologie (par
exemple un ensemble gras au sens de Baire, i.e. une intersection dense d’ouverts)
et très petit pour la mesure (i.e. inclus dans une famille de boules de volume total
arbitarirement petit) ; on y reviendra.

Dans de nombreux domaines, les notions de “généricité” au sens topologique
et au sens de la théorie de la mesure sont différentes ; un exemple célèbre est le
théorème KAM en mécanique Hamiltonienne, pour lequel l’instabilité générique (au
sens topologique) va de pair avec une stabilité très probable.

Pour autant, théorie de la mesure et topologie ne sont pas des concepts étrangers.
Nous verrons dans la section suivante que les propriétés topologiques d’un espace
métrique déterminent en partie ses propriétés en tant qu’espace mesuré, quand on le
munit de la tribu borélienne. Il est don légitime de se demander s’il existe un cadre
topologique naturel pour développer la théorie de la mesure.

Dans les années 1950 et 1960, il a pu sembler qu’un tel cadre était celui des
espaces localement compacts, non nécessairement métriques, Plusieurs résultats
excellents ont été établis pour ces espaces ; parmi les plus remarquables se trouvent
le Théorème de Représentation de Riesz (Chapitre III) ; et le Théorème de Haar
(Chapitre ??). La théorie de la mesure dans les espaces localement compacts occu-
pait alors une place importante dans nombre de traités de référence tels que ceux de
Bourbaki et Halmos, et même dans l’ouvrage plus concis de Rudin, dont la popularité
reste intacte.

En revanche, les probabilistes n’ont jamais pu admettre ce cadre, qui exclut les
espaces fonctionnels naturels tels que l’espace de Wiener (connu depuis les années
1920). Depuis Kolmogorov, l’essentiel de la théorie des probabilités a été développé
dans le cadre des espaces métriques séparables, le plus souvent complets ; autrement
dit, des espaces polonais.

Deux théories concurrentes se sont donc développées parallélement au cours du
vingtième siècle, avec des points communs et des divergences : les espaces localement
compacts d’une part, les espaces polonais d’autre part. Pour apprécier un peu mieux
cette distinction, voici quelques exemples :

- un espace métrique compact est bien sûr localement compact, et automatique-
ment polonais ;

- l’espace euclidien Rn, ou plus généralement n’importe quelle variété rieman-
nienne complète, est à la fois un espace localement compact et un espace polonais ;

- l’espace [0, 1][0,1], muni de la topologie de la convergence simple, est compact
mais n’est pas polonais (car non métrique) ;

- l’espace C([0, 1];R), muni de la topologie de la convergence uniforme, est po-
lonais mais non localement compact.

L’expérience a montré que le cadre des espaces polonais est plus naturel et
concerne une communauté scientifique considérablement plus importante. En outre,
la théorie de la mesure dans des espaces non métriques (même compacts) mène
à diverses pathologies [Dudley, Appendice E]. Pour toutes ces raisons, il est clair
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maintenant que le “bon” contexte mathématique de la théorie de la mesure est ce-
lui des espaces polonais. Cela n’empêche pas que des hypothèses additionnelles de
compacité locale aient des conséquences fort commodes.

Pour autant, je n’ai pas banni complètement de ces notes les énoncés faisant
intervenir des espaces localement compacts abstraits ; la principale motivation en
est la volonté de préserver toute la splendeur (!) des théorèmes de Riesz et de Haar.
De manière générale, je proposerai donc des preuves complètes dans le cas des espaces
polonais, et des preuves presque complètes dans le cas localement compact ; la lectrice
intéressée pourra en reconstituer les détails.

Qu’est-ce qui fait le succès de ces deux catégories d’espace ? Pour simplifier,
- dans les espaces polonais, tout se ramène à des boules ;
- dans les espaces localement compacts, tout se ramène à des fonctions continues.

Je vais en dire un peu plus dans la fin de cette section.

II-3.6. Pourquoi les espaces polonais sont-ils agréables ? Les axiomes des
espaces polonais en font des espaces particulièrement bien adaptés à la propriété de
σ-additivité des mesures : dans de nombreux problèmes, on peut se ramener à une
question portant sur une famille dénombrable d’ensembles simples tels que des
boules. Voici un bon exemple.

Théorème II-39 (ouverts et compacts d’un polonais). Soit (X, d) un espace
métrique séparable, soit (xn)n∈N une suite dense dans X, et soit (εk)k∈N une suite
quelconque de nombres positifs décroissant vers 0. Soit Bk l’ensemble des boules
ouvertes de centre xn et de rayon εk, et B la réunion des Bk. Alors

(i) une partie O de X est ouverte si et seulement si elle est union dénombrable
d’éléments de B ;

(ii) si X est en outre complet (donc polonais), alors une partie K de X est com-
pacte si et seulement si elle s’écrit comme une intersection d’unions finies d’adhé-
rences d’éléments de Bk ; en d’autres termes, K est compact si et seulement si il
existe (Nk) et (n(k, j)) (k ∈ N, 1 ≤ j ≤ Nk) tels que

(4) K =
⋂
k∈N

⋃
1≤j≤Nk

Bεk(xn(k,j)).

Remarque II-40. La formule (4) dit que l’on peut bien approcher K en le
recouvrant par un grand nombre de petites boules que l’on ferme. Noter que l’union
de boules fermées apparaissant au membre de droite n’est pas forcément compacte ;
c’est l’intersection qui l’est.

Preuve du Théorème II-39. (i) Il est clair qu’une union d’éléments de B est
ouverte. Pour vérifier la réciproque, il suffit de prouver que tout x ∈ O appartient
à un élément de B. Puisque O est ouvert, il existe r > 0 tel que Br(x) ⊂ O.
Soit k tel que εk < r/2, et soit n tel que d(xn, x) < εk. On va constater que
Bεk(xn) ⊂ O, ce qui conclura l’argument. Soit donc y tel que d(xn, y) < εk ; alors
d(x, y) ≤ d(x, xn) + d(xn, y) < εk + εk < r, donc y ∈ Br(x) et donc y ∈ O.

(ii) Montrons qu’une partie K de la forme (4) est compacte. Une union finie
de parties fermées étant fermée, K s’écrit comme une intersection (dénombrable)
de parties fermées ; c’est donc un fermé. Si l’on parvient à montrer que toute suite
à valeurs dans K converge dans X, on saura que la limite est aussi dans K, et le
critère de Bolzano-Weierstrass assurera que K est compact.
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Soit donc (yℓ)ℓ∈N une suite à valeurs dansK. Par hypothèse, elle prend ses valeurs
dans un nombre fini de boules de rayon ε1 ; l’une de ces boules au moins contient
donc une infinité de termes de la suite. On peut donc extraire de (yℓ) une sous-suite
dont tous les éléments sont à distance au plus ε1 les uns des autres. Mais la suite (yℓ)
ainsi extraite est également à valeurs dans une union finie de boules de rayon ε2 ;
l’une de ces boules au moins contient donc une infinité de termes de la suite, et on
peut extraire à nouveau une sous-suite dont tous les éléments sont à distance au plus
ε2 les uns des autres. On continue ainsi le processus : par un procédé d’extraction
diagonale, il est possible de construire une suite extraite, toujours notée (yℓ), telle
que tous les yℓ pour ℓ ≥ k sont à distance au plus εk les uns des autres. C’est donc
une suite de Cauchy, et grâce à l’hypothèse de complétude elle converge dans X, ce
qui conclut l’argument.

Réciproquement, soitK un compact, montrons qu’il peut s’écrire sous la forme (4).
Pour tout k, et pour tout x ∈ K, on peut trouver n tel que d(x, xn) < εk ; on
peut donc inclure K dans l’union des Bεk(xn), avec d(xn, K) < εk. Par compacité
on peut extraire un sous-recouvrement ouvert. Il existe donc des éléments xn(k,j)
(1 ≤ j ≤ Nk) tels que K soit inclus dans l’union des Bεk(xn(k,j)), a fortiori dans
l’union des Bεk(xn(k,j)), avec d(xn(k,j), K) < εk. Cela étant valable pour tout k, on a

K ⊂ K ′ :=
⋂
k∈N

⋃
1≤j≤Nk

Bεk(xn(k,j)).

Soit maintenant y ∈ K ′, et soit k ∈ N. Par hypothèse, il existe xn tel que
y ∈ Bεk(xn), avec d(xn, K) < εk. On a alors d(xn, y) ≤ εk, et donc d(y,K) ≤
εk + εk = 2εk. Puisque k était arbitraire, d(y,K) = 0, ce qui entraîne y ∈ K. On
conclut que K ′ = K, ce qui était notre but. □

II-3.7. Pourquoi les espaces localement compacts sont-ils agréables ?
La popularité des espaces localement compacts tient pour beaucoup à ce que dans de
tels espaces on peut, dans de nombreuses situations, remplacer les ensembles ouverts
(identifiés à leurs fonctions indicatrices) par des “fonctions plateaux”, à valeurs dans
[0, 1], continues et à support compact. C’est ce qu’expriment les deux théorèmes
suivants [Rudin, Théorèmes 2.12 et 2.13].

Théorème II-41 (lemme d’Urysohn). Soit X un espace séparé localement com-
pact, O un ouvert et K un compact de X, K ⊂ O. Alors il existe une fonction f ,
continue, à valeurs dans [0, 1], qui vaut identiquement 1 au voisinage de K, et dont
le support est compact et inclus dans O. En particulier,

1K ≤ f ≤ 1O.

Théorème II-42 (partition de l’unité). Soient X un espace séparé localement
compact, K un compact de X, et O1, . . . , On une collection finie d’ouverts, tels que
K ⊂ ∪Ok. Alors il existe des fonctions continues f1, . . . , fn, à valeurs dans [0, 1],
telles que chaque fk ait son support compact et inclus dans Ok, et

x ∈ K =⇒
∑
k

fk(x) = 1.

Si l’on se donne un recouvrement quelconque O de K par des ouverts, alors on
peut en extraire un sous-recouvrement fini {O1, . . . , On}, et la conclusion précédente
reste vraie.
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f = 1

f = 0

K

O

Figure 4. Le lemme d’Urysohn

Le lemme suivant est également utile. On peut le voir comme une conséquence
directe du lemme d’Urysohn (pourquoi ?), mais on peut aussi considérer qu’il précède
logiquement cet énoncé.

Lemme II-43 (voisinages compacts). Soient X un espace localement compact, K
un compact de X, et O un voisinage ouvert de K. Alors il existe un compact K ′ et
un ouvert O′ de X tels que

K ⊂ O′ ⊂ K ′ ⊂ O.

Preuve du Lemme II-43 dans le cas métrique. Soit F := X \ O. Pour
tout x ∈ K, on a d(x, F ) > 0 ; on peut donc trouver rx > 0 tel que la boule Brx(x)
n’intersecte pas X \ O, et soit par conséquent incluse dans O. Par hypothèse, il
existe également un voisinage compact Kx de x. Considérons Cx := Brx/2(x) ∩Kx :
c’est un voisinage compact de x, inclus dans O. Soit Vx un sous-ensemble ouvert
de Cx contenant x : les Vx recouvrent K ; par compacité on peut donc en extraire
un sous-recouvrement fini Vx1 , . . . , VxK

, et la famille des Cxk
recouvre également K.

L’union des Cxk
est alors un voisinage compact de K, inclus dans O. □

Preuve du Théorème II-41 dans le cas métrique. SoientK ′ etO′ comme
dans le Lemme II-43. On pose alors

f(x) :=
d(x,X \K ′)

d(x,X \K ′) + d(x,O′)

(noter que le dénominateur ne s’annule jamais). □
Preuve du Théorème II-42 dans le cas métrique. On ne démontrera que

la première partie de l’énoncé, la deuxième en découlant facilement. Pour tout j, on
note Fj le complémentaire dans X de l’union des ensembles Oi, pour i 6= j : c’est
alors un fermé, et

K ∩ Fj ⊂ (
⋂
i

Oi) \ (
⋂
i ̸=j

Oi) ⊂ Oj.

Grâce au Théorème II-41, on peut trouver une fonction fj à support compact dans
Oj, à valeurs dans [0, 1], qui vaille identiquement 1 sur un voisinage de K ∩ Fj. On
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définit alors

fj(x) :=


fj(x) si x ∈ K ∩ Fj

fj(x)∑n
i=1 fi(x)

si x ∈ K ∩ (
⋃
i ̸=j

Oi)

et on vérifie que cette famille remplit toutes les conditions requises. □

Voici pour finir une proposition énonçant que l’on peut “épuiser” un espace
localement compact et σ-compact par une famille de compacts “gentiment emboîtés”
(souvent appelée suite exhaustive de compacts) :

Proposition II-44. Soit X un espace localement compact et σ-compact. Alors
X peut s’écrire comme l’union croissante d’une famille de compacts (Kn)n∈N, telle
que Kn+1 soit voisinage de Kn. Pour tout compact K de X, il existe alors n0 ∈ N
tel que K soit inclus dans l’intérieur de Kn pour n ≥ n0.

Démonstration. Par hypothèse, on peut trouver des compacts (Cn)n∈N dont
l’union est X entier. Posons K1 = C1. On va montrer qu’il existe un compact K2

qui contienne un voisinage de K1, et C2.
Pour chaque n on peut construire un ouvert On et un compact C ′

n, de sorte que
Cn ⊂ On ⊂ C ′

n. Il est clair que les On recouvrent X. En particulier, le compact C1 est
recouvert par un nombre fini des On : il existeN1 ∈ N tel que C1 ⊂ O1∪O2∪. . .∪ON1 .
En particulier, le compact C ′

1 ∪ . . .∪C ′
N1

est voisinage de C1. Il suffit alors de poser
K2 := C ′

1 ∪ . . . ∪ Cmax(2,N1).
En répétant ce raisonnement, on construit par récurrence une suite (Kn)n∈N telle

que Kn+1 soit voisinage de Kn et contienne C1 ∪ . . . ∪ Cn+1. La réunion des Kn est
donc X tout entier.

Soit Vn l’intérieur de Kn. Puisque Vn contient Kn−1, l’union croissante des Vn est
X tout entier. Si K est un compact de X, il est donc inclus dans Vn pour n assez
grand, ce qui conclut la preuve. □

II-4. Régularité des espaces mesurés
De nombreux résultats de théorie de la mesure s’appliquent dans un cadre très

général, sans aucune hypothèse additionnelle. Mais en pratique il est très commode
de pouvoir s’appuyer sur certaines propriétés très utiles, dites de “régularité”, qui
mêlent des hypothèses de topologie et de théorie de la mesure.

II-4.1. Vocabulaire de base.

Définition II-45 (finitude et σ-finitude). Une mesure µ sur un espace mesuré
X est dite finie si X est de mesure finie ; elle est dite σ-finie si X peut s’écrire
comme une union dénombrable d’ensembles Ak de mesure finie.

Remarque II-46. Certains théorèmes importants d’intégration sur les espaces
produits utiliseront crucialement des hypothèses de σ-finitude.

Définition II-47 (probabilité). Un espace mesuré (X,µ) est appelé espace de
probabilité si µ[X] = 1.
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Remarque II-48. Cette définition semble particulièrement triviale, mais il ne
faut pas oublier qu’il a fallu attendre longtemps avant que l’on comprenne que la
théorie de la mesure était un cadre conceptuel naturel pour développer la théorie
des probabilités. Cette intuition est due indépendamment à Kolmogorov et Ulam.

Définition II-49 (atome). On dit que x ∈ X est un atome pour la mesure µ si
µ[{x}] > 0.

Le choix de cette terminologie est transparent : un atome est une partie que l’on
ne peut découper, au sens de la théorie de la mesure, en morceaux plus petits.

Définition II-50 (concentration, négligeabilité). Soit (X,A, µ) un espace me-
suré.

(i) Soit C un sous-ensemble quelconque de X ; on dit que µ est concentrée sur C
si, pour toute partie mesurable A contenant C, on a µ[X \ A] = 0.

(ii) Soit N un sous-ensemble quelconque de X ; on dit que N est µ-négligeable
(ou négligeable) si N est contenu dans un ensemble mesurable A tel que µ[A] = 0.

(iii) Soit C un sous-ensemble quelconque de X ; on dit que µ charge C si, pour
toute partie mesurable A contenant C, on a µ[A] > 0.

Remarque II-51. Ces définitions se simplifient quand on se restreint à des par-
ties mesurables : si A est mesurable,

• µ est concentrée sur A si et seulement si µ[X \ A] = 0 ;
• A est µ-négligeable si et seulement si µ[A] = 0 ;
• µ charge A si et seulement si µ[A] > 0.

Exemple II-52. La mesure δx est concentrée sur {x}, qui n’est pas forcément
mesurable.

Intuitivement, les ensembles négligeables sont ceux qui ne devraient jouer aucun
rôle en intégration. Cependant, il est parfois délicat de traduire cette intuition quand
ces ensembles ne sont pas mesurables. Ceci motive la notion suivante :

Définition II-53 (complétude). Un espace mesuré est dit complet s’il possède la
propriété suivante : si A est négligeable et B est inclus dans A, alors B est mesurable
(et donc automatiquement négligeable).

Remarques II-54. (i) Le sens du mot “complet” est différent de celui qu’il
a dans “espace métrique complet”.

(ii) La complétude est une propriété subtile, parfois bien commode, parfois source
de complications infinies. On verra plus tard que l’on peut toujours “complé-
ter” une mesure.

II-4.2. Mesures de Borel et régularité.

Définition II-55 (mesure de Borel). Soit X un espace topologique. La tribu
B(X) engendrée par les ouverts de X est appelée tribu borélienne de X, et les
mesures définies sur cette tribu sont dites mesures de Borel.

La définition suivante est particulièrement importante. Elle exprime le fait que
les ensembles boréliens, pour compliqués qu’ils soient, peuvent être approchés au
sens de la mesure, de l’intérieur par des ensembles “topologiquement petits”.
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Définition II-56 (régularité). Soit X un espace topologique et µ une mesure
définie sur une tribu A de X contenant la tribu borélienne. On dit que µ est régulière 2

si elle vérifie la propriété caractéristique suivante : pour tout ensemble mesurable
A ∈ A on a

µ[A] = inf
{
µ[O]; O ouvert, A ⊂ O

}
= sup

{
µ[K]; K compact, K ⊂ A

}
.

La régularité d’une mesure implique automatiquement que les ensembles mesu-
rables se décomposent en une partie “régulière” et une partie de mesure nulle, au
sens de la proposition suivante :

Proposition II-57 (mesurabilité, Fσ et Gδ). Soit X un espace topologique et
soit µ une mesure régulière sur X, définie sur une σ-algèbre A contenant la tribu
borélienne. Alors,

(i) Toute partie A ∈ A (et en particulier tout borélien) de mesure finie peut
s’écrire sous la forme F ∪N , où F est une union dénombrable de fermés (un Fσ) et
N un ensemble mesurable négligeable ;

(ii) A peut également s’écrire sous la forme G \ N ′, où G est une intersection
dénombrable d’ouverts (un Gδ) et N ′ un ensemble mesurable négligeable.

Démonstration. Par régularité, on peut trouver une suite de compacts Kj et
d’ouverts Oj tels que Kj ⊂ A ⊂ Oj et µ[Kj] → µ[E], µ[Oj] → µ[E]. Quitte à poser
K ′

1 = K1, K ′
j = K ′

j−1 ∪ Kj, O′
1 = O1, O′

j = O′
j−1 ∩ Oj, on peut supposer que les

Kj sont croissants et les Oj décroissants. On pose alors F = ∪Kj et G = ∩Oj. La
conclusion découle de la σ-additivité de µ. □

La régularité va souvent de pair avec la propriété suivante :

Définition II-58 (finitude sur les compacts). Une mesure de Borel µ sur un
espace topologique X est dite finie sur les compacts 3 si pour tout compact K de X
on a µ[K] < +∞.

Exemple II-59. La mesure de comptage sur R n’est ni finie sur les compacts,
ni régulière, puisque la mesure de tout segment non trivial, et de tout ouvert non
trivial, est +∞.

Enfin la régularité est liée de manière quelque peu subtile à la propriété de σ-
additivité, comme le montre l’énoncé suivant (que l’on peut considérer à ce stade
comme une curiosité, mais qui s’avèrera utile dans le Chapitre ??) :

Proposition II-60. Soient A et B deux algèbres, avec A ⊂ B, et µ : B → R+ une
fonction additive d’ensembles, vérifiant la propriété de régularité intérieure partielle

(5) ∀B ∈ B µ[B] = sup
{
µ[K]; K compact, K ⊂ B, K ∈ A

}
.

Alors µ est σ-additive sur A.

Remarque II-61. La Remarque VIII-67 montrera que l’hypothèse 5 est cruciale.
2. Cette propriété est parfois appelée du nom de Radon, et le terme “régularité” désigne parfois

la propriété d’approximation par des fermés, plutôt que par des compacts [Bogachev].
3. Une mesure de Borel finie sur les compacts est parfois appelée mesure de Radon ; parfois on

impose aussi des propriétés de régularité, au sens indiqué plus loin [Evans-Gariepy].
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Preuve de la Proposition II-60. Soit µ vérifiant les hypothèses du théo-
rème. Par aditivité on a, pour toute famille (Ak)k∈N d’ensembles mesurables disjoints,∑

1≤k≤N µ[Ak] ≤ µ[∪k∈NAk], d’où∑
k∈N

µ[Ak] ≤ µ
[⋃
k∈N

Ak

]
.

Si µ n’est pas σ-additive, il existe des (Ak)k∈N disjoints tels que
∑

k∈N µ[Ak] <
µ[∪Ak], en d’autres termes on peut trouver δ > 0 tel que pour tout N ∈ N,

N∑
k=1

µ[Ak] ≤ µ[∪k∈NAk]− δ =
N∑
k=1

µ[Ak] + µ
[ ⋃
k≥N+1

Ak

]
;

d’où µ[∪k≥N+1Ak] ≥ δ (ici on utilise le fait que µ est à valeurs finies). Posons
Cℓ = ∪k≥ℓ+1Ak : alors (Cℓ)ℓ∈N est une suite décroissante de compacts d’intersection
vide, et µ[Cℓ] ≥ δ pour tout ℓ.

Pour chaque ℓ ∈ N, soit Kℓ un compact tel que Kℓ ⊂ Cℓ, Kℓ ∈ A, et µ[Cℓ \Kℓ] ≤
2−(ℓ+1)δ. Alors K1 ∩ . . . ∩Kℓ ∈ A et

µ
[
K1 ∩ . . . ∩Kℓ] ≥ µ[Cℓ]−

∑
2−(j+1)δ ≥ δ − δ/2 = δ/2;

en particulier K1 ∩ . . . ∩Kℓ est non vide. Les compacts (K1 ∩ . . . ∩Kℓ)ℓ∈N forment
une suite décroissante de compacts non vides, leur intersection est donc non vide,
en contradiction avec le fait que les Cℓ eux-mêmes sont d’intersection vide. □

II-4.3. Théorèmes de régularité automatique. Les espaces polonais d’une
part, les espaces localement compacts d’autre part, jouissent de propriétés bien com-
modes. En particulier, on a le résultat suivant, qui peut paraître surprenant au
premier abord :

Théorème II-62 (Régularité des mesures sur les espaces polonais). Soit X un
espace polonais muni d’une mesure borélienne µ, σ-finie. Alors µ est automatique-
ment régulière, et concentrée sur un ensemble σ-compact.

Dans le cas où µ[X] < +∞, la dernière assertion de ce théorème est connue sous
le nom de lemme d’Ulam. Voici un corollaire immédiat du Théorème II-62.

Corollaire II-63 (Régularité des mesures sur Rn). Soit µ une mesure de Borel
sur Rn, finie sur les compacts ; alors µ est régulière.

Avant de démontrer le Théorème II-62, mentionnons sans démonstration une va-
riante qui s’applique à des espaces topologiques localement compacts [Rudin, Théo-
rème 2.18], et implique également le Corollaire II-63.

Théorème II-64 (Régularité des mesures dans un espace localement compact).
Soit X un espace séparé localement compact, dans lequel tout ouvert est σ-compact,
muni d’une mesure de Borel µ, finie sur les compacts. Alors µ est automatiquement
régulière.

Remarque II-65. Il est facile de vérifier que les ouverts de Rn, ou d’une variété
de dimension finie, sont σ-compacts. Par ailleurs, on trouvera dans [Rudin, Cha-
pitre 2, exercice 18] un contre-exemple montrant que la conclusion du Théorème II-
64 n’est pas forcément vraie sans l’hypothèse quelque peu étrange de σ-compacité
des ouverts.
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Voici maintenant une preuve du Théorème II-62, inspirée de celle que l’on trouve
par exemple dans [Dudley, p. 225]. La démonstration utilisera un résultat dont la
preuve se trouve plus loin (Théorème II-77), mais bien sûr il n’y a pas de cercle
vicieux !

Preuve du théorème II-62. 1. Dans le début de cette preuve, on suppose que
µ est finie. Soit ε > 0, montrons qu’il existe un compact Kε tel que µ[X \Kε] ≤ ε.
De ce résultat il sera facile de déduire (exercice) que µ est concentrée sur l’ensemble
σ-compact S := ∪k∈NK1/k.

Par hypothèse, il existe une suite (xn)n∈N dense dans X. En particulier,

X = ∪n≥1B(xn, 1),

et donc µ[X] = limn→∞ µ[∪k≤nB(xk, 1)]. Comme µ[X] < +∞, on peut donc trouver
n1 tel que

µ
[
X \ (∪k≤n1B(xk, 1))

]
≤ ε

2
.

De même, pour tout j on peut trouver nj tel que

µ
[
X \ (∪k≤nj

B(xk, 1/j))
]
≤ ε

2j
.

Posons
Kε :=

⋂
j≥1

(
∪k≤nj

B(xk, 1/j)
)
.

D’une part, Kε est totalement borné : en effet, si δ > 0 est donné on peut choisir
j ≥ 1/δ et on a

Kε ⊂ ∪k≤nj
B(xk, 1/j) ⊂ ∪k≤nj

B(xk, δ).

D’autre part, Kε est fermé car intersection de fermés ; comme l’espace ambiant X
est complet, il s’ensuit que Kε est également complet. Etant complet et totalement
borné, il est compact. Enfin,

µ[X \Kε] = µ[∪j(X \ ∪k≤nj
B(xk, 1/j))]

≤ µ[∪j(X \ ∪k≤nj
B(xk, 1/j))]

≤
∑
j≥1

µ[X \ (∪k≤nj
B(xk, 1/j))]

≤ ε
∑
j≥1

2−j = ε.

2. Montrons maintenant que µ est régulière. Soit A un ensemble mesurable, et
ε > 0, nous voulons montrer qu’il existe un ouvert O contenant A et un compact K
inclus dans A tels que

µ[O]− ε ≤ µ[A] ≤ µ[K] + ε.

On va d’abord supposer que X est compact : il y a alors identité entre compacts
et fermés. Définissons F comme la famille de toutes les parties boréliennes A de X
telles que, pour tout ε > 0 on peut trouver un ouvert O contenant A, et un fermé
F contenu dans A, satisfaisant à

(6) µ[O]− ε ≤ µ[A] ≤ µ[F ] + ε.
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Clairement, notre but est de montrer que F coïncide avec l’ensemble de la tribu des
boréliens. Il est très facile de montrer que F est stable par passage au complémen-
taire. Il est également stable par union croissante : en effet, si Ak est une famille crois-
sante d’éléments de F , et A = ∪Ak, on peut choisir k0 tel que µ[Ak0 ] ≥ µ[A]− ε/2,
et un compact K contenu dans Ak0 tel que µ[Ak0 ] ≤ µ[K] + ε/2, ce qui impliquera

µ[A] ≤ µ[Ak0 ] + ε/2 ≤ µ[K] + ε.

On peut également, pour tout k ∈ N, introduire un ouvert Ok contenant Ak, tel que
µ[Ok] ≤ µ[Ak] + ε 2−k ; alors O = ∪Ok vérifie A ⊂ O et O \ A ⊂ ∪(Ok \ A), donc

µ[O \ A] ≤
∑
k∈N

ε 2−k = ε.

3. Si l’on montre que F contient tous les ensembles ouverts, le Lemme de Classe
monotone (Théorème II-77, démontré plus loin) impliquera que F est la tribu boré-
lienne tout entière. Si A est ouvert, l’inégalité de gauche dans (6) est trivialement
vérifiée par O = A ; pour montrer l’inégalité de droite, il suffit de prouver l’existence
d’une famille croissante d’ensembles fermés Fk inclus dans A tels que µ[Fk] → µ[A].
Introduisons, pour k ∈ N,

Fk :=
{
x ∈ A; d(x,X \ A) ≥ 1/k

}
.

Soit x ∈ A ; comme A est ouvert, on peut inclure dans A une boule ouverte centrée
en x, et donc x est à une distance positive de X \ A. Le point x appartient donc
à Fk pour k assez grand, on conclut que l’union des Fk est A tout entier. Les Fk

formant une famille croissante, on a donc µ[Fk] → µ[A]. Or chaque Fk est fermé,
puisque image réciproque de l’intervalle fermé [1/k,+∞[ par l’application continue
(et même 1-lipschitzienne) x 7−→ d(x,A).

4. Éliminons maintenant l’hypothèse de compacité de X. Soient A mesurable
et ε > 0. Comme µ est concentrée sur un ensemble σ-compact, on peut trouver
un compact X ′ ⊂ X tel que µ[X \ X ′] ≤ ε/2. L’espace X ′ est métrique, séparable
et complet, il est en outre compact, on sait donc que la restriction de µ à X ′ est
régulière. Il existe donc un ouvert O′ de X ′, contenant A′ = X ′ ∩ A, et un compact
K ′ de X ′, contenu dans A′, tels que

µ[O′]− ε/2 ≤ µ[A′] ≤ µ[K ′] + ε/2.

Comme intersection de compacts, K ′ est automatiquement compact. Par ailleurs,
on peut écrire O′ = X ′ ∩O pour un certain ouvert O contenant A. Mais alors,

µ[O] ≤ µ[O′] + µ[X \X ′] ≤ µ[O′] + ε/2 ≤ µ[A′] + ε ≤ µ[A] + ε,

et
µ[A] ≤ µ[A′] + µ[X \X ′] ≤ µ[A′] + ε/2 ≤ µ[K ′] + ε.

On en déduit que µ est bien régulière.
5. Éliminons finalement l’hypothèse de finitude de µ. Par hypothèse, il existe

une famille (Xn)n≥1 de parties de X de mesure finie, dont l’union est X entier. Sans
perte de généralité, on peut supposer que Xn est une famille croissante. Définissons
une famille de mesures µn par

µn[A] := µ[A ∩Xn].
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Il est clair que µn est finie ; d’après le morceau de démonstration déjà effectué, elle
est donc concentrée sur un ensemble σ-compact Sn. Par conséquent, µ est concen-
trée sur l’union des Sn, qui est une union dénombrable d’unions dénombrables de
compacts ; et donc une union dénombrable de compacts. On vérifie enfin la propriété
de régularité. Soit A un ensemble mesurable de X, et soit ε > 0. Pour tout n, on
peut trouver un compact Kn et un ouvert On tels que

Kn ⊂ A ∩Xn ⊂ On,

avec µ[O \ (A ∩Xn)] < ε2−n ; et µ[(A ∩Xn) \Kn] < ε/2. On pose O = ∪On : alors
O est un ouvert contenant ∪(A ∩Xn) = A, et

µ[O \ A] = µ[(∪On) \ (∪(A ∩Xn))] ≤
∑
n

µ[On \ (A ∩Xn)] < ε(
∑

2−n) = ε.

Pour l’autre sens, distinguons deux cas. Si µ[A] = +∞, alors µ[A ∩Xn] → +∞, et
l’inégalité µ[Kn] ≥ µ[A ∩Xn]− ε implique µ[Kn] → ∞. Si en revanche µ[A] < +∞,
alors on peut trouver N ∈ N tel que

µ[A ∩XN ] ≥ µ[A]− ε

2
.

Il s’ensuivra
µ[KN ] ≥ µ[A ∩XN ]−

ε

2
≥ µ[A]− ε.

Dans tous les cas, on a bien µ[A] = sup{µ[K]}, où K décrit l’ensemble des compacts
inclus dans A. Ceci achève de prouver la régularité. □

II-5. Concentration
Une mesure borélienne µ sur un espace mesuré X peut être concentrée sur un

petit sous-ensemble de X, ou au contraire “voir tout X”. La puissante théorie de la
“concentration de la mesure” étudie et quantifie cela pour bon nombre de mesures
apparaissant dans des problèmes variés de géométrie, statistique ou physique. Ici
nous allons simplement passer en revue quelques notions de base sur le support et
la diffusivité (le caractère diffus) d’une mesure.

II-5.1. Support. Le support est le plus petit fermé sur lequel µ est concentrée.
Théorème II-66 (support). Soit X un espace topologique séparé et µ une me-

sure borélienne régulière sur X. On peut alors définir le support de µ comme le
complémentaire du plus grand ouvert sur lequel µ est identiquement nulle.

En combinant ce théorème avec les théorèmes de régularité automatique II-62 et
II-64, on obtient le

Corollaire II-67. Si µ est une mesure de Borel sur un espace topologique X,
et que

- soit X est polonais et µ est σ-finie,
- soit X est séparé, localement compact et tous les ouverts y sont σ-compacts, et

µ est finie sur les compacts,
alors on peut définir le support de µ.

Remarque II-68. On pourra comparer la notion de support d’une mesure à
celle de support d’une fonction continue à valeurs réelles, que l’on définit comme le
plus petit fermé en-dehors duquel f est identiquement nulle. Si f est une mesure à
densité continue (Exemple (iv) dans la section II-2), les deux notions coïncident.
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Démonstration du Théorème II-66. Soit Ω la réunion de tous les ouverts
ω ⊂ X tels que µ[ω] = 0. Par construction Ω contient tout ouvert où µ s’annule ;
le but est de montrer que µ[Ω] = 0, et bien sûr cela n’est pas évident car c’est une
union a priori non dénombrable.

Supposons que µ[Ω] soit strictement positif ; par régularité il existe alors un
compact K ⊂ Ω tel que µ[K] > 0. Pour tout x ∈ K il existe un ouvert ω = ωx

contenant x, tel que µ[ωx] = 0. Par compacité on peut trouver J ∈ N et x1, . . . , xJ ∈
K tels que K ⊂ ∪{ωxj

; 1 ≤ j ≤ J}. Alors µ[K] ≤
∑
µ[ωxj

] = 0, ce qui est en
contradiction avec l’hypothèse. On conclut effectivement que µ[Ω] = 0. □

Remarque II-69. Dans le cas polonais, au lieu d’obtenir le corollaire II-67 en
combinant les théorèmes II-66 et II-62), on peut aussi raisonner directement en no-
tant qu’un espace polonais admet une base B dénombrable d’ouverts (comme dans
le Théorème II-39). Le support de µ peut alors être construit comme le complé-
mentaire de l’union (forcément dénombrable) de tous les ouverts ω de B tels que
µ[ω] = 0.

Faisons enfin le lien avec la notion d’atome :

Proposition II-70 (une mesure insécable est un atome). (i) Soit (X,A, µ) un
espace séparé mesuré, tel que µ[X] > 0 et tel qu’on ne peut séparer X en ensembles
mesurables disjoints X1 et X2 de mesure positive. Alors µ est un atome : µ = mδx
pour un certain x ∈ X et m > 0 (éventuellement m = ∞).

(ii) Plus généralement, si l’on ne peut pas trouver plus de K parties mesurables
disjointes de mesures positives, alors µ est une combinaison de mesures de Dirac
placées en K points : µ =

∑K
i=1miδxi

.

Preuve de la Proposition II-70. Démontrons (i). Si Sptµ est un singleton
{x}, alors µ est de la forme mδx ; sinon on peut trouver x1 et x2 distincts dans Sptµ ;
alors si B1 et B2 sont deux boules disjointes centrées en x1 et x2 respectivement, on
a µ[B1] > 0 et µ[B2] > 0, donc on sépare X en deux parties disjointes de masses
positives via X1 = B1 et X2 = X \X1.

La preuve de (ii) suit le même raisonnement. □

II-5.2. Diffusivité. Comment traduire l’idée qu’une mesure sur un espace X
est “diffuse”, “bien répartie”, qu’elle “charge tout l’espace” ? Plusieurs notions co-
existent, les plus simples sont les suivantes.

• On dit que µ est sans atomes si il n’existe aucun x tel que µ[{x}] > 0.
• On dit que µ est de plein support si son support est égal à X tout entier.
• On dit que µ est doublante sur les boules si sa restriction à chaque boule

B(x0, R) est doublante (avec une constante de doublement C = C(R, x0)), au sens
de la définition suivante.

Définition II-71 (doublement). Soient (X, d) un espace métrique muni de sa
tribu borélienne, et µ une mesure de Borel sur X. Soit C ≥ 0 une constante ; on dit
que µ est C-doublante si, pour tout x ∈ X et r > 0 on a

µ[B2r(x)] ≤ C µ[Br(x)].

On dit que µ est doublante si elle est C-doublante pour un C ≥ 0.
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Remarque II-72. Il est équivalent de définir ce concept en termes de boules
ouvertes ou de boules fermées. En effet, par σ-additivité,

µ[Br(x)] = lim
n→∞

µ[Br−n−1](x)], µ[Br](x)] = lim
n→∞

µ[Br+n−1(x)].

Exemples II-73. On verra plus tard que la mesure de Lebesgue en dimension n
est 2n-doublante. La mesure de volume sur une variété riemannienne compacte est
également doublante. La mesure de volume sur une variété riemannienne complète
non bornée n’est pas forcément doublante, mais elle est doublante sur les boules.
La mesure

∑
n∈N δn sur N (ou R) n’est pas doublante, ni doublante sur les boules :

par exemple, la boule B1/2(1/2) a pour masse 0, alors que la boule B1(1/2) a pour
masse 2.

De ces différentes notions, celle de doublement est la plus précise :
Théorème II-74. Soit µ une mesure régulière doublante sur les boules d’un

espace métrique (X, d), et non identiquement égale à 0 ou +∞. Alors
- pour tout x ∈ X et r > 0 on a 0 < µ[Br(x)] < +∞ ;
- µ est de plein support ;
- la mesure µ ne peut avoir d’atome en dehors des points isolés de X.
Démonstration. Il suffit de montrer ces propriétés pour la boule B(x0, R),

avec R arbitrairement grand. On peut donc supposer que µ est C-doublante pour
un certain C > 0. Supposons d’abord qu’il existe x ∈ X et r > 0 avec µ[Br(x)] = 0.
Alors µ[B2r(x)] ≤ Cµ[Br(x)] = 0. Par récurrence, µ[B2kr(x)] = 0 pour tout k.
Puisque X est l’union croissante des boules B2kr(x), µ[X] = 0 par σ-additivité, ce
qui est contraire à l’hypothèse. On conclut que µ[Br(x)] > 0.

Puisque µ n’est pas identiquement +∞, il existe au moins un x0 ∈ X tel que
µ[{x0}] < +∞. Par régularité, il existe un ouvert contenant x0 dont la mesure soit
finie, et donc une boule Br0(x0) dont la mesure soit finie. Par le même raisonnement
que ci-dessus, toutes les boules B2kr0(x0) sont de mesure finie. Si x ∈ X et r > 0
sont données, on peut toujours trouver k tel que Br(x) ⊂ B2kr0(x0), ce qui implique
que Br(x) est aussi de mesure finie.

Soit maintenant x ∈ X, qui ne soit pas un point isolé ; montrons que µ[{x}] = 0.
Supposons par l’absurde que µ[{x}] = α > 0, et soit δ > 0, à choisir plus tard. Par
régularité on peut trouver ε > 0 tel que µ[Bε(x)] ≤ α+ δ. Comme x n’est pas isolé,
la boule Bε/2(x) ne se réduit pas à x ; soit donc y 6= x tel que d(x, y) < ε/2. On
pose r := d(x, y). La boule Br(y) est tout entière contenue dans Bε(x) (pour tout
z ∈ Br(y) on a d(x, z) ≤ d(x, y)+ d(y, z) < r+ r < ε). Comme par ailleurs Br(y) ne
contient pas x, on a

α + µ[Br(y)] = µ[{x}] + µ[Br(y)] = µ[{x} ∪ Br(y)] ≤ µ[Br(y)] ≤ α + δ.

On en déduit que µ[Br(y)] ≤ δ. D’autre part, x ∈ B2r(y), d’où µ[B2r(y)] ≥ α. La
mesure µ étant C-doublante, on a

α ≤ µ[B2r(y)] ≤ Cµ[Br(y)] ≤ Cδ.

On obtient une contradiction en choisissant δ = α/(2C). □

II-6. Prolongement de mesures
Comme on l’a déjà dit, on veut souvent définir a priori la valeur d’une mesure sur

une certaine classe d’ensembles : par exemple, les pavés dans R2 ou Rd. En général,
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il n’est pas évident que l’on puisse le faire, c’est-à-dire qu’il existe une mesure qui
attribue des valeurs spécifiées a priori sur certains ensembles. Un tel résultat est
appelé théorème de prolongement (ou d’extension).

Le théorème de prolongement le plus célèbre et le plus utile a été démontré
vers 1914 par Carathéodory, qui à cette occasion a développé le concept important
de mesure extérieure 4, ou mesure de Carathéodory.

Ce théorème subtil commence par utiliser un outil simple et très efficace pour
montrer que deux mesures coïncident sur une tribu entière, ou plus généralement
qu’une propriété est vraie pour toute une tribu. C’est le lemme de classe mono-
tone (déjà utilisé dans la preuve du Théorème II-62).

II-6.1. Lemme de classe monotone.

Définition II-75 (classe monotone). On appelle classe monotone une famille C
de parties d’un ensemble X, stable par limite croissante et par différence :[

∀k ∈ N, Ak ∈ C, Ak ⊂ Ak+1

]
=⇒

⋃
k∈N

Ak ∈ C,

[A,B ∈ C, A ⊂ B] =⇒ B \ A ∈ C.

Remarque II-76. Noter que dans cette définition on a imposé B \A ∈ C seule-
ment dans le cas où A ⊂ B.

Bien sûr, une σ-algèbre est une classe monotone ; et réciproquement, il ne manque
pas grand chose à une classe monotone pour être une σ-algèbre : seulement la stabilité
par intersection, et la condition de contenirX. L’énoncé suivant fournit une condition
suffisante pour qu’il y ait identité.

Théorème II-77 (Lemme de classe monotone). Soit F une famille de parties
d’un ensemble X, stable par intersection finie. Soit C = CM(F) la plus petite classe
monotone contenant F ; on suppose que X ∈ C. Alors C coïncide avec la tribu σ(F)
engendrée par F .

Démonstration. Il suffit bien sûr de vérifier que C est une tribu : en effet,
toute tribu contenant F doit forcément contenir C.

Notre but est donc de vérifier que pour tout A et B dans C, on a A ∩ B ∈ C ;
cette propriété, combinée aux axiomes de classe monotone, garantira que C est une
tribu. Cependant ce résultat de stabilité par intersection semble a priori délicat car
nous n’avons aucun moyen de décrire C ; nous allons contourner cette difficulté en
utilisant un raisonnement classique.

Soit d’abord A ∈ F , et
CA = {B ∈ C; A ∩ B ∈ C}.

Par hypothèse, CA contient F . D’autre part, on vérifie aisément que CA est stable par
différence et limite croissante ; il s’ensuit que c’est une classe monotone contenant
F , et c’est donc C tout entière. On a donc démontré que pour tout A ∈ F , et B ∈ C,
on a A ∩B ∈ C.

Maintenant, pour A ∈ C, on définit à nouveau
CA = {B ∈ C; A ∩ B ∈ C}.

4. que certains auteurs appellent tout simplement “mesure” [Evans-Gariepy]
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La première étape nous montre que CA contient F . On conclut comme précédemment
que CA = C. □

Le lemme de classe monotone est un outil d’usage universel en théorie de la
mesure, car ses hypothèses s’accordent bien avec la propriété de σ-additivité des
mesures (finies). En effet, si µ est une mesure, en général on ne sait pas en général
calculer µ[A ∩ B], ou µ[A ∪ B], en fonction de µ[A] et µ[B] ; mais si A ⊂ B on sait
que µ[B \A] = µ[B]− µ[A]. De même, en général on ne sait pas calculer µ[∪Ak] en
fonction des µ[Ak] ; mais si la suite (Ak) est croissante, alors µ[∪Ak] = limµ[Ak].

II-6.2. Théorème de prolongement de Carathéodory. Soient A une al-
gèbre de parties de X, et µ une fonction additive sur A, i.e. une fonction positive
vérifiant l’axiome d’additivité µ[A∪B] = µ[A]+µ[B] pour A et B disjoints. Peut-on
étendre µ en une mesure σ-additive sur la σ-algèbre engendrée par A ?

Pour cela il faut bien sûr que µ soit σ-additive sur A lui-même : supposant qu’un
élément A de A s’écrive comme union disjointe d’élements Ak de A (par exemple,
un rectangle dans R2 peut s’écrire comme une union dénombrable de rectangles
disjoints, d’une infinité de manières différentes), on doit avoir

µ[A] =
∑
k∈N

µ[Ak].

Le théorème suivant dit que cette condition nécessaire est également suffisante,
pourvu qu’on lui adjoigne une autre condition de σ-finitude.

Théorème II-78 (théorème de prolongement de Carathéodory). Soient X un
ensemble, A une algèbre de parties de X, et µ une fonction positive sur A, telle que

(a) µ est σ-additive sur A ;
(b) X peut s’écrire comme union dénombrable de Ak ∈ A avec µ[Ak] < +∞.

Alors il existe un unique prolongement de µ en une mesure (σ-additive) définie sur
la σ-algèbre σ(A).

Remarque II-79. La propriété de σ-additivité sur A n’est pas forcément évi-
dente à vérifier. Si µ[X] < +∞, elle est équivalente à la condition suivante, parfois
plus commode : pour toute suite décroissante (Ak)k∈N d’éléments de A,

(∩Ak = ∅) =⇒ lim
k→∞

µ[Ak] = 0.

Si µ[X] = +∞, il existe aussi une reformulation analogue, mais elle est un petit
peu plus délicate. Par hypothèse, X est union croissante de parties Xk appartenant
à A, de mesure finie. Soit B un élément de A de mesure infinie, on peut écrire B
comme l’union croissante des µ[B∩Xk], et une condition nécessaire à la σ-additivité
sur A est limk→∞ µ[B ∩ Xk] = µ[B] = +∞. Il est en fait assez facile de montrer
que l’hypothèse de σ-additivité sur A est équivalente à la conjonction des deux
hypothèses suivantes :

(i) pour toute suite décroissante (Ak)k∈N d’éléments de A,(
µ[A0] < +∞ et ∩ Ak = ∅

)
=⇒ lim

k→∞
µ[Ak] = 0;

(ii) pour tout B ∈ A tel que µ[B] = +∞, on a
lim
k→∞

µ[B ∩Xk] = +∞.
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Remarque II-80. On peut faire l’analogie avec le célèbre théorème de prolonge-
ment unique des fonctions continues. Ce théorème énonce que si f est une fonction
uniformément continue, définie sur une partie quelconque E d’un espace complet Y ,
alors f se prolonge de façon unique en une fonction continue sur E. En théorie de
la mesure, ce qui joue le rôle de f c’est la fonction d’ensemble, ce qui joue le rôle
de E c’est la famille F , et ce qui joue le rôle de E c’est σ(F). Montrer l’unicité est
facile, c’est juste un passage à la limite dans le cas topologique, et une application
du lemme de classe monotone dans le cas de la théorie de la mesure. Montrer l’exis-
tence est plus délicat, et requiert l’uniforme continuité dans le cas topologique, et
un raisonnement bien plus complexe pour la théorie de la mesure.

Remarque II-81. Le théorème de Carathéodory, ou ses variantes, est le cœur de
toute la théorie de Lebesgue. En général, quand on doit construire une mesure, on ne
sait l’évaluer que sur certaines parties simples : ainsi pour calculer l’aire d’une figure
dans le plan on cherche à l’approcher par une union de rectangles disjoints, dont
on sait calculer l’aire. On veut ainsi passer à la limite dans le calcul de l’aire d’une
union finie de rectangles. Mais comment montrer que ce calcul converge ? et qu’il
converge quelle que soit le procédé d’approximation ? Le théorème de prolongement,
en passant de la mesure définie sur l’algèbre des unions finies de pavés, à la σ-algèbre
de toutes les limites d’unions finies de pavés, garantira la convergence et l’unicité
de la limite. De la même façon que si une fonction F dans un espace métrique est
continue mais qu’on ne sait la calculer que sur une partie dense, disons D, on pourra
toujours poser F (x) = limF (xn), où xn ∈ D et xn → x, et la valeur sera bien définie
et indépendante de la suite xn choisie.

On peut trouver des preuves du Théorème II-78 dans diverses sources, par
exemple [Bony, section 1.6], Gramain, section VI.1] ou [Dudley, Théorème 3.1.4].
Mais je vais plutôt adapter ces preuves pour démontrer un énoncé plus général,
qui contient le Théorème II-78 comme cas particulier. L’intérêt propre de l’énoncé
généralisé apparaîtra par la suite.

Théorème II-82 (théorème de Carathéodory généralisé). Soient X un ensemble,
et F une famille de parties de X, stable par intersection finie. Soit µ une fonction
définie sur F , à valeurs dans [0,+∞]. Alors

(i) Si X est union dénombrable d’une famille croissante d’éléments Xk de F tels
que µ[Xk] < +∞, alors il existe au plus un prolongement de µ en une mesure sur
σ(F) ;

(ii) Soit µ∗ le prolongement de µ défini ainsi : pour toute partie A de X,

(7) µ∗[A] := inf

{
∞∑
k=1

µ[Ak]; Ak ∈ F ; A ⊂ ∪Ak

}
.

On suppose que
(8) ∀A,B ∈ F , µ[A ∩B] + µ∗[A \B] = µ[A].

Alors µ∗ définit sur σ(F) une mesure qui prolonge µ. En outre, cette mesure est
σ-additive sur la σ-algèbre M, contenant σ(F), définie par
(9) M :=

{
A ⊂ X; ∀B ⊂ X, µ∗[B ∩ A] + µ∗[B \ A] = µ∗[B]

}
.

Les éléments de M sont dits µ-mesurables ; la tribu M, munie de µ∗, est automati-
quement complète.
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(iii) On suppose maintenant que non seulement F est stable par intersection
finie, mais qu’en outre le complémentaire de tout élément de F peut s’écrire
comme une union finie disjointe d’éléments de F . Alors la condition (8)
est satisfaite si et seulement si µ est σ-additive sur F ; i.e. pour toute famille
dénombrable (An)n∈N d’éléments disjoints de F tels que ∪An appartient à F , on a

µ[
⋃
n∈N

An] =
∑
n∈N

µ[An].

En particulier, µ admet un prolongement σ-additif à σ(F) si et seulement si µ est
σ-additive sur F .

Définition II-83 (mesure extérieure). La fonction µ∗ apparaissant dans (7) est
appelée mesure extérieure associée à µ (et à la famille F).

Remarques II-84. (i) Bien noter que µ∗[A] est définie pour toute partie
A de X. Ce n’est pas a priori une mesure ; en revanche elle est croissante,
et vérifie l’axiome de sous-additivité dénombrable : pour toute famille
dénombrable (Ak)k∈N de parties de X,

µ∗[⋃
k∈N

Ak

]
≤
∑
k∈N

µ∗[Ak].

Noter que dans cette définition il est inutile de supposer les Ak disjoints. Par
extension, on appelle mesure extérieure n’importe quelle application définie
sur l’ensemble des parties d’un ensemble, à valeurs dans [0,+∞], qui soit
croissante, attribue la valeur 0 à l’ensemble vide, et vérifie l’axiome de sous-
additivité dénombrable.

(ii) Il est crucial, dans la définition de la mesure extérieure, d’autoriser une union
dénombrable et pas seulement une union finie de Ak. Pour s’en convaincre,
on peut penser au cas de la mesure de Lebesgue sur l’intervalle [0, 1], que l’on
peut construire à partir de la mesure extérieure associée à l’ensemble F des
sous-intervalles de [0, 1], et à la fonction µ=“longueur”. En effet, si l’on cherche
à recouvrir Q∩[0, 1] par une famille finie d’intervalles, la somme des longueurs
de ces intervalles est forcément supérieure ou égale à 1. En revanche, pour
tout ε on peut recouvrir Q∩ [0, 1] par une famille dénombrable d’intervalles
dont la somme des longueurs est plus petite que ε.

(iii) L’intuition est la suivante : la mesure extérieure cherche à mesurer un en-
semble A en l’approchant “par l’extérieur”, et en se ramenant à la famille de
référence F . Si la frontière de A n’est pas trop affreuse, on devrait retom-
ber sur la valeur attendue pour µ[A]. En outre, si B est un autre ensemble
quelconque, mesurable ou pas, la mesure µ∗[B] ne devrait pas changer si
l’on coupe B selon B ∩ A et B \ A. (B n’est pas forcément mesurable, mais
comme A l’est, découper B selon A, en plus des autres découpages envisagés,
ne perturbera pas l’évaluation de la mesure extérieure de B.)

IMAGE
(iv) Dans le cas où X est de masse totale finie (µ[X] < +∞), on pourrait se

contenter de définir les parties mesurables A (la tribu M) par l’égalité
µ∗[A] + µ∗[X \ A] = µ[X].
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Ainsi, intuitivement, une partie A deX est µ-mesurable si l’on parvient à l’ap-
procher extérieurement, au sens de la mesure µ, par des unions d’éléments de
F , l’approximation étant suffisamment précise pour que la mesure extérieure
ne comptabilise aucune masse appartenant à X \ A. Lebesgue utilisait déjà
cette construction.

Voici maintenant quelques remarques sur l’énoncé du Théorème II-82, qui est le
cœur même de la théorie de Lebesgue.

Remarques II-85. (i) Sans l’hypothèse de “σ-finitude” faite en (i) au Théo-
rème II-82, il n’y a pas forcément unicité du prolongement. Quand elle pro-
longe effectivement µ, la mesure extérieure est alors le plus grand prolonge-
ment possible [Gramain, p. 116].

(ii) Une partie F qui vérifie les hypothèses de la partie (iii) du Théorème II-
82, à savoir : F est stable par intersection binaire ; et le complémentaire de
tout élément de F est réunion d’un nombre fini d’éléments disjoints de F ;
est parfois appelé une semi-algèbre. Une algèbre étant un cas particulier de
semi-algèbre, la conclusion de ce théorème implique bien sûr celle du Théo-
rème II-78.

Démonstration du Théorème II-82. Si la preuve de la partie (ii) est sub-
tile, la partie (i) en revanche est une application simple du Lemme de classe mono-
tone.

Commençons par démontrer (i) sous l’hypothèse µ[X] < +∞. Le Lemme de
classe monotone (Théorème II-77) s’applique puisque X est par hypothèse limite
croissante d’éléments de F . Donc la σ-algèbre σ(F) n’est autre que la classe mono-
tone C engendrée par F . Soient µ et µ̃ deux prolongements possibles. On pose

B = {C ∈ C; µ[A] = µ̃[A]}.

Par hypothèse, B contient F . Comme µ et µ̃ sont compatibles avec les opérations
de limite croissante et de soustraction, au sens où
(10) A ⊂ B =⇒ µ[B \ A] = µ[B]− µ[A], etc.,

on voit que B est une classe monotone. Il s’ensuit que B = C, ce qui conclut la preuve
de (i). Notons que l’hypothèse de finitude a été utilisée implicitement quand nous
avons écrit (10), qui n’aurait guère de sens si µ[B] = µ[A] = +∞.

Passons maintenant à la démonstration de (i) dans le cas général. Soient µ et µ̃
deux prolongements possibles ; par le raisonnement précédent on sait que µ[Xk∩A] =
µ̃[Xk∩A] pour tout A mesurable. La famille (Xk) étant croissante, la famille (Xk∩A)
l’est aussi, et son union est X ∩A = A. Par σ-additivité, on peut passer à la limite
quand k → ∞ et obtenir µ[A] = µ̃[A], ce qui conclut la preuve de (i).

Attelons-nous maintenant à la démonstration de (ii). Comme dans l’énoncé, on
définit

M :=
{
A ⊂ X; ∀B ⊂ X, µ∗[B ∩ A] + µ∗[B \ A] = µ∗[B]

}
.

Montrons que M est une σ-algèbre, et µ∗ une mesure sur M ; cette σ-algèbre
est en outre complète. Cet énoncé est indépendant de l’hypothèse (8). On divise la
preuve en sept étapes.



MESURES 65

1. µ∗ est croissante. En effet, si A′ ⊂ A, l’infimum qui définit µ∗[A′] est pris sur
une classe de familles de parties plus vaste que celui qui définit µ∗[A].

2. µ∗ est dénombrablement sous-additive. En d’autres termes, si (Ak)k∈N est une
famille de parties de X, on a

µ∗[∪Ak] ≤
∑

µ∗[Ak].

Si µ∗[Ak] = +∞ pour un certain Ak, alors bien sûr il n’y a rien à démontrer. Dans
le cas contraire, par définition de la borne inférieure, pour tout k on peut trouver
une famille (Fjk)j∈N d’éléments de F tels que

Ak ⊂ ∪jFjk,
∑
j

µ[Fjk] ≤ µ∗[Ak] + ε2−k,

où ε > 0 est arbitrairement petit. En particulier,

(∪Ak) ⊂
⋃
jk

Fjk,
∑
jk

µ[Fjk] ≤
∑
k

µ∗[Ak] + ε.

Il s’ensuit que µ∗[∪Ak] ≤
∑
µ∗[Ak] + ε, et on obtient la conclusion souhaitée en

faisant tendre ε vers 0.
Notons en particulier que pour toutes parties A et B de X,

µ∗[B] ≤ µ∗[B ∩ A] + µ∗[B \ A].

Pour prouver l’appartenance d’une partie A à M, il suffit donc d’établir l’inégalité
inverse.

3. M est une algèbre. D’une part, il est clair que ∅ appartient à M ; et il est
évident que M est stable par passage au complémentaire. Il suffit donc de vérifier
que M est stable par intersection. Soient A1 et A2 deux éléments de M, et soit B
une partie quelconque de X. Notre but est de montrer que

µ∗[B ∩ (A1 ∩ A2)] + µ∗[B \ (A1 ∩ A2)] ≤ µ∗[B].

Pour cela, on note que B \ (A1 ∩ A2) = ((B ∩ A1) \ A2) ∪ (B \ A1), d’où, par
sous-additivité,

µ∗[B \ (A1 ∩ A2)] ≤ µ∗[((B ∩ A1) \ A2)] + µ∗[B \ A1].

En combinant cette inégalité avec l’appartenance de A1 et de A2 à M, on obtient
µ∗[B∩A1∩A2]+µ

∗[B \(A1∩A2)] ≤ µ∗[(B∩A1)∩A2]+µ
∗[(B∩A1)\A2]+µ

∗[B \A1]

= µ∗[B ∩ A1] + µ∗[B \ A1] = µ∗[B],

ce qui conclut l’argument.
4. µ∗ est additive sur M. En effet, considérons A et B deux éléments disjoints

de M ; puisque B ∈ M, on a
µ∗[A ∪ B] = µ∗[(A ∪ B) ∩ A] + µ∗[(A ∪ B) \ A] = µ∗[A] + µ∗[B],

ce qui prouve l’additivité de µ∗.
Par ailleurs, si A1 et A2 sont deux éléments disjoints de M, alors pour toute

partie B de X,
µ∗[B∩(A1∪A2)] = µ∗[(B∩(A1∪A2)∩A1]µ

∗[(B∩(A1∪A2))\A1] = µ∗[B∩A1]+µ
∗[B∩A2];
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par récurrence on obtient que si on se donne des éléments Ak de M, disjoints et en
nombre fini, alors, pour toute partie B de X on a

µ∗[B ∩ (∪Ak)] =
∑

µ∗[B ∩ Ak].

5. M est une σ-algèbre. Pour montrer cela, il nous suffit de vérifier que pour
toute famille dénombrable de parties Ak disjointes, éléments de M, et pour toute
partie B de X,

µ∗[B ∩ (∪Ak)] + µ∗[B \ (∪Ak)] ≤ µ∗[B].

Posons An = ∪n
k=1Ak, A∞ = ∪∞

k=1Ak. D’après l’identité établie à l’étape 4, et la
croissance de µ∗, on sait que pour tout n,

µ∗[B] = µ∗[B ∩ An] + µ∗[B \ An] ≥
n∑

k=1

µ∗[B ∩ Ak] + µ∗[B \ A∞].

En passant à la limite n→ ∞, et en utilisant la sous-additivité, on trouve

µ∗[B] ≥
∞∑
k=1

µ∗[B ∩ Ak] + µ∗[B \ A∞]

≥ µ∗[B ∩ A∞] + µ∗[B \ A∞] ≥ µ∗[B].

Les trois membres de l’inégalité sont donc égaux, ce qui prouve que A∞ ∈ M. En
particulier,

µ∗[B ∩ A∞] + µ∗[B \ A∞] = µ∗[B].

6. µ∗ est σ-additive sur M. Pour s’en convaincre, il suffit de poser B = X dans
l’égalité précédente.

7. (X,M, µ∗) est un espace complet. Soit A ∈ M avec µ∗[A] = 0 ; en particulier,
pour tout B ⊂ X on a µ∗[B \ A] = µ∗[B]. Soient A′ ⊂ A et B ⊂ X, alors µ∗[A′ ∩
B] ≤ µ∗[A] = 0, et µ∗[B] ≥ µ∗[B \ A′] ≥ µ∗[B \ A] = µ∗[B]. On conclut que
µ∗[B \ A′] = µ∗[B], et µ∗[A′] = 0, donc A′ est µ-mesurable.

Récapitulons : nous avons défini une σ-algèbre M et une mesure µ∗ sur M.
Pour conclure la preuve de (ii), il nous suffit de prouver que M contient F (ce
qui impliquera que σ(F) ⊂ M), et que µ∗ coïncide avec µ sur F . C’est ici que
l’hypothèse (8) va intervenir.

Posons B = ∅ dans (8), on trouve µ∗[A] = µ[A] pour tout A ∈ F , ce qui montre
que la restriction de µ∗ à F est bien µ.

Soient maintenant A ∈ F , et B ⊂ X. Soit (Ak) une famille d’éléments de F
recouvrant B ; la famille (Ak ∩A) recouvre alors B ∩A, et tous ses éléments appar-
tiennent à F grâce à la propriété de stabilité par intersection finie. En appliquant
successivement la définition de µ∗, sa sous-additivité et l’hypothèse (8), on trouve

µ∗[B ∩ A] + µ∗[B \ A] ≤
∑
k

µ[Ak ∩ A] + µ∗[B \ A]

≤
∑
k

(
µ[Ak ∩ A] + µ∗[Ak \ A]

)
=
∑
k

µ[Ak].
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En prenant la borne inférieure sur tous les recouvrements (Ak) admissibles, on par-
vient à

µ∗[B ∩ A] + µ∗[B \ A] ≤ µ∗[B];

l’inégalité réciproque est toujours vérifiée, il y a donc égalité, ce qui signifie que
A ∈ M. La preuve est complète.

Passons enfin à la partie (iii) du Théorème II-82. Si le critère (8) est vérifié,
alors µ se prolonge en une mesure σ-additive µ∗, et en particulier elle est σ-additive
sur F ; c’est bien sûr la réciproque qui est délicate. On va donc supposer que µ est
σ-additive sur F et établir (8). On procède en trois étapes.

1. µ est croissante sur F . Soient A et B deux éléments de F avec A ⊂ B. Par
hypothèse on peut écrire X \A = ∪Cj, où les Cj sont des éléments de F , disjoints ;
alors

B = A ∪ (B \ A) = A ∪
⋃
j

(A ∩ Cj),

où le membre de droite est une union d’éléments disjoints de F ; par additivité de µ
on a

µ[B] = µ[A] +
∑
j

µ[A ∩ Cj] ≥ µ[A],

ce qui prouve que µ est bien croissante.
2. µ coïncide avec µ∗ sur F . D’après la définition de µ∗, on a toujours µ∗[A] ≤

µ[A] pour tout A ∈ F . D’autre part, soit A ∈ F et soit (An)n∈N un recouvrement
arbitraire de A par des éléments de F , c’est-à-dire A ⊂ ∪An. On pose
A′

1 = A1, A′
2 = A2 \A1, A′

3 = A3 \ (A1 ∪A2), A′
4 = A4 \ (A1 ∪A2 ∪A3), etc.

Vérifions que chacun des A′
j peut s’écrire comme une union finie de parties

disjointes appartenant à F . En effet, par hypothèse, pour chaque j on peut
trouver des parties disjointes Bj,ij , 1 ≤ ij ≤ Nj, appartenant à F , telles que

A′
j = Aj ∩ (X \ A1) ∩ (X \ A2) ∩ . . . ∩ (X \ Aj−1)

= Aj ∩ (

N1⋃
i1=1

B1,i1) ∩ (

N2⋃
i2=1

B2,i2) ∩ . . . ∩ (

Nj−1⋃
ij−1=1

Bj−1,ij−1
)

=
⋃

i1,...,ij−1

Aj ∩ B1,i1 ∩ . . . ∩Bj−1,ij−1
.

Pour chaque j, les Bj,ij sont disjoints ; cela entraîne que pour deux choix différents
du multi-indice (i1, . . . , ij), les parties A∩Aj ∩B1,i1 ∩ . . .∩Bj−1,ij−1

correspondantes
sont disjointes. Pour chaque j donné, la réunion de toutes ces parties constitue A′

j, et
par construction les A′

j sont deux à deux disjoints. On conclut que toutes les parties
Aj ∩ B1,i1 ∩ . . . ∩Bj−1,ij−1

,

que l’on renumérote Cjk (1 ≤ k ≤ Mj) sont disjointes. Par construction, leur union
est égale à ∪An ; et grâce à la stabilité de F par intersection finie, toutes ces parties
sont des éléments de F . En outre, pour tout j on a

Aj =
⋃

1≤ℓ≤j, 1≤k≤Mℓ

Aj ∩ Cℓk;
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d’où, par σ-additivité de µ sur F ,

µ[Aj] =
∑

1≤ℓ≤j, 1≤k≤Mℓ

µ[Aj ∩ Cℓk],

et en particulier (en ne conservant que les termes en ℓ = j) on a∑
1≤k≤Mj

µ[Cjk] ≤ µ[Aj].

En sommant sur tous les indices j, on obtient∑
jk

µ[Cjk] ≤
∑
j

µ[Aj],

puis, comme µ est croissante,∑
jk

µ[A ∩ Cjk] ≤
∑
j

µ[Aj].

Les parties A∩Cjk sont deux à deux disjointes, appartiennent à F , et leur union est
A ∩ (∪An) = A. Par σ-additivité, le membre de gauche de l’égalité précédente est
donc µ[A]. En conclusion, on a montré que pour tout recouvrement arbitraire de A
par une famille (Aj) d’éléments de F , on avait

µ[A] ≤
∑
j∈N

µ[Aj].

Par définition de µ∗, on a donc µ[A] ≤ µ∗[A], ce qui achève de prouver que µ et µ∗

coïncident sur F .
3. L’égalité (8) est satisfaite. Puisque µ∗ est sous-additive, un corollaire de l’étape

précédente est
µ[A] ≤ µ[A ∩ B] + µ∗[A \B],

pour toutes parties A et B dans F . Pour prouver la validité de (8), il suffit d’établir
l’inégalité inverse. Pour cela, on remarque que A\B = A∩ (X \B) est l’intersection
de A avec une union finie disjointe d’éléments de F ; et peut donc s’écrire comme
une union finie disjointe d’éléments Dk de F . Alors

µ[A ∩B] + µ∗[∪Dk] ≤ µ[A ∩ B] +
∑
k

µ∗[Dk] = µ[A ∩ B] +
∑
k

µ[Dk].

Mais A∩B et les Dk sont des parties disjointes dont la réunion est A ; toujours par
additivité de µ, la dernière somme est donc égale à µ[A]. On conclut que

µ[A ∩ B] + µ∗[A \B] ≤ µ[A],

ce qui conclut la preuve de (8) et du Théorème II-82. □

Exercice II-86. Adapter, en la simplifiant, la preuve du Théorème II-82 pour
démontrer directement le cas particulier du Théorème II-78.

Je vais présenter dès à présent deux applications importantes du Théorème de
prolongement de Carathéodory. Dans l’immédiat, je n’en fournirai donnera que des
preuves partielles ; les preuves complètes viendront plus tard dans le cours.
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II-6.3. Produits infinis. Le théorème suivant permet de construire des me-
sures sur des produits infinis :

Théorème II-87 (produit infini de probabilités). Soit (Xk, µk)k∈N une famille
dénombrable d’espaces de probabilités. Pour tout m et toute famille A1, . . . , Am

de parties mesurables de X1, . . . , Xm respectivement, on pose

C(A1, . . . , Am) = A1 × . . .× Am ×
∞∏

k=m+1

Xk.

On définit alors

µ∞[C(A1, . . . , Am)] =
m∏
k=1

µk[Ak].

Cette fonction µ∞ se prolonge en une unique mesure de probabilité sur le produit
infini

∏
Ak, muni de la tribu engendrée par les cylindres C(A1, . . . , Am), m ∈ N.

Remarque II-88. Ce théorème peut se généraliser de diverses manières, mais la
conclusion est en général fausse si l’on n’impose pas de restriction sur les quantités
µk[Xk].

Dans le cas où les Xk sont des ensembles finis (au sens de : ensembles de cardinal
fini, et pas : ensembles de mesure finie), la démonstration du Théorème II-87 est très
simple et je vais la présenter tout de suite. Le cas général [Dudley, p. 257-259] est
plus subtil, et nécessitera d’être plus aguerri : Cf. Théorème IV-104 au Chapitre IV.

Démonstration du Théorème II-87 pour des espaces de cardinal fini.
Sans perte de généralité, on suppose que

Xk = {0, . . . , Nk}; µk =

Nk∑
ℓ=1

αk
ℓ δℓ;

Nk∑
ℓ=1

αk
ℓ = 1,

et chaque Xk est muni de la tribu triviale P(Xk). Les cylindres sont de la forme
C = A1 ×A2 × . . .×Ak ×Xk+1 ×Xk+2 × . . . ; on définit alors µ∞[C] =

∏k
j=1 µk[Ak].

Il est facile de vérifier que les cylindres forment une algèbre, et que la fonction µ∞

est additive sur cette algèbre. En outre, µ∞[X] = 1. Pour appliquer le Théorème II-
78 et conclure à l’unicité d’un prolongement σ-additif de µ∞, il suffit de vérifier la
σ-additivité de µ∞ sur la famille des cylindres. Soit donc (Cn)n∈N une famille de
cylindres disjoints, dont l’union est un cylindre C =

∏
Ak. Par le Lemme II-89 ci-

dessous, il n’y a qu’un nombre fini de Cn non vides ; l’identité µ∞[∪Cn] =
∑
µ∞[Cn]

est donc conséquence de l’additivité de µ∞. □

Lemme II-89 (absence de recouvrement dénombrable par des cylindres). Soient
(Xk)k∈N une famille d’ensembles finis, et (Cn)n∈N une famille de cylindres disjoints
de
∏
Xk, telle que

⋃
Cn =

∏
Xk. Alors il n’y a qu’un nombre fini de Cn non vides.

Je vais fournir deux démonstrations de ce lemme. La première est simple et élé-
mentaire, le principe rappelle un peu celui qui permettra dans la suite de démontrer
le Théorème II-87 dans un cadre général. La deuxième, plus compacte, illustrera
l’intérêt d’un raisonnement topologique, et préparera la voie à la démonstration du
Théorème II-90 ci-dessous.
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Première démonstration. Chacun des cylindres Cn est union disjointe de
“cylindres élémentaires”, de la forme (a1, a2, . . . , aK)×

∏
k≥K+1Xk ; on dit qu’un tel

cylindre est d’ordre K et a pour base {a1, . . . , aK}. Il suffit de démontrer le lemme
dans le cas où tous les Ck sont des cylindres élémentaires. On retire les cylindres
non vides ; en particulier les Ck seront supposés tous distincts. On va supposer qu’il
y a une infinité de Ck, et arriver à une contradiction.

Considérons l’ensemble des cylindres d’ordre 1. Si chaque élément de X1 est
le premier élément d’un cylindre d’ordre 1, alors il y a exactement |X1| cylindres
d’ordre 1, et leur réunion finie couvre X, il n’y a donc qu’un nombre fini de Ck, ce
qui est impossible. Il existe donc un sous-ensemble non vide Y1 = {u1, . . . , uℓ} de
X1, tel que le cylindre de base Y1 n’intersecte aucun des Ck d’ordre 1, et doit donc
être recouvert par les cylindres d’ordre 2 ou plus. Le premier élément de chacun
des cylindres d’ordre 2 ou plus est l’un des uj ; comme les uj sont en nombre fini
et qu’il y a une infinité de cylindres, l’un au moins des uj apparaît une infinité de
fois en premier élément de l’un des cylindres d’ordre 2 ou plus. Appelons-le y1 : le
cylindre de base y1 est donc recouvert par une infinité de cylindres, dont la première
composante est toujours y1.

On montre alors, par un raisonnement similaire, qu’il existe un élément y2 de
X2, qui n’est le deuxième élément d’aucun cylindre d’ordre 2, tel que le cylindre de
base {y1, y2} est recouvert par une infinité de cylindres d’ordre 3 ou plus, dont les
deux premières composantes sont {y1, y2}.

Par récurrence, on construit ainsi une suite (yk)k∈N dans
∏
Xk, telle que pour

tout j ∈ N, {y1, y2, . . . , yj} n’est le premier élément d’aucun cylindre d’ordre j
parmi les Cn. En particulier, cette suite n’appartient à aucun des cylindres Cn, ce
qui fournit une contradiction. □

Deuxième démonstration. On munit chaque Xk de la topologie discrète,
toute partie de Xk est alors ouverte ; par définition, la topologie produit est alors
engendrée par les cylindres, qui sont en particulier des ouverts. D’autre part, C est
un produit (infini) de compacts, donc compact par le théorème de Tychonov (dans
la version simple du Théorème II-37 où l’on considère un produit dénombrable).
De la famille (Ck) on peut donc extraire un sous-recouvrement fini ; comme ils sont
disjoints, seul un nombre fini d’entre eux est non vide. □

II-6.4. Théorème de prolongement de Kolmogorov. Ce théorème est fon-
damental en théorie des probabilités, et tout particulièrement des processus stochas-
tiques. Il s’agit essentiellement d’une généralisation du précédent.

Théorème II-90 (théorème de prolongement de Kolmogorov). Soit T un en-
semble arbitraire, et (Xt)t∈T une famille d’espaces polonais ; on définit

X :=
∏
t∈T

Xt.

Pour toute partie finie F = {t1, . . . , tK} ⊂ T , on définit XF := Xt1 × . . .×XtK ; et
pour tout borélien AF de XF , on définit le cylindre

CF (AF ) := {x ∈ X; (xt1 , . . . , xtK ) ∈ AF}.

On munit X de la tribu engendrée par tous les cylindres C(AF ), pour toutes les
parties finies F de T . On se donne une fonction µ, qui pour toute partie finie F
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de T définit une mesure de probabilité sur la tribu des cylindres C(AF ). Alors µ se
prolonge en une unique mesure de probabilité sur

∏
Xt.

Remarques II-91. (i) Bien noter la condition de compatibilité implicite
dans ce théorème : si F ⊂ F ′, tout cylindre C(AF ) peut aussi être vu comme
un C(AF ′) : il suffit de prendre At′ = Xt′ pour tous les t′ ∈ T ′\T . Les nombres
µ[C(AF )] et µ[C(AF ′)] doivent alors bien sûr coïncider ! On parle de “système
de marginales” compatible.

(ii) En théorie des processus stochastiques, l’espace T est d’habitude un morceau
de R+, interprété comme l’espace des temps. Le cas particulier où la famille T
n’est autre que N (temps discret) relève également du théorème dit de Ionescu
Tulcea, souvent utilisé en théorie des probabilités. Cependant, le théorème de
Kolmogorov ne nécessite aucune hypothèse de régularité sur T . Pour certaines
généralisations, on pourra consulter par exemple [Dudley, p. 441].

(iii) Ce théorème sera démontré au Chapitre IV (Théorème IV-119) après un
passage en revue des propriétés principales de l’intégration produit.

(iv) Dans la pratique, les modalités de la construction de la probabilité µ sont
rarement utiles ; c’est seulement le résultat d’existence que l’on utilise.

II-6.5. Critère de Carathéodory. Comme nous l’avons vu, le théorème de
prolongement de Carathéodory construit une tribu M sur laquelle la mesure ex-
térieure µ∗ est automatiquement σ-additive. Le critère de Carathéodory est une
condition d’apparence relativement simple qui entraîne que M contient la tribu
borélienne. C’est le critère que l’on utilise traditionnellement pour construire les
mesures de Hausdorff dans Rn, que nous étudierons plus tard.

Théorème II-92 (Critère de Carathéodory). Soit (X, d) un espace métrique, et
soit µ∗ une mesure extérieure sur X, au sens de la Remarque II-84 (i) ; on définit
la tribu M comme dans l’énoncé du Théorème II-82. Si, pour toutes parties A et B
de X telles que

d(A,B) := inf
{
d(x, y); x ∈ A, y ∈ B

}
> 0,

on a
µ∗[A ∪B] = µ∗[A] + µ∗[B],

alors la tribu M contient la tribu borélienne de X.

Démonstration. Il suffit de démontrer que la tribu M contient tous les fermés.
Soient donc A un ensemble fermé, et B un ensemble arbitraire, on veut prouver que

µ∗[B] = µ∗[B ∩ A] + µ∗[B \ A].
Grâce à la sous-additivité de µ∗, il suffit d’établir

µ∗[B] ≥ µ∗[B ∩ A] + µ∗[B \ A].
Sans perte de généralité, on suppose que µ∗[B] < +∞. Pour tout n ≥ 1, on définit

An := {x ∈ B; d(x,A) ≤ 1/n},
et on note que ∪An = A puisque A est fermé. Alors d(B \ An, B ∩ A) ≥ 1/n > 0,
d’où

µ∗[B \ An] + µ∗[B ∩ A] = µ∗[(B \ An) ∪ (B ∩ A)] ≤ µ[B].
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Il suffit donc de prouver que
µ∗[B \ An] −−−→

n→∞
µ∗[B \ A].

Soit alors An,n+1 := An \ An+1 ; en particulier B = B \ An ∪ (∪k≥nAk,k+1). Par
sous-additivité de µ∗,

µ∗[B \ An] ≤ µ∗[B \ A] ≤ µ∗[B \ An] +
∞∑
k=n

µ∗[Ak,k+1],

et la conclusion s’ensuivra si l’on peut démontrer∑
k≥1

µ∗[Ak,k+1] < +∞.

Comme d(Ai,i+1, Aj,j+1) > 0 dès que j ≥ i+ 2, on peut établir par récurrence
N∑
k=1

µ∗[A2k,2k+1] = µ∗[
N⋃
k=1

A2k,2k+1] ≤ µ∗[A] < +∞;

et, de même,
N∑
k=1

µ∗[A2k+1,2k+2] ≤ µ∗[A] < +∞.

On conclut facilement en faisant tendre N vers l’infini. □

II-7. Complétion de mesures
Le prolongement d’une mesure est une opération délicate mais inoffensive ; au

contraire, la complétion est une opération très simple mais risquée.

Théorème II-93 (complétion d’une mesure). Soit (X,A, µ) un espace mesuré,
et soit A la famille des parties E de X qui s’écrivent A ∪ N , où A ∈ A et N est
µ-négligeable, c’est à dire inclus dans une partie Z ∈ A, telle que µ[Z] = 0. Alors
A est une tribu, et µ admet un prolongement unique µ à A, tel que (X,A, µ) est un
espace mesuré complet.

Définition II-94 (ensembles µ-mesurables). On dit que la tribu A apparaissant
dans le Théorème II-93 est la tribu des ensembles (ou parties) µ-mesurables.

Remarques II-95. (i) De façon équivalente, les ensembles µ-mesurables sont
les parties E telles qu’il existe A et A′ dans A, telles que A ⊂ E ⊂ A′ et
µ[A′ \A] = 0. Ou encore, ce sont les parties E telles qu’il existe B dans A et
N négligeable, telles que E = B \N .

(ii) Cette notion dépend bien sûr de µ, mais aussi de A. Souvent, par défaut A
sera la tribu borélienne d’un espace topologique.

Preuve du Théorème II-93. Avec les notations de l’énoncé, il suffit de poser
µ[E] = µ[A], et de vérifier les axiomes de σ-additivité (exercice). La seule subtilité
consiste en fait à montrer que cette définition est licite, c’est à dire qu’elle ne dépend
pas du choix de A et N . Pour cela, on pourra remarquer que (avec des notations
évidentes) si E = A1 ∪ N1 = A2 ∪ N2, alors A1 \ A2 ⊂ E \ A2 ⊂ N2 ⊂ Z2 est de
mesure nulle, donc µ[A1] = µ[(A1 ∩ A2)] + µ[A1 \ A2] = µ[A1 ∩ A2] ≤ µ[A2] ; et par
symétrie, µ[A1] = µ[A2]. □
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Remarque II-96. La simplicité de l’énoncé et de sa preuve masque le fait que
les ensembles ainsi complétés peuvent être extrêmement compliqués. L’étude de
l’intégration sur des espaces produits montrera bien que l’opération de complétude
n’est pas inoffensive.

Le Théorème II-82 fournissait déjà un prolongement complet de la mesure µ ;
il n’est pas clair a priori que ce soit le même que celui qui est fourni par le Théo-
rème II-93 car une mesure admet en général plusieurs prolongements complets. Il y
a cependant unicité quand on impose certaines condition de régularité.

Théorème II-97 (unicité de la complétion régulière). Soit X un espace topo-
logique et µ une mesure de Borel sur X, définie sur la tribu borélienne A. On
suppose que X est σ-fini et que µ est régulière. Alors l’espace (X,A, µ) défini dans le
Théorème II-93 est l’unique prolongement complet de (X,A, µ) en un espace mesuré
complet et régulier.

Démonstration. Soit (X, Ã, µ̃) un prolongement complet régulier de (X,A, µ).
Comme X est σ-fini, tout élément A de Ã peut s’écrire comme union dénombrable
d’éléments Ak de Ã avec µ̃[Ak] < +∞. Par la Proposition II-57, pour chaque Ak il
existe des Boréliens Bk et Ck tels que µ̃[Bk] = µ̃[Ak] = µ̃[Ck], et Bk ⊂ Ak ⊂ Ck. En
particulier, Ak s’écrit comme l’union d’un Borélien et d’un ensemble inclus dans un
Borélien µ̃-négligeable, ce qui montre que Ã contient A. On conclut que les deux
tribus sont égales, et la fin de la démonstration en découle aisément. □

En conclusion : tant que l’on travaille avec des mesures régulières, il n’y a pas
de difficulté à définir la complétion.

II-8. Construction de la mesure de Lebesgue
Le théorème suivant est une application du théorème de prolongement de Cara-

théodory ; c’est aussi l’acte fondateur de la théorie de Lebesgue. On munira bien sûr
R de sa topologie habituelle.

Théorème II-98 (mesure de Lebesgue en dimension 1). Il existe une unique
mesure borélienne λ sur R telle que la mesure d’un intervalle [a, b] (a < b) soit égale
à sa longueur b− a. On l’appelle mesure de Lebesgue.

La complétion λ de λ, également appelée mesure de Lebesgue, est définie sur la
tribu des ensembles Lebesgue-mesurables, qui est constituée de toutes les parties
E de R telles qu’il existe des ensembles Boréliens A et B tels que

A ⊂ E ⊂ B; λ[B \ A] = 0.

La construction présentée ci-dessous était déjà celle qu’utilisait Lebesgue.
Démonstration du Théorème II-98. La famille des intervalles est stable

par intersection finie (l’intersection de deux intervalle est un intervalle), et R est
l’union des intervalles [−k, k] pour k ∈ N ; l’unicité de la mesure de Lebesgue est
donc une conséquence du Théorème II-82(i).

L’existence demandera plus de travail. Considérons la famille F de tous les inter-
valles de R. Un intervalle I ⊂ R étant donné, on définit λ[I] comme étant la longueur
|I| de I. L’intersection de deux intervalles est un intervalle, et le complémentaire
d’un intervalle est la réunion de deux intervalles ; nous sommes donc dans les condi-
tions d’application du Théorème de prolongement II-82 (iii). Pour prouver que λ se
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prolonge en une mesure sur la tribu engendrée par F , qui n’est autre que B(R), il
suffit de vérifier la σ-additivité de λ. C’est un exercice qui s’énonce ainsi : Étant
donnée une famille d’intervalles (Ik)k∈N disjoints, dont la réunion est un intervalle
I de R, prouver que

(11)
∑
k∈N

|Ik| = |I|.

Admettons provisoirement ce résultat ; on peut alors appliquer le Théorème II-82
(iii) pour construire la mesure de Lebesgue via le concept de mesure extérieure de
Carathéodory. Les propriétés de la complétion resultent alors des Théorèmes II-93
et II-97. □

Démonstration de (11). Si l’on sait prouver (11) dans le cas où I est un
intervalle borné, le cas général s’ensuivra : en effet, pour tout entier ℓ on peut poser
Iℓ = I ∩ [−ℓ, ℓ[, Iℓk = Ik ∩ [−ℓ, ℓ[ et il est très facile de vérifier que

|I| =
∑
ℓ

|Iℓ|, |Ik| =
∑
ℓ

|Iℓk|.

On suppose donc que I est borné. Si I n’est pas fermé, on peut toujours adjoindre à
I un ou deux points (qui sont des intervalles particuliers, de longueur nulle !) : cela
ne change ni |I|, ni

∑
|Ik|. Il nous suffit donc de prouver (11) dans le cas particulier

où I = [a, b]. Sans perte de généralité (le problème étant invariant par translation
et dilatation), on pourra même supposer I = [0, 1]. Il est facile de vérifier que pour
tout k,

|I1|+ |I2|+ . . .+ |Ik| ≤ 1,

en particulier ∑
k∈N

|Ik| ≤ 1.

C’est bien sûr l’inégalité inverse qui est (légèrement) plus subtile.
Si A ⊂ [0, 1] est réunion d’un nombre fini d’intervalles disjoints, on définira

|A| comme la somme des longueurs de ces intervalles ; il est intuitivement évident
(mais un tout petit peu fastidieux à vérifier) que cette définition est indépendante
du choix de la décomposition de A en intervalles disjoints (par exemple, si on écrit
[a, c] = [a, b[∪[b, c] on a c − a = (b − a) + (c − b)). On vérifie en outre que si
A = I1 ∪ . . . ∪ In, alors |A| ≤ |I1| + . . . + |In|, que les intervalles Ik soient disjoints
ou non.

Soit ε > 0, arbitrairement petit. Pour tout k, on définit un intervalle Jk, ouvert
dans [0, 1], contenant Ik, tel que |Jk\Ik| ≤ 2−kε (par exemple, si Ik = [a, b] on pourra
choisir Jk =]a− 2k+1ε, b+ 2k+1ε[∩ [0, 1]). Les intervalles ouverts Jk recouvrent [0, 1]
tout entier, puisque les Ik forment déjà un recouvrement de [0, 1]. Par compacité,
on peut en extraire un sous-recouvrement fini : il existe K ∈ N tel que [0, 1] ⊂
J1 ∪ J2 ∪ . . . ∪ JK . En particulier,

1 ≤
K∑
k=1

|Jk| ≤
K∑
k=1

(|Ik|+ 2−kε) ≤ (
∑
k

|Ik|) + ε.

En faisant tendre ε vers 0, on obtient bien 1 ≤
∑

k |Ik|, comme on le souhaitait. □
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II-9*. Recouvrement et remplissage
Cette section pourra être omise en première lecture ; outre qu’elle répond à cer-

taines questions naturelles sur les liens entre ensembles mesurables et boules, elle
s’avèrera d’un grand intérêt dans certains chapitres ultérieurs.

Pour étudier une mesure “localement” au voisinage d’un point, on considère la
mesure de petites boules centrées en ce point ; c’est le cœur de la procédure de
“désintégration” étudiée dans le Chapitre ??. Dans cette optique, il est naturel de
s’intéresser à des recouvrements d’ensembles par des petites boules. Dans le cadre
de la théorie de la mesure, on ne sait gérer les mesures de familles d’ensembles que
lorsqu’ils sont disjoints ; le problème d’identifier des “sous-recouvrements disjoints”
est donc assez naturel. Cependant, si un ensemble A est recouvert par des boules,
on ne peut en général en tirer un sous-recouvrement disjoint ; au mieux on peut
espérer extraire une sous-famille disjointe, qui recouvre “presque” l’ensemble A, au
sens où elle continue à en recouvrir une proportion non négligeable. Ce problème est
l’objet de divers lemmes de recouvrement. On va ici considérer le plus simple
d’entre eux, le Lemme de Vitali. Je vais l’énoncer avec des boules fermées, mais
on pourrait aussi bien le faire avec des boules ouvertes.

Dans l’énoncé suivant, si B = B[x, r] est une boule fermée de centre x et de
rayon r et λ est un nombre positif, on note λB la boule de centre x et de rayon λr.
(En général cette convention n’a de sens que si l’on considère B comme un couple
(x, r), de sorte que la valeur de r est uniquement déterminée par la boule choisie ;
dans un espace métrique général il est très possible que B[x, r] = B[x, r′] sans pour
autant que r soit égal à r′ !)

Théorème II-99 (Lemme de recouvrement de Vitali). (i) Soient X un espace
métrique séparable, et B une famille de boules fermées dans X, de rayon non nul et
majoré. Alors de B on peut extraire une famille dénombrable B̃ de boules disjointes
telles que ⋃

B∈B

B ⊂
⋃
B∈B̃

4B.

(ii) En outre si µ est une mesure borélienne C-doublante sur X, on a

µ
[⋃
B∈B̃

B
]
≥ C−2 µ

[⋃
B∈B

B
]
.

Avant d’aborder la preuve du Théorème II-99 proprement dite, commençons par
deux lemmes très simples :

Lemme II-100. Soient B et B′ deux boules fermées d’un espace métrique, de
rayons respectifs r et r′, telles que

B′ ∩B 6= ∅; r′ ≥ 2

3
r.

Alors, avec les notations du Théorème II-99, on a B ⊂ 4B′.

Lemme II-101. Si X est un espace métrique séparable et B est une famille
quelconque de boules de rayon non nul, alors on peut extraire de B une sous-famille
disjointe maximale M, ce qui veut dire que toute sous-famille de B strictement plus
grande que M ne peut être disjointe.
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Remarque II-102. Cet énoncé de théorie des ensembles relève de l’axiome du
choix (ou de manière équivalente, du principe de maximalité de Hausdorff) ; mais
comme on va le voir, l’hypothèse de séparabilité permet d’éviter le recours à l’axiome
du choix général, pour ne garder que l’axiome du choix dépendant – même si la
famille B est non dénombrable.

Preuve du Lemme II-100. On écrit B = Br](x), B′ = Br′](x
′). Par hypothèse

il existe z ∈ B ∩ B′. Alors, pour tout y ∈ B on a d(x′, y) ≤ d(x′, z) + d(z, y) ≤
r′ + 2r ≤ r′ + 3r′ = 4r′. (Faire un dessin !) □

Preuve du Lemme II-101. Soit (zn)n∈N une suite dense dansX. On va construire
par récurrence la famille M, comme suit.

Si z1 appartient à l’un des éléments de B, on choisit dans B une boule B1 conte-
nant z1 et on pose B̃1 = {B1}. Dans le cas contraire, on pose B̃1 = ∅.

Si z2 appartient à l’un des éléments de B qui n’intersectent aucun él’ement de
B̃1, on choisit dans B une boule B2 contenant z2 et n’intersectant aucun élément de
B̃1 ; on pose alors B̃2 = B̃1 ∪ {B2}. Dans le cas contraire, on pose B̃2 = B̃1.

Et ainsi de suite : si zk appartient à l’un des éléments de B qui n’intersectent
aucun élément de B̃k−1, on pose B̃k = B̃k−1 ∪ {Bk}, où Bk est une boule de B
contenant zk et n’intersectant aucun élément de B̃k−1 ; dans le cas contraire, on pose
B̃k = B̃k−1.

Soit M = {Bi1 , Bi2 , . . . , Bij , . . .} l’union de toutes les familles Bk ainsi construites.
Il est clair que M est dénombrable. Si Bk et Bℓ appartiennent à M, supposons par
exemple ℓ > k, alors Bℓ a été choisie parmi les boules n’intersectant pas les éléments
de B̃ℓ−1, en particulier n’intersectant pas Bk ; donc la famille M est disjointe.

Il reste à montrer que cette famille est maximale. Soit donc B un élément de B
n’appartenant pas à M, montrons que M∪ {B} n’est pas disjointe. Puisque B est
de rayon strictement positif, il existe un zm ∈ B. À l’étape m de la construction,

- soit une boule Bm contenant zm a été choisie et incluse dans la famille M ; mais
alors Bm ∩B 6= ∅ ;

- soit on n’a pas fait de tel choix, ce qui veut dire que toutes les boules de B
contenant zm (en particulier la boule B) intersectaient déjà un élément de l’ensemble
B̃m−1.

Dans les deux cas, B rencontre un élément de M, ce qui achève la démonstration
de la maximalité. □

Démonstration du Théorème II-99. Commençons par traiter le cas simple
où il n’y a qu’un nombre fini de boules. On peut alors classer les boules par ordre
décroissant du rayon : r(B1) ≥ r(B2) ≥ r(B3) ≥ . . .. On construit alors l’ensemble B̃
selon la même procédure que précédemment : au début on pose B̃1 = {B1}, puis si
B2 n’intersecte pas B1 on pose B̃2 = {B1, B2}, sinon on pose B̃2 = {B1} ; et ainsi de
suite. À l’étape k, si Bk n’intersecte aucun élément de B̃k−1 on pose B̃k = B̃k−1∪{Bk},
et sinon on pose B̃k = B̃k−1.

On définit alors B̃ = ∪B̃k. Soit B = Bk un élément quelconque de B. S’il n’est
pas dans B̃, c’est qu’il intersecte une boule Bj de B̃k−1 avec bien sûr j < k, donc
r(Bj) ≥ r(Bk). Posons B′ = Bj, on a alors B ∩B′ 6= ∅ et (avec les mêmes notations
que dans le Lemme II-100) r′ ≥ r ; d’où B ⊂ 3B′ par un argument similaire à celui
du Lemme II-100.
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Dans le cas général cependant, il est impossible d’ordonner les boules par ordre
de rayon décroissant (l’énoncé autorise même une infinité non dénombrable de
boules...). Il faut donc modifier légèrement la stratégie. Si B = B[x, r] est une
boule de rayon r, on note r = r(B). Par hypothèse il existe R > 0 tel que toutes les
quantités r(B) soient majorées par R. Pour tout j ∈ N, soit

Bj :=

{
B ∈ B;

(
2

3

)j

R ≤ 2r(B) ≤
(
2

3

)j−1

R

}
.

On choisit grâce au Lemme II-101 une famille dénombrable disjointe maximale
M̃1 dans B1.

On choisit ensuite une famille dénombrable disjointe maximale M̃2 dans

Z2 =
{
B ∈ B2; ∀B′ ∈ M1, B′ ∩B = ∅

}
.

On continue de même : au rang k, on choisit une famille dénombrable disjointe
maximale M̃k dans

Zk =
{
B ∈ Bk; ∀B′ ∈

⋃
j≤k−1

B̃j, B′ ∩ B = ∅
}
.

On pose enfin B̃ = ∪Mk. Il est facile de montrer que cette famille est disjointe ;
il reste à vérifier que toute boule de B est incluse dans 4B′ pour une certaine boule
B′ ∈ B̃.

Soit donc B ∈ B. Si B ∈ B̃, le résultat est évident. Sinon, introduisons k tel que
B ∈ Bk. Puisque B̃k est une famille disjointe maximale dans l’ensemble{

B ∈ Bk; ∀B′ ∈
⋃

j≤k−1

B̃j, B′ ∩ B = ∅
}
,

il n’y a que deux possibilités :
- soit B n’appartient pas à Zk, ce qui veut dire que B intersecte un élément de l’un
des M̃j pour j ≤ k − 1 ;
- soit B appartient à Zk, et alors la famille obtenue en adjoignant B à Mk n’est pas
disjointe, ce qui veut dire que B intersecte un élément de Mk.

Dans tous les cas, B intersecte un élément B′ de
⋃

j≤k M̃j ; en particulier r(B′) ≥
(2/3)r(B). On applique alors le Lemme II-100 pour conclure que B ⊂ 4B′. Ceci
conclut la preuve de (i).

Passons maintenant à (ii) : Pour cela on écrit

µ
[⋃
B∈B

B
]
≤ µ

[⋃
B∈B̃

4B
]
≤
∑
B∈B̃

µ[4B] ≤ C2
∑
B∈B̃

µ[B] = C2µ
[⋃
B∈B̃

B
]
,

où l’avant-dernière inégalité découle de la propriété de C-doublement, et la dernière
provient de ce que la famille B est disjointe. □

Voici maintenant un corollaire frappant et utile du Lemme de Vitali ; il énonce
que l’on peut remplir, au sens de la théorie de la mesure, un ouvert par de petites
boules (fermées) disjointes :
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Corollaire II-103. Soient X un espace métrique séparable, µ une mesure boré-
lienne sur X, doublante et finie sur les boules fermées de X. Alors, pour tout ouvert
O de X et pour tout δ > 0 on peut trouver une famille dénombrable G de boules
fermées disjointes B[x, r] ⊂ O, de rayon r ≤ δ, telles que

µ
[
O \

⋃
B∈G

B
]
= 0.

Exemple II-104. On verra plus tard que la mesure naturelle dans Rn, la mesure
de Lebesgue, est 2n-doublante. Il s’ensuivra que tout ouvert de Rn est, à un ensemble
de mesure de Lebesgue nulle près, union dénombrable de boules euclidiennes fermées
disjointes.

Preuve du Corollaire II-103. 1. Traitons d’abord le cas où O est inclus
dans une boule fermée, en particulier µ[O] est fini et µ est C-doublante sur O.
Soit B l’ensemble de toutes les boules fermées de rayon au plus δ, incluses dans O.
Puisque O est ouvert, la réunion de tous les éléments de B est exactement O. Par le
Théorème II-99, il existe une famille dénombrable disjointe B̃ ⊂ B telle que

µ
[⋃
B∈B̃

B
]
≥ C−2µ[O];

d’où
µ
[
O \

⋃
B∈B̃

B
]
≤ (1− C−2)µ[O].

Par σ-additivité, il existe une sous-famille finie B′ ⊂ B̃, telle que

µ
[
O \

⋃
B∈B′

B
]
≤
(
1− C−2

2

)
µ[O].

On pose O1 := O \
⋃

B∈B′ B : comme intersection finie d’ouverts, c’est un ouvert, il
est inclus dans O et de mesure au plus λµ[O] avec λ = (1− C−2/2) < 1.

On itère alors la construction : par récurrence on construit une suite décrois-
sante d’ouverts Ok, tel que Ok−1 \ Ok est une union finie de boules fermées, et
µ[Ok] ≤ λµ[Ok−1]. Par σ-additivité, l’intersection des Ok est de mesure nulle, et son
complémentaire dans O est une union dénombrable de boules fermées.

2. Considérons maintenant le cas général où O n’est pas inclus dans une boule.
Soit x0 un élément quelconque deX, pour tout r > 0 on pose Sr = {x ∈ X; d(x0, x) =
r}. (C’est la sphère de centre x0 et de rayon r.) Puisque X est l’union des boules
B(x0, k), k ∈ N, elle est σ-finie ; en particulier il y a au plus une infinité dénom-
brable de r > 0 tels que µ[Sr] > 0. Fixons une fois pour toute une suite rk → ∞
(k ∈ N) telle que µ[Srk ] = 0. On pose alors C0 = B(x0, r1), et pour k ∈ N,
Ck = B(x0, rk+1) \ B[x0, rk]. (Les Ck sont donc des coronnes ouvertes disjointes.)
Le complémentaire des Ck dans X est de mesure nulle, en particulier O est, à un
ensemble de mesure nulle près, l’union disjointe des ouverts Ok = O ∩ Ck. Par la
première partie de la preuve, chacun des Ok peut s’écrire, à un ensemble de mesure
nulle près, comme une union disjointe de boules fermées Bk,j (j ∈ N). Ceci conclut
la preuve du théorème. □
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Remarque II-105. Le Lemme de Vitali est le lemme de recouvrement le plus
simple et le plus connu ; il en existe cependant bien d’autres, utilisés dans des situa-
tions variées. En voici deux parmi les plus intéressants :

• le Lemme de recouvrement de Besicovitch [Evans-Gariepy pp. 30–35] :
Soit B = {B(xα, rα)α∈A} une collection de boules de rayon borné dans l’espace
Euclidien Rn, et soit C l’ensemble de leurs centres. Alors il existe une constante
K, ne dépendant que de n, et des sous-familles disjointes dénombrables B1,…BK

de B, qui recouvrent l’ensemble C. En particulier, de B on peut extraire un sous-
recouvrement B̃ tel que chaque x ∈ C appartient à au moins une, et au plus K boules
de B.

Ce lemme, qui exploite la structure particulière de l’espace Rn, permet d’étudier
des mesures non nécessairement doublantes : par exemple, on peut l’utiliser pour
montrer que le Corollaire II-103 reste vrai si O est un ouvert de Rn et µ une mesure
arbitraire.

• le Lemme de recouvrement de Whitney, très utile en analyse harmonique,
permet de remplir un ouvert O de Rn par une famille dénombrable de cubes Ck,
dont les côtés sont parallèles aux axes, dont les intérieurs sont disjoints, et dont les
diamètres sont à peu près proportionnels à leur distance au bord de O :

diam (Ck) ≤ d(Ck,Rn \O) ≤ 4 diam (Ck).

Pour en savoir plus, on pourra consulter le passionnant ouvrage d’E.M. Stein,
Singular Integrals and Differentiability Properties of Functions (Princeton University
Press, New Jersey, 1970), pp. 16–18 et Chapitre VI.





CHAPITRE III

Intégration selon Lebesgue et selon Riesz

Ce chapitre définit l’intégrale de Lebesgue pour une large classe de fonctions,
dites sommables au sens de Lebesgue ; ce cadre abstrait inclut les fonctions continues
à support compact comme cas particulier. Le point de départ sera la notion de
fonction mesurable (section III-1) ; de là découlera la définition de l’intégrale de
Lebesgue (section III-2), et l’on vérifiera qu’elle constitue une forme linéaire (section
III-3).

Une autre route consiste à partir des fonctions continues et à définir l’intégrale
comme une forme linéaire continue sur cet espace. Le théorème de Riesz (section
III-4) assure que ces deux points de vue sont équivalents, modulo quelques subtilités,
sous certaines hypothèses topologiques. La plus importante de ces hypothèses est la
condition de compacité locale, qui est vraie en dimension finie (dans Rn ou une
autre variété différentielle complète de dimension finie), mais en général fausse en
dimension infinie, comme dans l’espace de Wiener.

Ce chapitre se conclut par quelques mots sur l’intégration à valeurs vectorielles
(section III-5), qui sera abordée plus en détail dans un chapitre ultérieur.

III-1. Fonctions mesurables
On cherche à définir une large classe de fonctions susceptibles d’être intégrées,

c’est à dire évaluées par l’action d’une mesure : les fonctions mesurables. Cette
classe de fonctions devrait comprendre à tout le moins les fonctions indicatrices
d’ensembles mesurables. Dans un cadre topologique, elle devrait aussi comprendre
les fonctions continues.

En topologie, où les parties ouvertes jouent un rôle privilégié, on dit qu’une
fonction est continue si l’image réciproque de tout ouvert est un ouvert. En théorie
de la mesure, on adopte une démarche similaire pour définir les fonctions mesurables.

III-1.1. Définition.

Définition III-1 (fonctions mesurables). Soient (X.A) et (Y,B) deux espaces
mesurables. Une fonction f : X → Y est dite mesurable si l’image réciproque de
n’importe quelle partie. mesurable de Y est une partie mesurable de X :

∀B ∈ B, f−1(B) ∈ A.

Exemple III-2. L’exemple le plus simple est la fonction indicatrice f = 1A d’un
ensemble mesurable A : c’est la fonction qui vaut 1 sur A et 0 sur le complémentaire.
Cela est vrai quelle que soit la tribu dont on munit l’espace d’arrivée R. En effet,
l’image réciproque d’un ensemble quelconque par f est l’un des quatre ensembles
∅, X,A,X \ A, qui sont tous bien sûr mesurables.

Nous verrons dans la suite des critères pratiques de mesurabilité, permettant de
construire de très nombreuses fonctions mesurables. En fait, si l’on travaille avec la
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tribu borélienne, la mesurabilité est la règle plutôt que l’exception (Remarque III-
26), et la mesurabilité est beaucoup, beaucoup plus générale que la continuité.

Remarques III-3. (i) Soient (X,A) un espace mesurable, Y un ensemble
quelconque, et f : X → Y . Il est toujours possible de munir Y d’une σ-
algèbre pour laquelle f soit une fonction mesurable. Il suffit pour cela de
définir une partie mesurable de Y comme une partie dont l’image réciproque
est mesurable. Cela définit bien une tribu sur Y (exercice). Cette tribu est
la plus grande qui rende f mesurable : toute tribu plus petite a la même
propriété, et aucune tribu strictement plus grande ne l’a. On l’appelle tribu
image de A par f et on la note f#A (ou f∗A, ou fA).

(ii) Soient maintenant X un ensemble quelconque, (Y,B) un espace mesurable,
et f : X → Y une fonction quelconque. Il est encore possible de munir X
d’une σ-algèbre pour laquelle f soit une fonction mesurable. Il suffit pour
cela de considérer les images réciproques des ensembles mesurables. Cette
tribu est la plus petite qui rende f mesurable : toute tribu plus grande a
la même propriété, et aucune tribu strictement plus petite ne l’a (exercice).
On l’appelle tribu engendrée par f et on la note σ(f) (ou f ∗B ou f−1B) ;
on reviendra sur cette notion majeure. Intuitivement, σ(f) est la tribu des
ensembles que l’on peut décrire “au moyen seulement de la fonction f”, ou
encore “au travers des seules valeurs de la fonction f”. En particulier, σ(Id) =
B (la tribu engendrée par la fonction identité est la tribu B tout entière).

(iii) Plus généralement, si une famille de fonctions (fi)i∈I est donnée, fi : X → Yi,
on note σ((fi)i∈I) la plus petite tribu qui rende mesurable toutes les fi, ou
de façon équivalente, qui rende mesurable l’application produit f =

∏
i∈I fi,

avec la tribu produit sur
∏
Yi. Intuitivement, par exemple σ(f, g) (abréviation

pour σ((f, g))) est la tribu des événements que l’on peut décrire en utilisant
seulement les valeurs de f et g.

(iv) De même que l’image d’un ouvert par une application continue n’est en gé-
néral pas ouverte, l’image d’un ensemble mesurable par une application mesu-
rable f n’est a priori pas mesurable. C’est cependant le cas si f : X → Y est
une application bijective entre deux espaces polonais X et Y munis de leur
tribu borélienne : sous ces hypothèses, l’image de tout ensemble mesurable
par f est mesurable. En particulier, la réciproque d’une bijection mesurable
entre espaces polonais est automatiquement mesurable (Théorème III-24 plus
loin).

Le critère pratique qui suit est d’usage constant.

Proposition III-4 (critère pratique de mesurabilité). Soient (X,A) et (Y,B)
deux espaces mesurables, et f : X → Y . On suppose que la tribu B est engendrée par
une famille F de parties de Y : B = σ(F). Alors f est mesurable si et seulement si
pour tout F ∈ F , f−1(F ) est mesurable.

Démonstration. Si f est mesurable, bien sûr f−1(F ) doit être mesurable pour
tout F ∈ F . Réciproquement, supposons que f−1(F ) est mesurable pour tout F ∈ F ,
et définissons

C :=
{
B ∈ B; f−1(B) ∈ A

}
= f#A.
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On a déjà noté dans la Remarque III-3(ii) que C est une tribu ; cela découle en fait
des formules habituelles

f−1(Y \B) = f−1(Y ) \ f−1(B), f−1
(⋃

Bk

)
=
⋃

f−1(Bk).

Mais comme elle contient F , elle contient également σ(F) = B, ce qui prouve la
mesurabilité. □

Exemples III-5. (i) L’exemple le plus courant est le suivant : si X et Y
sont deux espaces topologiques, munis de leur tribu borélienne, et f : X → Y
est une fonction quelconque, alors f est mesurable si et seulement si l’image
réciproque de tout ouvert de Y est un Borélien de X. On dit alors que f est
borélienne. En particulier, toute fonction continue est borélienne.

(ii) Dans le cas où Y = Rn, pour montrer qu’une fonction f : X → Y est mesu-
rable, il suffit de vérifier que l’image réciproque de tout pavé est un borélien
de X. Par exemple, si on réussit à montrer que c’est une union dénombrable
d’intersections dénombrables d’unions dénombrables de fermés...

(iii) Dans le cas où Y = R, pour montrer la mesurabilité il suffit de vérifier que
l’image réciproque de tout intervalle semi-ouvert, de la forme I = [y,+∞[,
est un borélien. En particulier, toute fontion semi-continue inférieurement
(ou supérieurement) est borélienne. Mais en général la classe des fonctions
boréliennes est beaucoup plus large.

(iv) Dans le cas où Y est un espace produit, muni de la topologie produit, pour
montrer la mesurabilité il suffit de vérifier que l’image réciproque de tout pavé
est mesurable. Et si Y est un produit infini, il suffit de vérifier que l’image
réciproque de tout cylindre est mesurable.

On va voir au paragraphe suivant comment on peut, via des opérations simples,
construire de très nombreuses fonctions boréliennes qui ne sont pas du tout continues,
ni continues par morceaux. Toutefois les liens entre mesurabilité et continuité sont
étroits. D’une part, sous certaines hypothèses topologiques, les fonctions boréliennes
peuvent être bien approchées par des fonctions continues, et encore mieux par des
fonctions semi-continues ; les théorèmes de Lusin et Vitali-Carathéodory, qui seront
évoqués section III-4.4, en sont une bonne illustration. Ensuite, l’exercice suivant
montre que sous des hypothèses assez générales, toute fonction borélienne peut être
considérée comme une fonction continue pour une topologie plus fine, sans toucher
aux boréliens. Il est donc naturel que ces deux classes de fonctions, les boréliennes
et les continues, vérifient des énoncés assez similaires.

Exercice III-6 (Une fonction borélienne est toujours continue en un sens). Soit
X un espace polonais.

(a) On dit qu’une partie A de X vérifie la propriété (B) si il existe une topo-
logie polonaise qui raffine la topologie de X tout en préservant la classe des
boréliens, et pour laquelle A est ouvert. Montrer que l’ensemble des parties
vérifiant (B) est une σ-algèbre contenant les ensembles ouverts. (Noter que
dans la propriété (B) on peut même imposer que A soit ouvert et fermé.)

(b) En déduire que tous les boréliens vérifient la propriété (B).
(c) Si Y est un espace polonais et f : X → Y est borélienne, montrer que tous

les f−1(B), pour B borélien de Y , vérifient la propriété (B).
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(d) Montrer qu’il existe une topologie polonaise sur X, plus fine que la topologie
initiale mais avec les mêmes ensembles boréliens, et qui rend f continue.

III-1.2. Stabilité des fonctions mesurables. Il est très facile de construire
des fonctions discontinues en manipulant des fonctions continues et un peu de théorie
des ensembles : il suffit par exemple de définir une fonction séparément sur [a, b]
et ]b, c]. En revanche, en manipulant des fonctions mesurables et des ensembles
mesurables, on ne peut guère construire que des fonctions mesurables !

Proposition III-7 (restriction). (i) Soient (X,A) et (Y,B) deux espaces mesu-
rables, et A une partie mesurable de X. Soit f : X → Y une application mesurable.
On munit A de la tribu induite par A, i.e. l’ensemble de tous les éléments de A qui
sont inclus dans A. Alors la restriction de f à A est une application mesurable de
A dans Y .

(ii) La même propriété reste vraie si A n’est pas mesurable, la tribu induite par
A étant alors l’ensemble de toutes les intersections d’éléments de A avec A.

Démonstration. C’est un simple jeu de maniement des axiomes. □
Proposition III-8 (recollement). (i) Dans un espace mesurable (X,A), soit

(Ak)k∈N une famille dénombrable de parties mesurables disjointes, telle que X = ∪Ak.
Soit également (Y,B) un espace mesurable. Sur chaque Ak (considéré comme espace
mesurable), on se donne une fonction mesurable fk : Ak → Y . Soit f la fonction qui
pour tout k coïncide avec fk sur Ak. Alors f est mesurable.

(ii) Dans un espace mesurable (X,A), soit A une partie quelconque de X, f est
une fonction mesurable de A (muni de la tribu induite) dans Y , espace polonais,
alors f est la restriction à A d’une fonction mesurable X → Y .

Démonstration. Pour (i), L’image réciproque d’un ensemble mesurable B par
f est l’union des ensembles mesurables f−1

k (B), c’est donc un ensemble mesurable.
Pour (ii), on procède par approximation ; l’argument est remis à la section III-

2.2. □
Proposition III-9 (produit infini de fonctions mesurables). Soient (Xt,At)t∈T

et (Yt,B)t∈T des espaces mesurables, dépendant d’un paramètre t ∈ T , et soient.
(ft)t∈T des fonctions mesurables de Xt dans Yt respectivement. On munit X =

∏
Xt

et Y =
∏
Yt de la tribu produit, i.e. la plus petite tribu qui rende mesurable tous les

cylindres. Alors l’application f =
∏
ft est mesurable de X dans Y .

En particulier, si f1, . . . , fk sont des applications mesurables définies sur X1, . . . , Xk

respectivement, à valeurs dans Y1, . . . , Yk respectivement, alors l’application f =
(f1, . . . , fk) est mesurable de X1 × . . .×Xk dans Y1 × . . .× Yk.

Démonstration. Par le critère III-4, il suffit de montrer que l’image réciproque
de tout cylindre est mesurable ; on peut même se limiter à le faire pour les cylindres
engendrés par des pavés BT = (Bt1 , . . . , BtK ), T = (t1, . . . , tK) :

CT (BT ) =
{
y ∈ Y ; ∀k ∈ {1, . . . , K}, ytk ∈ Btk

}
.

Ici K est arbitraire et chaque Btk est une partie mesurable de Ytk . Alors
f−1(CT (BT ) = CT (AT ),

où
AT = (At1 , . . . , AtK ), Atk = f−1

k (Btk).
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C’est en particulier un ensemble mesurable. □

Proposition III-10 (composition). Soient f : X → Y et g : Y → Z deux
applications mesurables entre espaces mesurables, alors leur composition g ◦ f est
mesurable.

Démonstration. C’est une conséquence immédiate de la définition. □

Corollaire III-11. Soient X,Y et Z des espaces mesurables, tels que Y et Z
sont des espaces topologiques munis de leur tribu borélienne, soient f : X → Y une
application mesurable, et φ : Y → Z une application continue. Alors φ ◦ f : X → Z
est une application mesurable.

Démonstration. C’est une conséquence de la proposition précédente, combi-
née avec l’exemple III-5(i). □

Proposition III-12 (graphe). Soient (X,A) et (Y,B) des ensembles mesurables,
f : X → Y une fonction, et G(f) = {(x, f(x)); x ∈ X} ⊂ X × Y son graphe. On
munit X × Y de la tribu produit. Alors, si f est mesurable et que la diagonale
∆ = {(x, x); x ∈ X} est mesurable, alors G(f) est mesurable.

Démonstration. Le graphe de f est l’image réciproque de la diagonale par
l’application mesurable (x, y) 7−→ (f(x), y). □

En anticipant sur la proposition IV-39, on en déduit

Corollaire III-13. Si X et Y sont des espaces métriques séparables complets,
et que f : X → Y est mesurable, alors son graphe est mesurable dans X × Y . Cela
reste vrai si f n’est définie que sur une partie mesurable de X.

A l’aide de ces critères simples, il est facile de trouver beaucoup d’opérations
élémentaires qui préservent la notion de mesurabilité. La proposition suivante ras-
semble les plus courantes.

Proposition III-14 (opérations élémentaires). Soient (X,A) un espace mesu-
rable, et f, g deux fonctions mesurables de X dans R, muni de la tribu borélienne.
Alors les fonctions f + g, f − g, fg, min(f, g), max(f, g) et, si g ne s’annule pas,
f/g sont mesurables.

Démonstration. On applique le corollaire III-11 avec les applications conti-
nues addition, soustraction, etc. Noter que min(f, g) = (f + g)/2− |f − g|/2. □

Outre ces opérations élémentaires, une opération fréquemment utilisée pour dé-
finir des fonctions est la limite (ou ses avatars tels que série, etc.). Pour parler de
limites, il sera bien commode de remplacer R par R = R ∪ {±∞}, dont on fait
un espace topologique en décidant que les intervalles ]a,+∞[ et ]a,+∞] (a ∈ R)
engendrent les ouverts. La restriction de cette topologie à R est la topologie usuelle ;
en effet, les intervalles ]a,+∞[ et ]−∞, a[ engendrent la topologie usuelle de R. On
note que R est un espace métrique compact. On munira toujours R de sa tribu boré-
lienne ; en pratique ce sont juste les boréliens de R, auxquels on s’autorise d’ajouter
+∞ et/ou −∞ (Exemple II-17). La motivation pour considérer R plutôt que R est
simple : la convergence dans R est plus aisée que dans R.
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Remarque III-15. Attention aux opérations dans R : l’opération (x, y) → x+y
n’est pas bien définie dans R tout entier à cause de l’indétermination (+∞)+(−∞).
Ainsi, si f et g sont deux fonctions à valeurs dans R, on ne peut pas affirmer que
f + g soit mesurable. Si l’on sait que f et g prennent leurs valeurs dans R∪ {+∞},
alors f + g est bien mesurable ; mais f − g n’est pas forcément défini...

Théorème III-16 (stabilité de la mesurabilité réelle par limite). Soit (fn)n∈N
une famille de fonctions mesurables sur un espace mesurable (X,A), à valeurs dans
R. Alors

(i) les fonctions inf fn, sup fn, lim inf fn et lim sup fn sont mesurables ;
(ii) la fonction lim fn est mesurable sur son domaine, c’est à dire sur l’ensemble

mesurable C où la suite de fonctions (fn) converge simplement ;
(iii) si g est une fonction mesurable quelconque de X dans R (par exemple la

fonction nulle), alors la fonction f définie par{
f(x) = lim fn(x) si x ∈ C

f(x) = g(x) sinon

est mesurable de X dans R.
Remarque III-17. On rappelle que la limite supérieure (respectivement infé-

rieure) d’une suite d’éléments de R est sa plus grande (respectivement plus petite)
valeur d’adhérence dans R. La limite supérieure et la limite inférieure existent tou-
jours dans R, pas forcément dans R.

Démonstration. Soit (fn) une famille de fonctions mesurables, on va montrer
par exemple que inf fn est mesurable. On ne va pas travailler avec les boréliens
directement, mais on va choisir une famille génératrice commode ; par exemple, les
intervalles [α,+∞] (Cf Exemple II-17). Soit donc Aα = {inf fn ≥ α}, avec α ∈ R, le
but est de montrer que Aα est mesurable. Or Aα = {x; ∀n ∈ N, fn(x) ≥ α}, donc

Aα = ∩n∈Nf
−1
n

(
[α,+∞]

)
,

qui est mesurable comme intersection d’ensembles mesurables ; cela achève la preuve
de la mesurabilité de inf fn. La mesurabilité de sup fn s’en déduit, puisque sup fn =
− inf(−fn). (Exercice : Refaire la preuve avec les ]α,+∞] ; puis avec les [−∞, α] ;
puis avec les [−∞, α[.)

Montrons ensuite, par exemple, que lim sup fn est mesurable. Idem, il suffit de
montrer que Bα = {lim sup fn ≥ α} est mesurable, pour tout α ∈ R. Or dire que x
appartient à Bα, c’est dire que pour tout ε > 0, fn(x) prend une infinité de fois une
valeur supérieure ou égale à α− ε. Les ε > 0 forment une famille non dénombrable,
mais on ne perd rien en la renplaçant par la famille dénombrable des 1/k : Cα

est l’ensemble des x tels que :pour tout k, pour tout n il existe m ≥ n tel que
fm(x) ≥ α− 1/k. Autrement dit,

Cα =
⋂
k∈N

⋂
n∈N

⋃
m∈N

f−1
m

(
[α− 1/k,+∞]

)
,

donc Cα est bien mesurable, ce qui conclut la démonstration du point (i). (Exercice :
Refaire la preuve avec les ]α,+∞] ; puis avec les [−∞, α] ; puis avec les [−∞, α[.)

(ii) L’ensemble C des points de convergence est l’union de trois ensembles qui
d’après (i) sont tous mesurables :
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- l’ensemble où fn → +∞, i.e. lim inf fn = +∞ ;
- l’ensemble où fn → −∞, i.e. lim sup fn = −∞ ;
- l’ensemble où fn converge dans R, i.e. lim inf fn < +∞ et lim sup fn > −∞ et

lim sup fn − lim inf fn = 0.
On peut donc considérer C comme espace mesuré, et on en déduit (ii) grâce à la

Proposition III-7.
(iii) découle de (ii) et de la Proposition III-8. □
Remarque III-18. Pour traiter ±∞, on aurait aussi pu dire que {fn → +∞} =

{lim inf fn = +∞}∩ {lim inf fn = +∞} est mesurable comme intersection de mesu-
rables. Mais en tout cas on ne peut pas traiter de façon unifiée ±∞ et R, car l’ex-
pression lim sup fn− lim inf fn n’est pas définie si les deux sont égales à +∞ ou −∞ ;
et on ne peut pas non plus passer par C = ∪α∈R{lim inf fn = α} ∩ {lim sup fn = α}
car la somme n’est pas dénombrable !

Exemples III-19. (i) Soit f : R → R une fonction dérivable, alors sa dérivée
est mesurable. En effet, c’est la limite simple de la suite de fonctions continues

gk(x) = k[f(x+ 1/k)− f(x)].

Bien noter que la dérivée n’est pas forcément continue.
(ii) Une série de Fourier définit une fonction mesurable sur son domaine de

convergence ; de même pour une série entière. Rappelons que de telles sé-
ries peuvent ne pas converger, et même quand elles convergent, leur valeur
limite n’est pas forcément continue.

(iii) L’intégrale de Riemann étant définie par un procédé de limite, les fonctions
définies comme des intégrales de Riemann à paramètre sont mesurables. On
verra au Chapitre IV que cet énoncé se généralise à des intégrales à paramètre
définies dans la théorie de Lebesgue.

Exercice III-20. Redémontrer les points (ii) et (iii) du Théorème III-16 quand
les fn sont à valeurs dans R, sans faire référence à des lim inf et lim sup, via le critère
suivant : une suite de nombres réels converge si et seulement si elle est de Cauchy.
En déduire que les points (ii) et (iii) du Théorème III-16 restent vrais quand l’espace
d’arrivée R est remplacé par un espace métrique complet arbitraire (Commencer par
prouver la mesurabilité de l’ensemble des points x pour lesquels la suite (fn(x)) est
de Cauchy.)

En s’insiprant de l’exercice III-20 on pourra démontrer la généralisation suivante :
Théorème III-21 (stabilité de la mesurabilité par limite, cas général). Soit

(fn)n∈N une famille de fonctions mesurables sur un espace mesurable (X,A), à
valeurs dans un espace polonais Y muni de sa tribu borélienne. Alors la fonction
lim fn (éventuellement étendue arbitrairement hors du domaine de convergence) est
mesurable. Plus précisément,

(i) l’ensemble C des points de convergence de (fn) est mesurable ;
(ii) la fonction lim fn est mesurable de C dans Y ;
(iii) si g est une fonction mesurable quelconque de X dans Y , alors la fonction

f définie par {
f(x) = lim fn(x) si x ∈ C

f(x) = g(x) sinon
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est mesurable de X dans Y .
Pour conclure cette section, voici, sans démonstration complète, deux résultats

frappants sur les isomorphismes mesurables, c’est à dire les applications à la fois
mesurables et inversibles.

Définition III-22 (isomorphisme mesurable). Soient (X,A) et (Y,B) deux es-
paces mesurables. On dit que f réalise un isomorphisme mesurable entre X et Y si f
est bijective et bimesurable, c’est à dire mesurable et d’inverse mesurable, f#A = B
et (f−1)#B = A.

Quand deux espaces mesurables sont mesurablement isomorphes, tout énoncé de
mesurabilité prouvé dans l’un s’appliquera aussi à l’autre.

Théorème III-23 (théorème d’isomorphisme dans les espaces polonais). Soient
(X,A) et (Y,B) deux espaces polonais munis de leurs tribus boréliennes respectives,
et soient A un borélien de X, B un borélien de Y . Alors A et B sont mesurablement
isomorphes, si et seulement si ils ont même cardinalité.

Théorème III-24 (théorème de l’inverse mesurable). Soient X et Y deux espaces
polonais, munis de leurs tribus boréliennes respectives, A et B des boréliens de X et
Y respectivement, et f une bijection mesurable de A dans B. Alors f−1 est mesurable.

Remarques III-25. (i) Les deux théorèmes précédents sont liés : le pre-
mier dit que s’il existe une bijection quelconque entre A et B, alors il existe
aussi une bijection bimesurable ; le second (parfois appelé Théorème de Ku-
ratowski) dit que s’il existe une bijection mesurable entre A et B, alors auto-
matiquement elle est bimesurable.

(ii) Il n’y a en fait que trois cas de figure : Soit A et B sont finis, soit ils sont
infinis dénombrables, soit ils ont le même cardinal que R.

Je ne présenterai pas ici la preuve du Théorème III-23 ; on la trouvera en grand
détail dans [Parthasarathy, sections I.2]. Pour le Th éorème III-24 (objet de [Par-
thasarathy, section I.3]), une preuve sera présentée pour les lectrices averties, dans
le Chapitre V ; ce théorème y sera replacé dans le cadre plus général de la théorie
descriptive des ensembles et des théorèmes de sélection mesurable.

Remarques III-26 (Mesurabilité, règle ou exception ?). (i) En conséquence
des théorèmes de stabilité précédents (énoncés III-7 à III-24), la plupart (sinon
la totalité) des fonctions que l’on rencontre ou que l’on construit pour résoudre
des problèmes d’analyse réelle sont mesurables. Par analyse réelle j’entends :
quand le cadre est R ou Rn ou une variété riemannienne de dimension finie,
munie de la tribu borélienne. Le plus souvent, on ne se donne même pas la
peine de le mentionner, car la mesurabilité est presque automatique. En toute
rigueur, il faut cependant démontrer cette mesurabilité. En pratique il y a (à
peu de choses près) une seule situation où cela s’avère délicat : quand on prend
un supremum ou un infimum sur une famille de fonctions non dénombrables.
On reviendra sur cette question dans le chapitre VI.

(ii) La situation est un peu différente en théorie des probabilités, surtout dans
l’étude des processus stochastiques. D’une part, dans ce contexte on considère
souvent des produits infinis indexés par un ensemble non dénombrable, pour
lesquels la mesurabilité peut être une propriété non triviale. D’autre part,
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dans ce domaine on est souvent amené à définir des tribus plus ou moins
grandes, emboîtées les unes dans les autres, pour encoder de l’information
par rapport à la dépendance aux variables aléatoires. Dans ce cas les tribus
sont bien plus grossières que la tribu borélienne, et la mesurabilité pourra
être facilement violée. Voici un exemple classique : soit X = {0, 1}N, que
l’on interprète comme l’espace des suites de résultats obtenus par une infinité
dénombrable de tirages pile ou face (0 pour face, 1 pour pile). On décide
naturellement que toutes les parties de {0, 1} sont mesurables (et ouvertes).
Il serait naturel d’introduire une fois pour toutes la tribu produit sur X, qui
rend mesurables toutes les applications coordonnées σk : x 7−→ xk ; c’est aussi
la tribu borélienne sur le produit. Cependant, dans une perspective stochas-
tique, on préfère souvent munir X de la famille de tribus emboîtées (An)n∈N,
où An est la tribu engendrée par les applications σ1, . . . , σn (constituée des
parties cylindriques dont la base est un sous-ensemble arbitraire des n pre-
miers facteurs). Un indice n étant fixé, il existe bien sûr de très nombreuses
fonctions qui ne sont pas An-mesurables (à commencer par σn+1).

(iii) Si X est un espace topologique, muni de sa tribu borélienne, on a vu que
toute limite simple d’une suite de fonctions continues est mesurable. Il est
naturel de se demander si la réciproque est vraie ; dans un tel cas on pourrait
définir les fonctions mesurables comme les limites de fonctions continues. La
réponse est négative : on ne peut pas en général approcher une fonction
mesurable par des fonctions continues. Cependant, sous certaines hypothèses
topologiques (compacité locale, par exemple), la réponse devient positive si
l’on s’autorise à oublier un ensemble de mesure nulle : c’est un corollaire du
théorème de Lusin, présenté à la fin de ce chapitre. Dans le même esprit,
le théorème de Vitali–Carathéodory montrera que l’on peut approcher
une fonction mesurable par des fonctions semi-continues, par au-dessus ou
par en-dessous, au prix d’une erreur arbitrairement petite sur l’intégrale.

III-1.3. Tribu engendrée par une fonction mesurable.

Théorème III-27 (tribu engendrée par une fonction). (i) Soient X un espace
quelconque et (Y,B) un espace mesurable, et soit f une application quelconque de X
dans Y . Il existe alors une plus petite tribu sur X qui rende f mesurable ; on la note
σ(f). Elle est faite de tous les ensembles f−1(B), où B est une partie mesurable
quelconque de Y .

Si au départ X est un espace mesurable, muni d’une tribu A, et f est mesurable,
alors σ(f) ⊂ A.

(ii) Plus généralement, soient X un espace quelconque, (Yt,Bt)t∈T une famille
d’espaces mesurables indexés par un ensemble T arbitraire ; pour tout t ∈ T on se
donne une fonction ft : X → Yt. Alors il existe une plus petite tribu sur X qui
rende mesurables toutes les applications ft ; on la note σ((ft)t∈T ). Si X est au départ
un espace mesurable, muni d’une tribu A, et chacune des ft est mesurable, alors
σ((ft)t∈T ) ⊂ A.

Démonstration. L’énoncé (i) est une conséquence immédiate des définitions,
et des formules

f−1
(⋂

Bk

)
=
⋂

f−1(Bk); f−1
(⋃

Bk

)
=
⋃

f−1(Bk).
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Pour l’énoncé (ii), on construit la tribu σ((ft)t∈T ) comme l’intersection de toutes les
tribus contenant toutes les tribus σ(ft). □

Intuitivement, la tribu engendrée par une fonction mesurable f est faite des
parties dont la définition “ne fait intervenir que les valeurs de f” ; une fonction
mesurable pour la tribu σ(f) est donc une fonction qui “ne dépend que de f” – une
propriété qu’il peut être utile de formaliser dans des contextes très variés. Essayons
de caractériser ces fonctions. Pour se convaincre que le problème est assez subtil,
expliquer pourquoi la “démonstration” ci-dessous est incomplète.

Prétendu Théorème III-28 (fonctions mesurables pour σ(f)). Soient X un
espace quelconque, et Y et Z deux espaces mesurables. On se donne f une fonction
quelconque de X dans Y , et on munit X de la tribu σ(f). On suppose en outre que
les singletons de Z sont mesurables. Alors les fonctions mesurables de X dans Z
sont exactement les fonctions de la forme Φ ◦ f , où Φ est une fonction mesurable de
Y dans Z.

prétendue démonstration. Soit g une fonction mesurable de X dans Z. On
pose B = f(X). On va construire une fonction mesurable Φ sur B telle que g = Φ◦f .
On pourra ensuite attribuer une valeur quelconque à Φ sur Y \B.

Soit maintenant z ∈ Z, par hypothèse {z} est mesurable, et Az := g−1({z}) est
un élément de σ(f), il s’écrit donc f−1(Bz) avec Bz mesurable, que l’on peut choisir
inclus dans B. Les Bz sont deux à deux disjoints : si y ∈ Bz ∩Bz′ avec z 6= z′, alors
on écrit y = f(x), d’où x ∈ f−1(Bz) ∩ f−1(Bz′) = g−1({z}) ∩ g−1({z′}) = ∅. Ils
recouvrent par ailleurs B, puisque tout élément y de B s’écrit sous la forme f(x),
on peut alors poser z = g(x) et on a x ∈ Az, d’où x ∈ f−1(Bz), d’où f(x) ∈ Bz.
Tout y ∈ B appartient donc à un unique Bz, et on peut alors poser Φ(y) = z. □

On trouvera un peu plus loin une variante un peu moins ambitieuse, mais rigou-
reuse (Théorème III-40).

III-1.4. Fonctions mesurables et complétion. Le théorème suivant fait le
lien entre fonctions mesurables pour une tribu, et fonctions mesurables pour la tribu
complétée.

Théorème III-29 (mesurabilité pour la tribu complétée). Soit (X,A, µ) un
espace mesuré, et soit A la complétion de A pour µ ; soit f une fonction mesurable
pour la tribu A. Alors il existe une fonction g, mesurable pour la tribu A, telle que
f = g, µ-presque partout.

La preuve de ce théorème est remise à la section III-2.2 ; elle reposera sur une
très efficace méthode d’approximation des fonctions mesurables.

III-2. L’intégrale selon Lebesgue
De la même façon que les ensembles mesurables sont ceux dont on définit la

mesure, les fonctions réelles mesurables sont celles dont on espère définir l’intégrale.
On a vu dans la section précédente l’extrême généralité de la notion de fonction

mesurable, et en conséquence on pourra intégrer de très nombreuses fonctions dans
la théorie de Lebesgue. Le principal prix à payer sera la renonciation aux compensa-
tions. Dans le cas de l’intégrale de Riemann, on a diverses recettes pour traiter des
intégrales semi-convergentes, dans lesquelles de grandes valeurs positives et néga-
tives proches se compensent, dans des procédés de limite ad hoc, qui font intervenir
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la structure de l’espace de définition. Par exemple, au voisinage d’un point de R on
a de grandes valeurs positives d’un côté et négatives de l’autre, et on peut définir
des approximations bien choisies à l’approche de ce point singulier. En théorie de
Lebesgue, on pense aussi peu que possible à l’ensemble de départ (qui peut être très
général), on se concentre sur les valeurs ; cela rend impossible en pratique un bon
traitement des compensations. Le plan est donc de séparer tout simplement parties
positive et négative, décrire

∫
f =

∫
f+ −

∫
f− et de définir séparément les deux

intégrales ; la question est alors d’intégrer les fonctions positives.
Il peut subsister un problème si l’intégrale diverge (vaut formellement +∞), mais

ce n’est pas bien grave : attribuons dans ce cas explicitement la valeur +∞ quand
cela se présente. On peut même, si cela est commode, autoriser la fonction intégrée
à prendre ses valeurs dans [0,+∞]. Si les deux intégrales

∫
f+ et

∫
f− sont infinies,

on ne parviendra pas à dire la valeur de
∫
f ; il faut peut-être alors, en amont de

la procédure de Lebesgue, introduire un redécoupage de l’intégrale, ou définir un
procédé limite ; c’est une autre histoire.

Dans cette section, on commencera donc par définir l’intégrale des fonctions posi-
tives, en les approchant par des fonctions très simples : prenant seulement un nombre
fini de valeurs. Ensuite, quand cela aura un sens, on généralisera aux fonctions si-
gnées (i.e. à valeurs positives ou négatives).

III-2.1. Fonctions simples. Comme dans la théorie de Riemann, on définit la
valeur de l’intégrale d’une fonction en l’approchant par des fonctions particulière-
ment simples, pour lesquelles la valeur de l’intégrale est indiscutable. Mais au lieu
des fonctions constantes par morceaux, c’est une classe bien plus grande qui jouera
un rôle privilégié : les fonctions mesurables prenant un nombre fini de valeurs, aussi
appelées fonctions simples.

Définition III-30 (fonction simple). Soit (X,A) un espace mesurable. On ap-
pelle fonction simple positive (ou juste fonction simple, ou fonction étagée) une
fonction de la forme

f =
N∑
k=1

αk1Ak
,

où les αk sont des nombres positifs (éventuellement +∞) et les Ak sont des parties
mesurables formant une partition de X.

Les deux critères suivants, presque évidents, sont laissés en exercice.
Proposition III-31 (reformulation de la simplicité). (i) Soit (Ak)1≤k≤N une

famille finie de parties mesurables, pas forcément une partition, et soit (αk)1≤k≤N

une famille de nombres réels positifs (éventuellement +∞) ; alors f =
∑
αk1Ak

est
simple.

(ii) Une fonction positive f est simple si et seulement si elle est mesurable et
prend un nombre fini de valeurs.

Remarques III-32. (i) La condition de positivité est imposée ici unique-
ment parce que nous avons pour but de définir d’abord l’intégrale des fonc-
tions positives. Mais la définition des fonctions simples s’étend à des fonctions
à valeurs dans un espace mesurable quelconque, pas forcément R+ : on dira
juste qu’une fonction est simple si elle est mesurable et ne prend qu’un nombre
fini de valeurs.
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(ii) Simples au sens de leurs valeurs (un ensemble fini), les “fonctions simples”
peuvent néanmoins être très complexes dans leurs variations : aussi complexes
que peuvent l’être les ensembles mesurables.

La définition de l’intégrale d’une fonction simple sous le sens :

Définition III-33 (intégrale d’une fonction simple). Une fonction simple posi-
tive f étant donnée sur l’espace mesuré (X,A, µ), avec les notations de la Défini-
tion III-30, on pose ∫

f dµ =
N∑
k=1

αk µ[Ak],

avec la convention 0× (+∞) = 0.

Proposition III-34 (Invariance de l’intégrale des fonctions simples). (i) Si f =∑
αk1Ak

est une fonction simple, avec les αk positifs mais les Ak ne formant pas
forcément une partition, alors on a toujours∫

f dµ =
N∑
k=1

αk µ[Ak].

(ii) Si f est une fonction simple prenant les valeurs α1, . . . , αK ∈ [0,+∞], alors∫
f dµ =

N∑
k=1

αk µ
[
f−1(αk)

]
.

Cette dernière proposition, intuitive, est laissée en exercice (fastidieux et pas si
simple !).

Proposition III-35 (additivité de l’intégrale des fonctions simples). Soient f
et g deux fonctions simples positives, alors pour tous α, β ∈ R+, la fonction αf +βg
est simple, et ∫

(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ.

Démonstration. Ecrivons f =
∑
aj1Aj

, g =
∑
bk1Bk

, où les (Aj) et les (Bk)
forment deux partitions de X. Alors αf + βg =

∑
jk(αaj + βbk)1Aj∩Bk

est bien une
fonction simple, et la valeur de son intégrale est∑

jk

(αaj + βbk)µ[Aj ∩ Bk] = α
∑
j

aj(
∑
k

µ[Aj ∩ Bk]) + β
∑
k

bk(
∑
j

µ[Aj ∩ Bk])

= α
∑
j

ajµ[Aj ∩ (∪Bk)] + β
∑
k

bkµ[(∪Aj) ∩ Bk]

= α
∑
j

ajµ[Aj] + β
∑
k

bkµ[Bk].

(On peut aussi déduire cet énoncé de la Proposition III-34.) □

III-2.2. Approximation des fonctions mesurables. C’est un résultat élé-
mentaire et fondamental que toute fonction mesurable positive peut être approchée
par des fonctions simples :
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Théorème III-36 (approximation par des fonctions simples). Soit f une fonc-
tion mesurable sur un espace mesurable (X,A), à valeurs dans [0,+∞]. Alors il existe
une suite croissante (φn)n∈N de fonctions simples positives, qui converge simplement
vers f .

Si f est bornée par M , on peut en outre imposer φn −φn−1 ≤M/2n, φ0 = 0 ; et
si f est non bornée, on peut imposer φn − φn−1 ≤ 1|f |≥n + 2−n.

Si X est muni d’une mesure σ-finie µ, on peut en outre imposer à chaque φn

d’être nulle en-dehors d’un ensemble de mesure finie.
Démonstration. Soit δn = 2−n, on pose φn(x) = kδn si f(x) ∈ [kδn, (k+1)δn[

et f(x) < n ; φn(x) = n si f(x) ≥ n. Il est facile de vérifier que φn(x) converge vers
f(x) pour tout x. D’autre part, si f(x) ∈ [kδn, (k+1)δn[, alors f(x) ∈ [2kδn+1, (2k+
2)δn+1[, donc φn+1(x) vaudra soit 2kδn+1, soit (2k+1)δn+1, soit (2k+2)δn+1, et dans
tous les cas sera supérieur ou égal à φn(x).

Dans le cas où on se donne une mesure σ-finie µ, on a X = ∪Xn, avec µ[Xn] <
+∞, et on peut poser φ̃n = φn1Xn pour prouver la dernière partie de l’énoncé. □

φn+1

f f

φn

Figure 1. Approximation d’une fonction mesurable par des fonctions simples

Corollaire III-37 (une fonction mesurable est combinaison dénombrable de
fonctions indicatrices). Soit f une fonction mesurable, à valeurs dans R+ ∪ {+∞}.
Alors il existe des nombres réels positifs (ck)k≥1 et des ensembles mesurables (Ak)k∈N
tels que

f =
∞∑
k=1

ck1Ak
.

Exercice III-38. Utiliser une variante de la construction précédente pour mon-
trer que l’on peut choisir la famille (ck) a priori parmi l’ensemble des suites qui
convergent vers 0, et dont la série diverge (par exemple, ck = 1/k fait l’affaire).

On peut étendre ce résultat à des espaces bien plus généraux :
Théorème III-39 (approximation par des fonctions simples, encore). Soit f une

fonction mesurable entre espaces mesurables (X,A) et (Y,B). On suppose que Y est
un espace polonais et B sa tribu borélienne ; on note (yk)k∈N une suite dense dans
Y . Alors il existe une suite (φn)n∈N de fonctions simples, prenant ses valeurs dans
{yk}k∈N, telle que φn converge simplement vers f .
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La démonstration du Théorème III-39 est laissée en exercice.
Pour illustrer l’intérêt de ces théorèmes d’approximation, voyons comment les

utiliser pour résoudre le problème abordé dans le paragraphe III-1.3, dans un cadre
légèrement restreint ; et dans la foulée pour démontrer le Théorème III-29.

Théorème III-40 (fonctions mesurables pour σ(f)). Soient X un espace quel-
conque, Y un espace mesurable, et Z un espace polonais, muni de sa tribu borélienne.
On se donne f une fonction quelconque de X dans Y , et on munit X de la tribu
σ(f). Alors les fonctions mesurables de X dans Z sont exactement les fonctions de
la forme Φ ◦ f , où Φ est une fonction mesurable de Y dans Z.

Démonstration. 1. Soit g une fonction simple de X dans Z. Comme g prend
un nombre fini de valeurs, la tentative de démonstration présentée au paragraphe III-
1.3 aboutit (pourquoi ?) et permet de construire une fonction Φ mesurable, telle que
g = Φ ◦ f .

2. Considérons pour commencer le cas où Z = R+. Par le Théorème III-36 on
peut construire une famille gn de fonctions simples, σ(f)-mesurables, convergeant
simplement vers g. En particulier, il existe Φn mesurable tel que gn = Φn ◦ f . La
fonction Φ := lim supΦn est mesurable, et pour tout x ∈ X on a
g(x) = lim gn(x) = limΦn(f(x)) = lim supΦn(f(x)) = (lim supΦn)(f(x)) = Φ(f(x)).

3. Si maintenant Z = R, écrivons g = g+ − g− avec g± ≥ 0 ; par l’étape 2,
g± = Φ± ◦ f , d’où g = (Φ+ − Φ−) ◦ f , ce qui conclut la preuve.

4. Enfin si Z est un espace polonais quelconque, on peut raisonner de même en
appliquant l’Exercice III-20 et le Théorème III-39. □

Démonstration du Théorème III-29. En décomposant f en parties posi-
tives et négatives, on se ramène au cas où f est positive. Soit f une fonction mesu-
rable pour la tribu A ; d’après le Corollaire III-37, on peut écrire

f =
∞∑
k=1

ck1Ak
,

où les ck sont des nombres positifs, et les Ak sont des éléments de A. Par définition
de la tribu complétée, pour tout k on peut écrire Ak = Bk ∪ Ek, Ek ⊂ Nk, avec
Bk, Ek ∈ A et µ[Nk] = 0. On pose alors N := ∪Nk, et g =

∑
ck1Bk

. □
Exercice III-41. En utilisant le même argument, démontrer la Proposition III-

8(ii).
Maintenant le théorème d’approximation des fonctions mesurables par des fonc-

tions simples permettra de construire l’intégrale des fonctions mesurables positives
à partir de l’intégrale des fonctions simples.

III-2.3. Intégrale des fonctions positives.
Définition III-42 (intégrale d’une fonction positive). Soient (X,A, µ) un espace

mesuré, et f une fonction mesurable sur X, à valeurs dans [0,+∞]. On appelle
intégrale de f pour la mesure µ, et on note∫

f dµ
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(
ou
∫
X

f dµ ou
∫
X

f(x) dµ(x) ou
∫
X

f(x)µ(dx)

)
la quantité

sup

{∫
g dµ; g simple; 0 ≤ g ≤ f

}
∈ [0,+∞].

Remarque III-43. (i) Le supremum est pris sur une classe non vide, puisque
la fonction nulle est admissible.

(ii) Si f est une fonction simple, cette définition coïncide avec la Définition III-33.

(iii) On verra dans le chapitre suivant que∫
f dµ = lim

n→∞

∑
k∈N

1

2n
µ

[{
x; f(x) ≥ k

2n

}]
,

ce qui justifie l’intuition suggérée par la figure 1 au Chapitre I. En ce sens,
l’intégration de Lebesgue est bien un procédé de sommation par tranches.

(iv) Si A est une partie mesurable de X, on peut considérer A comme un espace
mesuré et définir

∫
A
f comme l’intégrale de la restriction de f à A ; ou de façon

équivalente, comme l’intégrale de la fonction mesurable f1A ; ou de façon équivalente
comme l’intégrale de la restriction de f à A par rapport à la restriction de µ à A.
On note que si µ[A] = 0, alors la restriction de µ à A est la mesure nulle, et en
particulier

∫
A
f dµ = 0.

Exercice III-44. Soit C la mesure de comptage sur N, muni de la tribu triviale
P(N). Qu’est-ce qu’une fonction étagée sur N ? Montrer que si f : N → [0,+∞],
alors

∫
f dC =

∑
n∈N f(n).

Définition III-45 (fonctions intégrables). Si f est une fonction mesurable po-
sitive d’intégrale finie, on dit qu’elle est intégrable, ou sommable.

La proposition suivante rassemble quelques propriétés élémentaires de l’intégrale.
Comme les ensembles négligeables (ceux qui sont inclus dans un ensemble de mesure
nulle) ne jouent aucun rôle dans la valeur de l’intégrale, il est commode de l’exprimer
en utilisant la terminologie ci-après.

Définition III-46 (presque partout). Soit (X,µ) un espace mesuré. On dit
qu’une propriété est vraie µ-presque partout (ou dµ-presque partout, ou dµ-p.p.,
ou p.p.) si l’ensemble des éléments de X qui ne vérifient pas cette propriété est
négligeable.

Proposition III-47 (Propriétés élémentaires de l’intégrale des fonctions posi-
tives). Soient (X,A, µ) un espace mesuré, et f, g deux fonctions positives mesurables
sur X.

(i) Si
∫
f dµ < +∞, alors f est finie µ-presque partout ;

(ii) Si
∫
f dµ = 0, alors f est nulle µ-presque partout ;

(iii) Si f ≤ g µ-presque partout, alors
∫
f ≤

∫
g. En particulier, si g est

sommable, alors f l’est aussi.
(iv) Si f = g µ-presque partout, alors

∫
f =

∫
g.
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(v) Si A et B sont deux parties mesurables disjointes, et f est une fonction
mesurable positive, alors ∫

A∪B
f =

∫
A

f +

∫
B

f.

Démonstration. (i) Si A = f−1(+∞) est de mesure strictement positive, alors
la famille de fonctions simples (k1A)k∈N montre que le supremum dans la définition
de l’intégrale de f est infini, d’où

∫
f = +∞.

(ii) Supposons que
∫
f = 0 ; soit ε > 0. Si la mesure de Fε := {x; f(x) ≥ ε}

était strictement positive, on pourrait construire une fonction simple valant ε sur
Fε, positive et d’intégrale strictement positive, minorant f , donc l’intégrale de f
serait strictement positive. C’est faux par hypothèse, donc Fε est de mesure nulle.
En conséquence, l’ensemble des points où f n’est pas nulle est de mesure nulle, car
c’est la réunion dénombrable des F1/k (k ∈ N), qui sont tous de mesure nulle.

(iii) est évident par construction : si f ≤ g presque partout, soit φ une fonction
simple minorant f , on redéfinit φ sur l’ensemble négligeable où f > g, en lui attri-
buant la valeur 0 sur cet ensemble. La fonction ainsi obtenue est simple, minore g
et a même intégrale que φ. On passe ensuite au supremum sur toutes les fonctions
simples φ minorant f .

(iv) résulte de (iii).
(v) est laissé en exercice. □
III-2.4. Intégrale des fonctions sommables.
Définition III-48 (fonctions sommables). On appelle fonction sommable une

fonction mesurable à valeurs dans R telle que |f | est sommable. Alors la partie
positive f+ = max(f, 0) de f , et sa partie négative f− = max(−f, 0), étant majorées
par |f |, sont toutes deux sommables, et on pose∫

f dµ =

(∫
f+ dµ

)
−
(∫

f− dµ

)
.

Remarque III-49. Plus généralement, on peut définir
∫
f dµ dans R dès que

l’une au moins des fonctions f+ et f− est sommable.

La proposition suivante est conséquence facile de la définition de l’intégrale et
des propriétés précédentes.

Proposition III-50 (propriétés élémentaires de l’intégrale des fonctions som-
mables). Soient (X,A, µ) un espace mesuré, et f une fonction mesurable de X dans
R. Alors,

(i) Si |f | est majoré par une fonction sommable, alors f est sommable ;
(ii) Si f est sommable, alors ∣∣∣∣∫ f

∣∣∣∣ ≤ ∫ |f |;

(iii) Si f et g sont deux fonctions sommables, et f ≤ g presque partout, alors∫
f ≤

∫
g.

(iv) Si A et B sont deux parties mesurables disjointes, et f est une fonction
sommable, alors ∫

A∪B
f =

∫
A

f +

∫
B

f.
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Exemple III-51. Si X est de mesure finie, toute fonction bornée est sommable.
En effet, |f | est alors majoré par une fonction constante c, dont l’intégrale vaut
c µ[X].

III-3. L’intégrale est une forme linéaire positive
On rappelle qu’une forme linéaire L sur un espace vectoriel E est une application

linéaire de E dans R compatible avec les opérations d’addition et de multiplication
par un scalaire. Quand l’espace E est un espace de fonctions à valeurs réelles, on
dit que L est positive si elle prend des valeurs positives sur toutes les fonctions
positives.

Dans le cas présent, il est évident que l’intégrale d’une fonction sommable positive
est positive. Il est à peine moins évident que

∫
(λf) = λ

∫
f pour toute fonction f

sommable et pour tout scalaire λ. En. revanche, la relation capitale
∫
(f + g) =

(
∫
f) + (

∫
g) est beaucoup plus subtile !

III-3.1. Addition des fonctions positives.

Théorème III-52 (addition des intégrales des fonctions positives). Soient f et
g deux fonctions positives mesurables sur un espace mesuré (X,µ). Alors∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.

En particulier, f + g est sommable si (et seulement si) f et g le sont.

Démonstration. 1. Si
∫
f = +∞ ou

∫
g = +∞, alors par comparaison

∫
(f +

g) = +∞ et il n’y a rien à démontrer. Supposons donc que ces deux intégrales sont
finies. Soient φ et ψ des fonctions simples telles que 0 ≤ φ ≤ f , 0 ≤ ψ ≤ g, et∫
f ≤

∫
φ+ ε,

∫
g ≤

∫
ψ + ε. D’après la Proposition III-35, φ+ ψ est simple, et∫

f +

∫
g ≤

∫
φ+

∫
ψ + 2ε =

∫
(φ+ ψ) + 2ε ≤

∫
(f + g) + 2ε.

En faisant tendre ε vers 0, on obtient∫
f +

∫
g ≤

∫
(f + g).

2. Par la Proposition III-36, on peut trouver des suites croissantes (φk) et (ψk)
de fonctions simples telles que 0 ≤ φk ≤ f , 0 ≤ ψk ≤ g, convergeant simplement
vers f et g respectivement. Soit δ ∈ (0, 1) arbitraire, on pose

Ak :=
{
x; φk(x) ≥ (1− δ) f(x), ψk(x) ≥ (1− δ) g(x)

}
.

Les Ak forment une famille croissante ; si f(x) + g(x) < +∞, alors x ∈ Ak pour k
assez grand (c’est évident si f(x) = 0, tandis que si f(x) 6= 0 la limite de φk(x)
est strictement plus grande que (1 − δ)f(x)). On a donc X = ∪Ak ∪ Z, où Z est
l’ensemble des x pour lesquels f(x) = +∞ ou g(x) = +∞. Puisque f et g sont
sommables, Z est un ensemble négligeable.

Soit χ une fonction simple minorant f + g. Par additivité de l’intégrale des
fonctions simples,∫

f +

∫
g ≥

∫
φk +

∫
ψk ≥

∫
Ak

φk +

∫
Ak

ψk =

∫
Ak

(φk + ψk).
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Par la définition de Ak et la positivité de l’intégrale, on a∫
Ak

(φk + ψk) ≥
∫
Ak

(1− δ)χ = (1− δ)

∫
Ak

χ.

Écrivons χ sous la forme
∑

1≤j≤J αj1Bj
. Puisque les Ak forment une famille crois-

sante et que µ[X \ (∪Ak)] = 0, on a∫
Ak

χ =
∑
j

αj µ[Ak ∩Bj] −−−→
k→∞

∑
j

αj µ[(∪Ak)∩Bj] =
∑
j

αj µ[(∪Ak)∩Bj] =

∫
χ.

En passant à la limite quand k → ∞ dans l’inégalité∫
f +

∫
g ≥ (1− δ)

∫
Ak

χ,

on trouve donc ∫
f +

∫
g ≥ (1− δ)

∫
X\Z

χ = (1− δ)

∫
X

χ.

En faisant tendre δ vers 0, on obtient∫
f +

∫
g ≥

∫
χ.

Puisque χ est une fonction simple arbitraire minorant f + g, on a finalement∫
f +

∫
g ≥

∫
(f + g).

□
Remarque III-53. Dans le chapitre suivant, un raisonnement exactement simi-

laire permettra de démontrer le théorème dit de convergence dominée de Lebesgue.
En fait, dans la plupart des ouvrages de référence on démontre d’abord le théorème
de convergence dominée, et on en déduit ensuite l’additivité de l’intégrale.

III-3.2. Généralisation : fonctions sommables. Le Théorème III-52 en-
traîne facilement la linéarité de l’intégrale des fonctions sommables.

Théorème III-54 (linéarité de l’intégrale). Soient (X,µ) un espace mesuré ; f ,
g deux fonctions sommables sur X, à valeurs dans R ; et α, β deux scalaires. Alors
αf + βg est sommable, et∫

(αf + βg) dµ = α

(∫
f dµ

)
+ β

(∫
g dµ

)
.

En particulier, l’intégrale est une forme linéaire positive sur l’espace vectoriel des
fonctions sommables.

Démonstration. On note d’abord que
∫
(αf) dµ = α(

∫
f dµ), et

∫
(βg) dµ =

β(
∫
g dµ). Il suffit donc de montrer que si f et g sont sommables de signe quelconque,

alors
∫
(f + g) dµ = (

∫
f dµ) + (

∫
g dµ). Pour cela on écrit

(f + g)+ − (f + g)− = f + g = (f+ − f−) + (g+ − g−),

d’où (quand f et g sont finies, ce qui est vrai en-dehors d’un ensemble de mesure
nulle)

(f + g)+ + f− + g− = f+ + g+ + (f + g)−;
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on intègre alors les deux membres en utilisant le Théorème III-52 :∫
(f + g)+ dµ+

∫
f− dµ+

∫
g− dµ =

∫
f+ dµ+

∫
g+ dµ+

∫
(f + g)− dµ.

Toutes ces quantités sont finies puisque |f | et |g| sont intégrables, on en déduit donc∫
(f + g)+ dµ−

∫
(f + g)− dµ =

∫
f+ dµ−

∫
f−d dµ+

∫
g+ dµ−

∫
g− dµ,

soit
∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

Le raisonnement précédent montre bien que l’intégrale par rapport à µ est une
forme linéaire. Enfin la propriété de positivité est évidente : si f est mesurable
positive, alors

∫
f dµ ≥ 0. □

Définition III-55 (espace de Lebesgue). Si (X,A, µ) est un espace mesuré,
l’espace vectoriel des fonctions sommables est noté L1(X,µ) (ou L1(X,A, µ), ou
L1(X, dµ), ou L1(X), ou L1(µ), ou L1(dµ)) et appelé espace de Lebesgue d’exposant 1.

Remarque III-56. Soient f et g deux fonctions sommables, et λ ∈ R. Alors∫
|λf | =

∫
|λ||f | = |λ|

∫
|f |;∫

|f + g| ≤
∫

|f |+ |g| =
∫

|f |+
∫

|g|.

L’application

f 7−→
∫

|f |,

définie sur L1(dµ), est donc proche de satisfaire les axiomes requis par une norme : il
lui manque seulement la propriété

∫
|f | = 0 =⇒ f = 0. Mais cette dernière identité

est évidemment fausse : on sait que
∫
|f | = 0 si et seulement si la fonction f est

nulle hors d’un ensemble µ-négligeable, ce qui n’impose pas à f d’être identiquement
nulle, mais seulement nulle presque partout, ou “presque nulle”.

Si l’on veut transformer L1 en espace vectoriel, muni de la norme
∫
|f |, il faut

donc quotienter par la relation d’équivalence “coïncider presque partout”. Deux fonc-
tions qui ne diffèrent que par un ensemble de mesure nulle seront alors considérées
“identiques”. Attention : cette opération de quotient n’est utile que si l’on veut
mettre à profit la structure d’espace vectoriel normé de l’espace ainsi obtenu.

III-3.3. Action sur les fonctions continues. On a vu que si X est un espace
mesuré de mesure finie, alors les fonctions bornées sont intégrables. Définissons la
norme de la convergence uniforme sur l’espace Cb(X) des fonctions continues
bornées de X dans R par la formule

‖f‖∞ := sup
x∈X

|f(x)|.

On a alors l’énoncé suivant.

Proposition III-57 (l’intégrale appartient à (Cb)
∗). Soit µ une mesure de Borel

sur un espace X de mesure finie. Alors µ définit une forme linéaire positive continue
sur l’espace vectoriel Cb(X) des fonctions continues bornées sur X, normé par la
norme de la convergence uniforme.
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Remarque III-58. La nouveauté par rapport au Théorème III-54 est la conti-
nuité de µ. On rappelle qu’une forme linéaire L est dite continue si

‖L‖ = sup
x ̸=0

|Lx|
‖x‖

< +∞.

Preuve de la Proposition III-57. Bien sûr, toute fonction continue est bo-
rélienne, donc mesurable, et toute fonction mesurable bornée est intégrable. En
outre, ∣∣∣∣∫ f

∣∣∣∣ ≤ ∫ |f | ≤
∫

‖f‖∞ = µ[X] ‖f‖∞.

Il s’ensuit que l’intégrale est bien une forme linéaire continue sur Cb(X), dont la
norme est majorée par le nombre positif µ[X]. Le choix f = 1 atteint la borne, d’où
‖µ‖Cb(X)∗ = µ[X]. □

On peut construire ainsi de nombreuses formes linéaires continues sur Cb(X),
mais il n’est pas clair que ce soient les seules, même dans des cas simples comme X =
Rd. Cependant, si X est compact, le théorème de représentation de Riesz assure que
toutes les formes linéaires continues sur C(X) correspondent à des mesures. Dans ce
cas, bien sûr, toutes les fonctions continues sont bornées. La prochaine section sera
l’occasion de démontrer un énoncé un peu plus général.

Exercice III-59. (i) Admettons pour quelques instants que toute forme linéaire
continue sur un sous-espace fermé d’un espace vectoriel E peut se prolonger en
une forme linéaire continue sur E tout entier (cette version du théorème de Hahn–
Banach exige l’axiome du choix général). Étendre l’application “limite à l’infini”
sur les fonctions continues R → R qui convergent à l’infini, en une forme linéaire
continue sur l’espace de toutes les fonctions continues bornées sur R, convergentes
ou non. Montrer que cette forme linéaire est finiment additive, mais pas σ-additive,
et n’est donc pas une mesure.

(ii) Retournant maintenant à l’axiomatique de ce cours qui ne comprend pas
l’axiome du choix général, montrer qu’il est soit faux, soit indécidable, que Cb(R)∗
soit constitué de mesures.

III-4. L’intégrale selon Riesz
Le résultat central de cette section, le théorème fondamental de Riesz, s’applique

quand l’espace est localement compact, et atteint alors deux objectifs simultané-
ment :

• il identifie le dual de l’espace des fonctions continues à support compact ;
• il fournit une autre construction, alternative à celle de Lebesgue mais équiva-

lente, de l’intégration.

III-4.1. Enoncé du théorème. Commençons par quelques définitions.

Définition III-60 (espaces de fonctions continues). Soit X un espace topologique
arbitraire. Si f : X → R est une fonction continue, on appelle support de f le plus
petit fermé en-dehors duquel f est identiquement nulle. On note C(X) l’espace
des fonctions continues de X dans R, Cb(X) l’espace des fonctions continues
bornées sur X, et Cc(X) l’espace des fonctions continues à support compact
sur X. Enfin, on note C0(X) l’espace des fonctions f continues sur X qui tendent
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vers 0 à l’infini, au sens où pour tout ε > 0 on peut trouver un compact K ⊂ X
en-dehors duquel |f | ≤ ε. Clairement,

Cc(X) ⊂ C0(X) ⊂ Cb(X) ⊂ C(X).

L’ inclusion est stricte en général, sauf quand X est compact, auquel cas tous ces
espaces coïncident. Les espaces Cc(X), C0(X) et Cb(X), munis de la norme de la
convergence uniforme, sont des espaces vectoriels normés.

Remarque III-61. L’espace Cc(X) n’est pas a priori complet (au sens usuel) : par
exemple, on peut facilement construire une fonction sur R, à support non compact,
qui soit limite uniforme de fonctions continues à support compact. En fait dans un
espace localement compact, la complétion de Cc(X) est l’espace C0(X) des fonctions
continues qui tendent vers 0 à l’infini. L’espace Cb(X), en revanche, est complet.

La convention qui suit, interne à cette section, sera utile pour abréger quelques
formulations.

Définition III-62 (pré-régularité). Soit µ une mesure de Borel sur un espace
topologique X. On dira que µ est pré-régulière si pour tout Borélien A de X,

µ[A] = inf
{
µ[O]; O ouvert; A ⊂ O

}
(régularité extérieure) et pour tout ouvert B de X,

µ[B] = sup
{
µ[K]; K compact; K ⊂ B

}
.

Théorème III-63 (théorème de représentation de Riesz). Soit X un espace
topologique séparé, localement compact. Alors on peut identifier (mettre en corres-
pondance bijective)

- d’une part, les formes linéaires Λ sur Cc(X), positives ;
- d’autre part, les mesures de Borel µ sur X, pré-régulières et finies sur les

compacts ;
via les formules{

Λf =
∫
f dµ, pour tout f ∈ Cc(X),

µ[O] = sup
{
Λf, f ∈ Cc(X), 0 ≤ f ≤ 1O

}
, pour tout ouvert O.

Avant de continuer, voici une liste de commentaires sur cet énoncé, qui admet
quelques variantes plus ou moins subtiles.

Remarques III-64. (i) L’hypothèse de compacité locale est fondamentale.
L’espace de Wiener W = {γ ∈ C([0, 1];Rn); γ(0) = 0} ne la remplit pas.
On vérifiera en exercice que ses compacts (décrits par le théorème d’Ascoli)
sont tous d’intérieur vide. L’espace Cc(W ) est donc réduit à {0} ! Pourtant il
existe des mesures non triviales sur W , telles que les mesures de Dirac, ou la
célèbre mesure de Wiener décrite dans la section II-2.

(ii) Dans l’énoncé, on ne peut pas remplacer Cc(X) par l’espace plus gros Cb(X).
On peut en revanche le remplacer sans dommage par l’espace C0(X), com-
plétion de Cc(X) pour la norme de la convergence uniforme.

(iii) Dans la définition de “pré-régularité” on a imposé que l’identité µ[A] =
supK⊂A µ[K] soit vérifiée pour tout ouvert. En fait cette identité sera alors
vérifiée automatiquement pour tout ensemble mesurable de mesure finie. En
particulier, si une mesure produite par le Théorème de Riesz est de masse
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totale finie, alors elle est régulière. Cette remarque s’avèrera utile plus tard
dans la démonstration du Théorème VIII-66 ; il ne faut cependant pas y at-
tacher une grande importance, car en pratique, dans la grande majorité des
cas la régularité est automatique, par exemple grâce aux Théorèmes III-67
et III-68 présentés dans la sous-section suivante.

(iv) On peut, si on le souhaite, compléter la mesure µ grâce au Théorème II-93,
et obtenir donc une mesure complète.

(v) La preuve ne nécessite pas vraiment la linéarité de l’application Λ : il suffit de
savoir que Λ est une fonctionnelle positive, croissante (f ≤ g =⇒ Λf ≤ Λg) et
sur-additive (Λ(f+g) ≥ Λf+Λg) sur l’espace des fonctions continues positives
à support compact. Cette remarque aussi sera utile pour la démonstration du
Théorème VIII-66.

(vi) Si l’on réfléchit un peu à l’énoncé, on a l’impression que l’hypothèse de pré-
régularité peut être évitée : en effet, toute mesure de Borel finie µ sur les
compacts définit bien une forme linéaire positive Λ sur Cc(X). Cependant,
si l’on n’impose pas la pr’́e-régularité, rien ne garantit a priori l’unicité de la
mesure µ correspondant à Λ.

Voici maintenant deux remarques d’ordre plus général :

Remarque III-65. Si µ[X] = +∞, la forme linéaire Λ définie par µ n’est pas
continue sur Cc(X) considéré comme espace vectoriel normé (norme de la conver-
gence uniforme). En revanche, on peut munir Cc(X) d’une topologie alternative bien
choisie, de sorte que Λ soit une forme linéaire continue en un sens bien précis. Je
n’en dirai pas plus sur ce problème, dont la solution peut être considérée comme le
point de départ de la théorie des distributions [Schwartz].

Remarque III-66. Le nom de “théorème de représentation de Riesz” est égale-
ment donné à un autre théorème, très différent (description du dual d’un espace de
Hilbert, voir Chapitre VIII). Cette coïncidence n’a rien de surprenant, Riesz étant,
avec Banach, l’un des principaux fondateurs de l’analyse fonctionnelle moderne.

Avant de passer à la preuve du Théorème III-63, je vais maintenant donner deux
énoncés simplifiés.

III-4.2. Enoncés simplifiés. L’hypothèse de régularité est souvent vérifiée au-
tomatiquement, sous des hypothèses peu contraignantes sur X. On pourra donc
retenir les variantes explicitées ci-après, qui n’utilisent pas explicitement ce concept.

Théorème III-67 (théorème de représentation de Riesz, version simplifiée). Soit
X un espace topologique séparé, localement compact, dans lequel tout ouvert est union
dénombrable de compacts. Alors on peut identifier

- d’une part, les formes linéaires Λ positives sur Cc(X) ;
- d’autre part, les mesures boréliennes µ sur X, finies sur les compacts ;

via les formules{
Λf =

∫
f dµ, pour tout f ∈ Cc(X)

µ[B] = sup
{
Λf, f ∈ Cc(X), 0 ≤ f ≤ 1B

}
, pour tout borélien B.

Ces mesures sont automatiquement régulières.
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Théorème III-68 (théorème de représentation de Riesz, cas métrique compact).
Soit X un espace topologique métrique compact. Alors on peut identifier

- d’une part, les formes linéaires Λ positives sur C(X) ;
- d’autre part, les mesures boréliennes µ finies sur X ;

via les formules{
Λf =

∫
f dµ, pour tout f ∈ C(X)

µ[B] = sup
{
Λf, f ∈ Cc(X), 0 ≤ f ≤ 1B

}
, pour tout borélien B.

Ces mesures sont automatiquement régulières, et ces formes linéaires sont automa-
tiquement continues ; on a alors
(12) ‖Λ‖ = µ[X].

Démonstration. Les Théorèmes III-67 et III-68 s’obtiennent en combinant le
théorème de représentation de Riesz avec les théorèmes de régularité II-64 et II-62,
respectivement. En ce qui concerne (12), pour l’égalité il suffit de choisir f = 1 dans
le calcul de sup ‖Λf‖/‖f‖∞. □

Passons maintenant à la démonstration du Théorème de Riesz. Il découlera assez
simplement du Théorème de Carathéodory généralisé établi au Chapitre II, Théo-
rème II-82. D’autres approches sont possibles. Une démonstration compacte (!),
assez délicate, est proposée dans [Rudin, pp. 40-47] ; mais elle reprend plusieurs des
arguments utilisés dans la preuve du Théorème II-82. On voit ici l’intérêt du Théo-
rème II-82 : démontrer le Théorème de Riesz via le Théorème de Carathéodory lui-
même, sous la forme du Théorème II-78, est un formidable casse-tête ! Une variante
de cette dernière démarche est menée à bien dans [Dudley], via un intermédiaire
délicat, le Théorème de Daniell-Stone, qui traite de prolongement des fonctionnelles
linéaires positives (voir aussi [Rudin, p. 398] ; in fine, la démonstration du Théorème
de Riesz y fait intervenir le théorème de convergence uniforme de Dini.

III-4.3. Preuve du théorème de Riesz. Soit X un espace séparé, localement
compact, et soit µ une mesure finie sur les compacts. Si f est une fonction continue
à support compact K, elle est bornée par la fonction sommable ‖f‖∞1K , donc som-
mable. La forme linéaire Λ définie par Λf :=

∫
f dµ est donc bien définie sur Cc(X),

et elle est évidemment positive.
C’est bien sûr la réciproque qui est délicate. Soit Λ une forme linéaire positive

sur Cc(X), montrons qu’il existe au plus une mesure µ, satisfaisant aux hypothèses
du Théorème de Riesz, qui puisse la représenter. Soient µ1 et µ2 deux mesures
admissibles, et soit K un compact. Comme µ1 est finie sur les compacts, et pré-
régulière, au sens de la Définition III-62, on sait qu’il existe un ouvert O contenant
K tel que µ1[K] ≥ µ1[O] − ε, où ε > 0 est arbitrairement petit. Par le lemme
d’Urysohn, on peut construire une fonction continue φ encadrée par les fonctions
indicatrices 1K et 1O. On a donc

µ2[K] =

∫
1K dµ2 ≤

∫
φdµ2 =

∫
φdµ1 ≤

∫
1O dµ1 = µ1[O] ≤ µ1[K] + ε.

On conclut en faisant tendre ε vers 0 que µ2[K] ≤ µ1[K], et par symétrie µ1[K] =
µ2[K]. Il s’ensuit que µ1 et µ2 coïncident sur les compacts ; comme elles sont pré-
régulières, elles coïncident également sur les ouverts, et par suite (toujours par pré-
régularité) sur tous les ensembles mesurables. Cela prouve l’unicité de µ.
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Passons maintenant à la construction de µ. L’idée est encore une fois d’approcher
les fonctions indicatrices des ouverts par des fonctions continues. Pour tout ensemble
ouvert O, on pose donc

µ[O] = sup
{
Λf ; f ∈ Cc(X); 0 ≤ f ≤ 1O

}
.

Le problème est maintenant de prolonger µ à la tribu borélienne tout entière. Comme
l’ensemble F de tous les ouverts deX est stable par intersection finie, le Théorème II-
82(ii) assure l’existence d’un tel prolongement si la condition (8) est satisfaite pour
tous A,B ouverts.

Dans un premier temps, vérifions que µ est dénombrablement sous-additive sur
l’ensemble des ouverts : si (Ok)k∈N est une famille d’ouverts, et O := ∪Ok, alors
µ[O] ≤

∑
k µ[Ok]. En effet, soit f une fonction à support compact, 0 ≤ f ≤ 1O, et soit

K son support. K étant inclus dans l’union des Ok, on peut appliquer le théorème II-
42 de partition de l’unité pour trouver des fonctions continues χi1 , . . . , χin , telles que
0 ≤ χij ≤ 1, χij a son support inclus dans Oij et

∑
χij = 1 sur K. En particulier,

f = (
∑

χij)f =
∑
j

gj,

où chaque fonction gj est à support compact dans Oij , et prend ses valeurs dans
[0, 1]. On en déduit que

Λf =
∑
j

Λgj ≤
∑
j

µ[Oij ] ≤
∑
k

µ[Ok].

En passant au supremum sur f , on conclut que

µ[O] ≤
∑
k

µ[Ok].

Comme la famille F est également stable par union dénombrable, la définition
de la mesure extérieure se simplifie : dans le contexte présent,

µ∗[A] = inf
{
µ[O]; O ouvert, A ⊂ O

}
.

En particulier, il est clair que µ∗ coïncide avec µ sur F . Donc, si A et B sont deux
ouverts de X, l’inégalité

µ[A] ≤ µ[A ∩B] + µ∗[A \B]

est conséquence de la sous-additivité de µ∗. Il nous reste uniquement à vérifier l’in-
égalité inverse, à savoir : pour tous ouverts A et B de X,
(13) µ[A ∩ B] + µ∗[A \B] ≤ µ[A].

Nous allons démontrer cette inégalité en deux étapes.
Etape 1 : µ est sur-additive (et donc additive) sur F . Soient U et V deux ouverts

disjoints, nous allons voir que
µ[U ] + µ[V ] ≤ µ[U ∪ V ],

ce qui est un cas particulier de (13). Soient f et g deux fonctions continues à supports
compacts inclus dans U et V respectivement, à valeurs dans [0, 1]. Les supports de
f et g étant disjoints, la fonction continue f + g est toujours à valeurs dans [0, 1] ;
et bien sûr, son support est inclus dans U ∪ V . Il s’ensuit

Λf + Λg = Λ(f + g) ≤ µ[U ∪ V ].
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On conclut en passant au supremum sur toutes les fonctions f et g admissibles.
Etape 2 : cas général. C’est seulement à ce niveau de la construction que l’hy-

pothèse de compacité locale va intervenir. Soient deux ouverts A et B de X, et soit
f une fonction à support compact K ⊂ A ∩ B, à valeurs dans [0, 1]. D’après le
Lemme II-43, il existe un compact K ′ et un ouvert O′ tels que

K ⊂ O′ ⊂ K ′ ⊂ A ∩ B.
En particulier,

Λf ≤ µ[O′].

Par ailleurs,
A \B = A \ (A ∩B) ⊂ A \K ′,

et A \K ′ est un ouvert, d’où
µ∗[A \B] ≤ µ∗[A \K ′] = µ[A \K ′].

On a finalement
Λf + µ∗[A \B] ≤ µ[O′] + µ[A \K ′].

Les ouverts O′ et A \ K ′ sont disjoints et leur union est incluse dans A ; grâce au
résultat de l’Etape 1, on peut compléter l’inégalité précédente comme suit :

Λf + µ∗[A \B] ≤ µ[O′] + µ[A \K ′] = µ[O′ ∪ (A \K ′)] ≤ µ[A],

ce qui achève la démonstration du théorème.
Les Remarques III-64 ne nécessitent pas de justification, sauf le point (iii) que je

vais maintenant considérer.
Démonstration de la Remarque III-64(iii). Soit A la famille de toutes les

parties mesurables, et B l’ensemble de toutes les parties A ∈ A tels que (a) µ[A] <
∞ ; (b) µ[A] = sup {µ[K]; Kcompact ⊂ A}. Le but est de montrer que B est
exactement l’ensemble de toutes les parties de mesure finie. Nous allons procéder en
deux temps.

1. On vérifie que A ∩ C ∈ B, pour tout compact C et pour tout A ∈ A. Pour
cela, on introduit

C :=
{
A ∈ A; A ∩ C ∈ B pour tout compact C

}
.

Il est clair que C contient X ; et plus généralement tous les fermés (car l’intersection
d’un fermé et d’un compact est compacte). Si l’on montre que C est une classe
monotone, alors le Théorème II-77 (Lemme de classe monotone) impliquera que C
coïncide avec la tribu engendrée par les fermés, qui est A tout entière.

Montrons donc que C est une classe monotone. Si (Aℓ)ℓ∈N est une famille crois-
sante d’éléments de C, et C est un compact, pour tout ℓ ∈ N et pour tout ε > 0 on
peut trouver un compact Kℓ tel que µ[(Aℓ ∩C) \Kℓ] ≤ 2−ℓε. Quitte à remplacer Kℓ

par K1∪ . . .∪Kℓ, on peut supposer que la suite (Kℓ) est croissante ; et on a toujours
µ[(Aℓ ∩C) \Kℓ] ≤ ε. La suite (µ[Kℓ])ℓ∈N est croissante et majorée par µ[A∩C], elle
converge donc, et il existe ℓ0 ∈ N tel que pour tout ℓ ≥ ℓ0 on ait µ[Kℓ\Kℓ0 ] ≤ ε. On
conclut facilement que µ[(Aℓ∩C)\Kℓ0 ] ≤ 2ε, et la même estimation vaut pour A∩C,
où A est l’union des Aℓ. La conclusion est que C est stable par limite croissante.

Soient maintenant A et B dans C, soit C un compact et soit ε > 0. SoitK ⊂ A∩C
un compact tel que µ[(A∩C) \K] ≤ ε. Par ailleurs il existe un ouvert O contenant
B ∩ C tel que µ[O \ (B ∩ C)] ≤ ε. On en déduit que µ[(A \ B) ∩ O \ (K \ O)] ≤
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µ[(A ∩ C) \ K] + µ[O \ (B ∩ C)] ≤ 2ε. On en déduit que A \ B ∈ C, et C est
donc stable par différence. Ceci achève de prouver que C est une classe monotone,
et conclut l’argument.

2. On vérifie que tout A ∈ A de mesure finie est en fait un élément de B. Soit
en effet A une telle partie, et soit ε > 0. Il existe un ouvert O contenant A tel que
µ[O] ≤ µ[A] + ε. Il existe un compact K contenu dans O tel que µ[O] ≥ µ[K] − ε ;
en particulier µ[O \ K] ≤ 2ε. Puisque A ∩ K ∈ B (par l’étape 1), il existe un
compact K ′ contenu dans A ∩ K tel que µ[(A ∩ K) \ K ′] ≤ ε. On en déduit que
µ[A \K ′] ≤ µ[(A∩K) \K ′] + µ[A \K] ≤ µ[(A∩K) \K ′] + µ[O \K] ≤ ε+2ε = 3ε,
ce qui achève l’argument. □

III-4.4. Complément : approximation des fonctions mesurables par des
fonctions continues ou semi-continues. Le théorème de Riesz montre que sous
certaines hypothèses topologiques, on peut choisir les fonctions continues comme
point de départ de la théorie de l’intégration, au lieu des fonctions simples. On
peut se demander si cette idée peut être approfondie, et s’il existe un analogue du
théorème d’approximation par des fonctions simples, exprimé en termes de fonctions
continues. Les théorèmes de Lusin et de Vitali-Carathéodory donnent une réponse
positive à cette question. Tous deux s’autorisent une erreur arbitrairement petite,
au sens de la mesure.

Théorème III-69 (Théorème de Lusin). Soit X un espace topologique séparé
localement compact, et soit µ une mesure de Borel régulière sur X. Soit f : X → R
une fonction mesurable, nulle en-dehors d’un ensemble de mesure finie. Alors,

(i) pour tout ε > 0 il existe une fonction continue fε, à support compact, telle
que

inf f ≤ inf fε ≤ sup fε ≤ sup f

et fε coïncide avec f en-dehors d’un ensemble de mesure inférieure ou égale à ε.
(ii) En-dehors d’un ensemble de mesure nulle, f est limite d’une suite (fn) de

fonctions continues à support compact, prenant toutes leurs valeurs dans [inf f, sup f ].
En utilisant de manière anticipée le théorème de convergence dominée, qui sera

démontré dans le chapitre suivant, on peut déduire du Théorème de Lusin le corol-
laire suivant :

Corollaire III-70 (Densité des fonctions continues). Soit X un espace topo-
logique séparé localement compact, et soit µ une mesure de Borel régulière sur X,
σ-finie. Alors, pour toute fonction intégrable f sur X on peut trouver une suite
(fn)n∈N de fonctions continues à support compact, telle que∫

|fn − f | dµ −−−→
n→∞

0.

Démonstration du Théorème III-69. Démontrons les deux énoncés (i) et
(ii) en même temps, en construisant une famille (fn)n∈N de fonctions continues à
support compact, toutes comprises entre inf f et sup f , telles que µ[{x; f(x) 6=
fn(x)}] ≤ 1/n, et pour presque tout x ∈ X, f(x) = fn(x) pour n assez grand.

Supposons d’abord que f est la fonction indicatrice d’un ensemble mesurable
A de mesure finie. Comme µ est régulière, il existe une suite (Kn)n∈N de compacts
inclus dans A, et une suite (On)n∈N d’ouverts contenant A, tels que µ[On\Kn] ≤ 1/n.
Sans perte de généralité, on peut supposer la suite (Kn) croissante et la suite (On)
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décroissante. Par le Lemme d’Urysohn II-41, pour chaque n il existe une fonction
continue φn, à support compact dans On, à valeurs dans [0, 1], identiquement égale
à 1 sur Kn. La fonction φn coïncide avec f en-dehors de On \Kn, qui est de mesure
inférieure ou égale à 1/n. En outre, si l’on pose G = ∩On et F = ∪Kn, N = G \ F ,
alors µ[N ] = 0 ; tout x ∈ X \ N appartient à Kn pour n assez grand, ou à X \ On

pour n assez grand, et dans tous les cas on a alors φn(x) = f(x). En conclusion,
(φn)n∈N remplit le cahier des charges.

Par combinaison linéaire, le résultat s’étend instantanément au cas où f est une
fonction simple, nulle en-dehors d’un ensemble de mesure finie. Soit maintenant f
une fonction mesurable positive bornée, nulle en-dehors d’un ensemble S de mesure
finie ; sans perte de généralité on suppose f ≤ 1 ; on sait alors que f est limite
d’une suite croissante (gk)k∈N de fonctions simples, nulles en-dehors de S, telles que
gk−gk−1 ≤ 2−k. Chacune de ces fonctions est également limite d’une famille (φk,n)n≥1

de fonctions continues à support compact, telles qu’il existe une famille décroissante
de parties mesurables Ak,n vérifiant

{x; φk,n(x) 6= gk(x)− gk−1(x)} ⊂ Ak,n; µ[Ak,n] ≤ 2−k/n.

On définit alors

fn(x) =
∞∑
k=0

φk,n(x).

Par convergence uniforme, fn est continue ; elle est bornée par sup f , et coïncide avec∑
(gk − gk−1) = f en-dehors de l’ensemble An := ∪kAk,n, dont la mesure est au plus∑∞
k=0 ε2

−k/n = 2/n. En outre, la famille des An est décroissante, son intersection
est donc de mesure nulle, et tout x ∈ X \ (∩An) vérifie fn(x) = f(x) pour n = n(x)
assez grand. La famille (fn) remplit donc toutes les conditions souhaitées.

Si f est positive mais non bornée, on définit Em := {x ∈ X; f(x) ≥ m}. Comme
f est mesurable et à valeurs dans R, l’intersection décroissante des Em est vide, et
par σ-additivité µ[Em] → 0 quand m→ ∞. On peut alors effectuer un raisonnement
similaire au raisonnement ci-dessus. Enfin, si f n’est pas positive, on sépare f en
partie positive et négative f+ et f−, et on conclut en appliquant le théorème à f+ et
f− séparément. □

Démonstration du Corollaire III-70. Par hypothèse, on peut écrire X
comme la réunion croissante des Xk (k ∈ N), avec Xk mesurable et µ[Xk] < +∞.
Soit gn = f1Xn1|f |≤n. Puisque f est intégrable, |f | est fini µ-presque partout, et donc
gn converge presque partout vers f . Le théorème IV-12 de convergence dominée de
Lebesgue implique alors ∫

|f − gn| dµ −→ 0.

Pour chaque n, la fonction gn est nulle en-dehors de l’ensemble de mesure finie
Xn, et bornée par n. Par le théorème de Lusin, on peut trouver une fonction fn
continue à support compact, bornée par n, qui coïncide avec gn en-dehors d’un
ensemble An de mesure inférieure à 1/n2). En particulier,∫

|gn − fn| ≤ sup(|fn|+ |gn|) µ[An] ≤
2n

n2
−→ 0.

Il s’ensuit que
∫
|f − fn| → 0. □
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Remarque III-71. Ce théorème de densité est très général, mais pas très ex-
plicite. On verra plus tard que dans le cas où X = Rn, on peut construire, grâce
à l’opération de convolution, des approximations beaucoup plus explicites d’une
fonction intégrable.

Dans le théorème de Lusin, il est en général impossible d’imposer fε ≤ f , alors
que l’on peut le faire quand on approche f par une famille de fonctions simples. Le
théorème suivant remédie partiellement à ce problème.

Théorème III-72 (Théorème de Vitali-Carathéodory). Soit X un espace topo-
logique localement compact, et soit µ une mesure de Borel régulière sur X. Soit
f : X → R une fonction mesurable. Alors, pour tout ε > 0 il existe des fonctions f+

et f−, telles que f− ≤ f ≤ f+, f− est semi-continue supérieurement et majorée, f−

est semi-continue inférieurement et minorée, et∫
f+ dµ− ε ≤

∫
f ≤

∫
f− dµ+ ε.

Remarque III-73. Attention, ici f+ et f− n’ont rien à voir avec f+ (partie
positive) et f− (partie négative).

Démonstration. Quitte à séparer f en parties positive et négative, on peut
supposer f ≥ 0. En approchant f par une suite de fonctions simples, on constate
que l’on peut écrire

f =
∞∑
i=1

ci1Ei
,

∞∑
i=1

ciµ[Ei] < +∞.

Pour chaque i on choisit un ouvert Oi contenant Ei, et un compact Ki contenu dans
Ei, tels que

µ[Oi \Ki] ≤ ε/2i+1.

On pose alors

f− =
∞∑
i=1

ci1Ki
, f+ =

N∑
i=1

ci1Oi
,

où N est choisi de telle sorte que
∞∑

i=N+1

ciµ[Ei] ≤ ε/2.

On vérifie facilement que f+ et f− vérifient toutes les conditions requises. □

III-5. Intégration à valeurs vectorielles
Jusqu’ici, nous avons seulement cherché à intégrer des fonctions à valeurs dans

R ou R. Il est facile d’en déduire une théorie de l’intégration des fonctions à valeurs
dans un espace vectoriel de dimension finie, par exemple Rn ou C : il suffit d’“intégrer
composante par composante”. On démontre facilement la proposition suivante.

Proposition III-74 (intégration à valeurs dans un espace vectoriel de dimension
finie). Soient (X,µ) un espace mesuré, et E = Rn (resp. E = C), muni d’une norme
(resp. du module complexe) | · |. On dit qu’une fonction mesurable f : X → E est
intégrable, ou sommable, si la fonction |f |, définie sur X et à valeurs dans R+, est
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sommable. Une base (ek)1≤k≤n de E en tant que R-espace vectoriel étant donnée, on
peut décomposer la fonction f sous la forme

f =
∑

fkek,

où les fonctions fk sont mesurables de X dans R. Si f est sommable, toutes les
fonctions fk le sont, et on définit∫

X

f dµ =
∑(∫

X

fk dµ

)
ek.

Le vecteur ainsi défini ne dépend pas du choix de la base (ek), et l’opération d’inté-
gration ainsi construite satisfait aux règles de calcul suivantes : pour toutes fonctions
sommables f et g, et pour tout λ ∈ R (resp. λ ∈ C),∫

(λf) dµ = λ

∫
f dµ,∫

(f + g) dµ =

∫
f dµ+

∫
g dµ,∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.

En outre, si E = Rn et | · | est la norme euclidienne (resp. E = C et | · | est le
module), il ne peut y avoir égalité dans la dernière inégalité que si l’image de f est,
hors d’un ensemble négligeable, contenue dans une demi-droite de Rn (resp. de C,
vu comme R-espace vectoriel).

On peut maintenant se poser la question de l’intégration de fonctions à valeurs
dans des espaces vectoriels plus généraux, éventuellement de dimension infinie. C’est
ce que l’on appelle la théorie de l’intégration à valeurs vectorielles, ou théorie
de l’intégrale de Bochner. Cette question est assez naturelle quand on considère
des fonctions à plusieurs variables comme des fonctions d’une variable à valeurs
vectorielles – par exemple f(t, x) = f(t)(x) – démarche classique en théorie des
équations aux dérivées partielles par exemple, ou en théorie de l’interpolation.

La définition de la sommabilité tombe sous le sens : une fonction mesurable f
de X dans un espace vectoriel abstrait E muni d’une norme ‖ · ‖ est dite intégrable
si la fonction ‖f‖ est intégrable sur X. Cependant, il est nettement plus délicat de
définir l’intégrale de f :

- soit on peut la définir composante par composante, sous de bonnes hypothèses
de séparabilité, en particulier ;

- soit, si l’on intégre sur un espace de fonctions, on reprend la théorie en distin-
guant intégration de la partie positive et intégration de la partie négative.

- soit on reprend la théorie directement dans un cadre fonctionnel élargi, en ne
considérant comme fonctions simples que des combinaisons linéaires de fonctions
indicatrices d’ensembles de mesure finie ;

Le Théorème de Désintégration de la mesure, au Chapitre ??, fournira un bon
exemple.

L’adaptation de la théorie de Lebesgue à l’intégration sur des espaces fonction-
nels est la théorie de l’ intégrale de Bochner. Les principaux résultats en sont
très similaires aux résultats classiques que nous avons étudiés jusqu’à présent, ne
réservent guère de surprise, et peuvent presque toujours être formulés in fine dans le
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langage de l’intégrale classique : ainsi, l’assertion u ∈ L1(X;C(Y )) peut se transcrire
en ∫

X

(
sup
Y

|u(x, y)|
)
dµ(x) < +∞;

quant à l’intégrale vectorielle
∫
X
u(x, ·) dµ(x), on peut toujours se la représenter

comme la fonction qui à y associe
∫
X
u(x, y) dµ(x). Avec de tels réflexes, la lectrice

devrait pouvoir facilement interpréter les principaux résultats de l’intégration à va-
leurs vectorielles.

Sans développer une théorie complète, je montrerai au chapitre ?? comment
définir une théorie simple d’intégration à valeurs vectorielles qui couvre la plupart
des espaces habituels. Pour cela, attendons d’être un peu plus aguerris en analyse
fonctionnelle.



CHAPITRE IV

Théorèmes fondamentaux d’intégration

Maintenant que l’intégrale est définie, on va établir ses propriétés fondamentales :
celles qui servent constamment et qui ont fait le succès de la théorie de Lebesgue.

Ce chapitre passe donc en revue, dans un cadre très général, les outils-clés sui-
vants : (i) des théorèmes de passage à la limite sous l’intégrale, (ii) des théorèmes
de changement de variable abstrait, (iii) des théorèmes d’intégration produit, et (iv)
des inégalités contrôlant les expressions intégrales. Tout cela occupe les sections IV-1
à IV-4, formant peut-être la partie la plus importante du cours.

Les sections IV-4.5 et IV-5.2 traitent de sujets plus avancés : d’une part les
notions d’équi-intégrabilité et de tension, en lien avec la compacité des familles de
mesures ; d’autre part, la construction de mesures produits avec un nombre infini de
facteurs.

Dans tout ce chapitre on travaillera avec des mesures “individuellement” : ty-
piquement, un théorème fera intervenir une mesure fixée. Le Chapitre VIII, au
contraire, considérera des espaces de mesures, étudiées collectivement.

Certains théorèmes ou contre-exemples se baseront sur la mesure de Lebesgue
dans R, dont l’existence a été établie dans la Section II-8 ; ici il suffira de savoir
que la mesure de Lebesgue d’un intervalle de R est simplement sa longueur, et
que l’intégrale associée prolonge l’intégrale de Riemann des fonctions continues par
morceaux. Plus tard, dans le Chapitre VI, on se plongera plus en détail dans les
propriétés de cette mesure particulière.

IV-1. Comportement face aux limites
Soit (fn)n∈N une suite de fonctions mesurables, définies sur un espace mesuré

(X,µ), à valeurs réelles. Peut-on passer à la limite dans l’intégrale des fn ? On va
passer en revue quatre problèmes différents :

⋆ On suppose d’abord que la suite converge en un sens très fort : de manière
monotone, par exemple en croissant. Peut-on passer à la limite sous le signe

∫
? Le

Théorème de convergence monotone de Beppo Levi assure que c’est toujours
possible.

⋆ On suppose maintenant que la suite converge, sans que la convergence soit
monotone ; on sait alors que sa limite est mesurable. Peut-on passer à la limite
sous le signe

∫
? Dans de nombreuses situations, le Théorème de convergence

dominée de Lebesgue l’autorise.
⋆ Puis on considère le cas où la suite (fn) ne converge pas nécessairement ; tout au

moins, on sait alors que sa limite inférieure et sa limite supérieure sont mesurables.
Peut-on relier les intégrales de ces fonctions à l’intégrale des fn ? C’est à ce problème
que répond le Lemme de Fatou.

⋆ Quand on s’intéresse aux fonctions continues, une hypothèse rès forte que l’on
utilise souvent est la convergence uniforme, qui permet en particulier de passer
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à la limite dans l’intégrale de Riemann. La théorie de Lebesgue ne contient pas de
théorème de limite sous hypothèse de convergence uniforme, car la notion plus faible
de convergence simple lui suffit bien. On peut se demander à quel point la notion
de convergence uniforme est plus forte que la notion de convergence simple. Dans
le cadre des fonctions continues, la nuance est considérable. Mais le Théorème
d’Egorov implique que, du point de vue de la mesure, la différence est fine. On
peut ainsi parfois ramener un problème de convergence simple à un problème de
convergence uniforme.

IV-1.1. Convergence monotone. De même que toutes les propriétés cruciales
des mesures découlent de la propriété de σ-additivité, toutes les propriétés impor-
tantes de passage à la limite dans l’intégrale découlent du théorème suivant, appelé
théorème de convergence monotone de Beppo Levi, ou tout simplement théorème
de convergence monotone, et qui généralise un résultat antérieur de Lebesgue. On
rappelle qu’une suite (fn) de fonctions à valeurs dans R est dite croissante si, pour
tout x, la suite (fn(x)) est croissante.

Théorème IV-1 (théorème de convergence monotone de Beppo Levi). (i) Soit
(fn)n∈N une suite croissante de fonctions mesurables sur un espace mesuré (X,A, µ),
à valeurs dans [0,+∞]. Alors

(14)
∫
X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ.

En particulier, la fonction (lim fn), définie sur X et à valeurs dans [0,+∞], est
sommable si et seulement si la limite des

∫
fn est finie.

(ii) La même conclusion est vraie si (fn) est une suite croissante (resp. décrois-
sante) de fonctions mesurables à valeurs dans R, pourvu que l’une des fonctions fn
soit minorée (resp. majoŕee) par une fonction sommable.

Les deux corollaires qui suivent s’obtiennentt en remarquant que les sommes
partielles d’une série à termes positifs forment une famille croissante.

Corollaire IV-2 (interversion de série et sommation pour des fonctions po-
sitives). Soit (fn)n∈N une famille de fonctions mesurables, définies sur un espace
mesuré (X,A, µ), à valeurs dans [0,+∞]. Alors

(15)
∫ (∑

n∈N

fn

)
dµ =

∑
n∈N

∫
fn dµ.

Corollaire IV-3 (interversion de limite croissante et série). Soit (ajm)j∈N,m∈N
un tableau dénombrable de nombres réels positifs, croissante en m. Alors

(16) lim
m→∞

∑
j∈N

ajm =
∑
j∈N

lim
m→∞

ajm.

Exemple IV-4. Soient (µm)m∈N une suite croissante de mesures. On se donne
des parties disjointes (Aj)j∈N, et on note A = ∪Aj. Pour tout m on a

µm[A] =
∑
j∈N

µm[Aj],
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et donc
lim

m→∞
µm[A] =

∑
j∈N

(
lim

m→∞
µm[Aj]

)
.

Il s’ensuit qu’une limite croissante de mesures est une mesure. Ou encore : une
somme dénombrable de mesures est une mesure.

Remarques IV-5. (i) Soit (An)n∈N une famille croissante d’ensembles me-
surables, A = ∪An, et soit fn = 1An ; alors la fonction indicatrice 1A est la
limite croissante des fn, et la formule (14) devient donc

µ[∪Ak] = lim
n→∞

µ[An].

Si en revanche les An sont supposés disjoints, on vérifie sans peine que 1A est
la somme de la série des fn, et la formule (15) se transforme en

µ
[
∪An

]
=
∑

µ[An].

On retrouve donc en cas particulier du théorème de convergence monotone
les deux formulations habituelles de la σ-additivité de µ. En conclusion,
le théorème de convergence monotone n’est autre que la relation de σ-
additivité exprimée en termes de fonctions plutôt que d’ensembles
mesurables.

(ii) Clairement, les énoncés précédents sont également valables si les conditions
de croissance ou de décroissance ne sont vérifiées que µ-presque partout.

Démonstration du Théorème IV-1. Il est facile de voir que l’énoncé (ii) est
une conséquence de l’énoncé (i) : si (fn) est une suite croissante de fonctions, avec
fk0 ≥ g sommable pour un certain k0, alors la famille (fk0 − g) vérifie les hypothèses
de (i), et comme g est sommable on a∫

lim
n→∞

fn =

∫
lim
n→∞

(fn − g) +

∫
g = lim

n→∞

∫
(fn − g) +

∫
g = lim

n→∞

∫
fn.

On traite l’autre cas en changeant fn en −fn. Il suffit donc d’établir (i).
Soit f = lim fn ; par hypothèse fn ≤ f , et donc

∫
fn ≤

∫
f . La suite (

∫
fn) étant

croissante, elle converge dans R, et on a

lim

∫
fn ≤

∫
f.

Il reste à établir l’inégalité inverse, qui est le coeur du problème. On va pour cela
reprendre l’argument déjà utilisé dans la preuve de l’additivité de l’intégrale.

Soit χ une fonction simple qui minore f , et soit δ ∈]0, 1[, on pose

An =
{
x ∈ X; fn(x) ≥ (1− δ)χ(x)

}
.

Par croissance de fn, les parties An forment une famille croissante ; en traitant à
part les x tels que χ(x) = 0, on vérifie sans peine que la réunion des An est l’espace
X tout entier. Si l’on écrit χ =

∑
1≤j≤J αj1Bj

,∫
χ1An =

∫ J∑
j=1

αj1An∩Bj
=

J∑
j=1

αjµ[An ∩ Bj] −−−→
n→∞

J∑
j=1

αjµ[X ∩ Bj] =

∫
χ.
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D’autre part, par positivité de l’intégrale,∫
fn ≥

∫
fn1An ≥ (1− δ)

∫
χ1An .

En passant à la limite dans les deux membres, on trouve

lim
n→∞

∫
fn ≥ (1− δ)

∫
χ.

En prenant le supremum sur toutes les fonctions simples χ minorant f , et en faisant
tendre δ vers 0, on aboutit bien à

lim
n→∞

∫
fn ≥

∫
f.

□
Exercice IV-6. Retrouver l’additivité de l’intégrale en combinant le théorème

de convergence monotone et la Proposition III-36.
Voici maintenant une conséquence simple et importante du théorème de conver-

gence monotone.
Proposition IV-7 (l’intégrale restreinte définit une mesure). Soit f une fonc-

tion mesurable définie sur un espace mesuré (X,A, µ), à valeurs dans [0,+∞]. Alors
la fonction d’ensembles fµ définie par

(17) fµ[A] =

∫
A

f dµ =

∫
X

f 1A dµ

est une mesure sur la σ-algèbre A. En outre, elle vérifie
(18) µ[A] = 0 =⇒ fµ[A] = 0.

Démonstration. Soit (Ak)k∈N une famille de parties disjointes, et A leur union.
Comme on l’a déjà mentionné, on vérifie sans peine que 1A =

∑
1Ak

, et donc

f1A =
∑

(f1Ak
).

Le Corollaire IV-2 implique donc∑
k

∫
(f1Ak

) dµ =

∫ (∑
k

f1Ak

)
dµ =

∫
(f1A) dµ,

soit ∑
k

∫
Ak

f dµ =

∫
∪Ak

f dµ.

Cette propriété de σ-additivité montre que fµ est bien une mesure. □
La propriété (18) est importante et mérite un nom :
Définition IV-8 (absolue continuité). Soient µ et ν deux mesures définies sur

une σ-algèbre commune. On dit que ν est absolument continue par rapport à µ, et
on note parfois ν � µ, si pour toute partie A mesurable,

µ[A] = 0 =⇒ ν[A] = 0.

Nous verrons au Chapitre ?? que, sous certaines conditions, les mesures absolu-
ment continues par rapport à une mesure µ sont exactement les mesures fµ. Notons
une dernière propriété importante de ces mesures :
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Proposition IV-9 (changement de densité de référence). Sur (X,A, µ) un es-
pace mesuré,

(i) Soient f et g deux fonctions mesurables à valeurs dans [0,+∞]. Alors∫
fg dµ =

∫
f d(gµ);

(ii) Soient h et g deux fonctions mesurables à valeurs dans [0,+∞], telles que

g(x) ∈ {0,+∞} =⇒ h(x) = 0.

Alors, avec les conventions 1/0 = +∞, 0× (+∞) = 0/0 = (+∞)/(+∞) = 0, on a

(19)
∫
h dµ =

∫
h

g
d(gµ).

Démonstration. (i) Soit (fn) une suite de fonctions simples convergeant en
croissant vers f . Par convergence monotone,

∫
fng dµ converge vers

∫
fg dµ et

∫
fn d(gµ)

vers
∫
f d(gµ). Il suffit donc de prouver (19) quand f est une fonction simple, et

par linéarité il suffit de le prouver quand f est de la forme 1A. On reconnaît alors la
définition de la mesure gµ.

(ii) Les hypothèses faites sur g et h garantissent que

h =

(
h

g

)
g,

ce qui permet d’appliquer (i) avec f = h/g. □

IV-1.2. Lemme de Fatou.

Théorème IV-10 (Lemme de Fatou). (i) Soient (fn)n∈N une suite de fonctions
définies sur un espace mesuré (X,A, µ), à valeurs dans [0,+∞]. Alors∫

(lim inf
n→∞

fn) dµ ≤ lim inf
n→∞

∫
fn dµ.

(ii) Cette conclusion est toujours valable si les fn sont à valeurs dans R et toutes
minorées par une fonction sommable.

(iii) Symétriquement, si (fn)n∈N est une suite de fonctions à valeurs dans R,
toutes majorées par une fonction sommable, alors∫

(lim sup
n→∞

fn) dµ ≥ lim sup
n→∞

∫
fn dµ.

Démonstration. Là encore, l’énoncé (iii) découle de (ii) via un changement de
signe, et l’énoncé (ii) découlera de l’énoncé (i), on se concentre donc sur ce dernier.

Soit gn := infk≥n fk. On vérifie facilement que gn est mesurable, et définit une
suite croissante qui converge partout vers f := lim inf fk. Bien sûr, gn ≤ fn. En
appliquant le théorème de convergence monotone et en passant à la lim inf, on trouve∫

f = lim
n→∞

∫
gn ≤ lim inf

∫
fn.

□
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Remarque IV-11. Il est facile de construire des exemples où∫
lim inf fn < lim inf

∫
fn,

même si la convergence a lieu partout : cela fournit ainsi des contre-exemples
au passage à la limite sous l’intégrale. Voici trois situations typiques, sur l’espace
R muni de la mesure de Lebesgue. Soit φ une fonction continue, positive, nulle en-
dehors de l’intervalle [0, 1], non identiquement nulle ; quitte à la multiplier par une
constante, supposons que

∫
φ = 1. Pour n ≥ 1 on définit

fn(x) = nφ(nx);

gn(x) = n−1φ(n−1x);

hn(x) = φ(x− n).

Alors les suites de fonctions (fn), (gn) et (hn) convergent vers 0 partout sur R, pour-
tant on montre, par des changements de variables élémentaires, que

∫
fn =

∫
gn =∫

hn = 1. On dit que la suite (fn) illustre un phénomène de concentration (toute
la masse de la suite de fonctions se concentre près de 0), la suite (gn) un phéno-
mène d’évanescence (toute la masse part à l’infini de manière diffuse), et la suite
(hn) un comportement de bosse glissante (la masse “glisse” à l’infini, sans s’éta-
ler). Concentration, évanescence et glissade sont les trois obstructions archétypes au
passage à la limite sous l’intégrale.

f2

f3

f1
g2 g4

h0

h1 h2
h3

Figure 1. concentration des fn, évanescence des gn, bosse glissante hn
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IV-1.3. Convergence dominée.
Théorème IV-12 (théorème de convergence dominée de Lebesgue). Soit (fn)n∈N

une famille de fonctions définies sur un espace mesuré (X,A, µ), à valeurs dans R.
On suppose que (fn) est dominée, i.e.

(i) Il existe g sommable tel que |fn| ≤ g µ-presque partout pour tout n ;
alors

(20)
∫
X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ ≤ lim sup
n→∞

∫
X

fn dµ ≤
∫
X

lim sup
n→∞

fn dµ.

En particulier, si (fn) est dominée et vérifie
(ii) fn converge presque partout vers f ,

alors f est intégrable et

(21)
∫
X

f dµ = lim
n→∞

∫
X

fn dµ.

En outre, on a l’énoncé plus précis

(22) lim
n→∞

∫
X

|fn − f | dµ = 0.

Enfin, on peut remplacer dans cet énoncé l’hypothèse de domination par la condi-
tion plus faible

(i’) Pour tout n il existe gn sommable tel que |fn| ≤ gn µ-presque partout, et tel
que

∫
(lim gn) = lim

∫
gn < +∞.

En introduisant les sommes partielles de séries de fonctions, on déduit de ce
théorème le corollaire suivant :

Corollaire IV-13 (interversion de série et sommation sous hypothèse de do-
mination). Soit (fn)n∈N une famille de fonctions mesurables définies sur un espace
mesuré (X,A, µ), à valeurs dans R. Si∫ (∑

n∈N

|fn|

)
dµ < +∞,

alors chaque fn est sommable, la série de terme général
∫
fn dµ converge, et∫ (∑

n∈N

fn

)
dµ =

∑
n∈N

∫
fn dµ.

Remarques IV-14. (i) La version courte du Théorème IV-12 est la sui-
vante : Dès que (fn)n∈N est dominée et converge presque partout, on a

(23)
∫
X

lim fn = lim

∫
X

fn.

Au plan formel, c’est donc juste une interversion entre les opérations de limite
et d’intégration.

(ii) La fonction f dans (21) (ou la fonction lim fn dans (23)) n’est définie qu’en
dehors d’un ensemble de mesure nulle ; en toute rigueur, pour que la formule
ait un sens, il faut soit la restreindre à l’ensemble mesurable C où la suite
de fonctions converge, soit étendre la fonction limite en une fonction mesu-
rable sur X tout entier (également appelée f par abus de notation) grâce
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au Théorème III-16(iii) ; dans ce dernier cas, peu importent les valeurs du
prolongement hors de l’ensemble de convergence.

(iii) La condition (i) dans le Théorème IV-12 est appelée condition de domi-
nation : toutes les fn sont dominées par une fonction intégrable g. Elle est
équivalente à l’hypothèse∫

sup
n∈N

|fn| dµ < +∞.

Bien sûr, cette condition n’était pas satisfaite par les exemples présentés dans
la Remarque IV-11 : en cherchant une fonction dominante on serait tombé
essentiellement, respectivement sur : la fonction 1/x sur [0, 1], la fonction
1/x sur [1,+∞[, et la fonction constante 1 sur [0,+∞[, toutes trois non
sommables.

(iv) L’hypothèse de domination de la suite (fn) peut être affaiblie comme suit :
de toute suite extraite de (fn) on peut extraire une sous-suite dominée. En
effet, si une suite (un) à valeurs réelles est telle que toute suite extraite admet
une sous-suite convergeant vers ℓ ∈ R, alors la suite (un) tout entière converge
vers ℓ (en l’occurrence, ℓ =

∫
f).

Exemple IV-15. Sachant que l’intégrale de Lebesgue généralise l’intégrale de
Riemann, on déduit facilement du Théorème IV-12 l’énoncé suivant : soit (fn) une
suite de fonctions continues par morceaux sur [a, b] ⊂ R, bornée uniformément, et
convergeant simplement vers une fonction f . Alors lim

∫
fn(x) dx =

∫
f(x) dx. En

effet, l’hypothèse de borne uniforme revient à une hypothèse de domination par une
fonction constante, qui est clairement intégrable sur un intervalle borné.

Remarque IV-16. L’énoncé IV-15 a beau s’exprimer en termes de concepts
classiques – fonctions continues par morceaux, intégrale de Riemann – il est fort
difficile à démontrer avec des outils classiques (même quand les fonctions fn sont
continues), alors qu’il tombe comme un fruit mûr dans le jardin de Lebesgue.

Démonstration du Théorème IV-12. Partons de l’hypothèse plus générale
(i’) ; on note g = lim gn. Chaque fn est bien sûr intégrable puisque sa valeur ab-
solue est majorée par une fonction intégrable ; en outre lim inf

∫
fn et lim sup

∫
fn

sont majorées en valeur absolue par lim sup
∫
gn =

∫
g < +∞. Enfin lim inf fn et

lim sup fn sont majorées en valeur absolue par g ; ce sont donc également des fonc-
tions intégrables.

L’énoncé à démontrer est une conséquence simple du Lemme de Fatou. En effet,
la fonction gn + fn est positive, donc∫

lim inf(gn + fn) ≤ lim inf

∫
(gn + fn).

En combinant cela avec l’hypothèse (i’), on obtient∫
g +

∫
(lim inf fn) =

∫
(g + lim inf fn) =

∫
lim inf(gn + fn)

≤ lim inf

∫
(gn + fn) =

∫
g + lim inf

∫
fn.
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On conclut que ∫
(lim inf fn) ≤ lim inf

∫
fn.

En changeant fn en −fn, on obtient de même

lim sup

∫
fn ≤

∫
(lim sup fn).

Les inégalités (20) sont donc bien satisfaites.
Supposons maintenant que fn converge presque partout vers f ; alors lim inf fn

et lim sup fn coïncident avec f , d’où∫
f ≤ lim inf

∫
fn ≤ lim sup

∫
fn ≤

∫
f,

il y a donc égalité partout, ce qui démontre (21).
Montrons enfin (22), à savoir que

∫
|fn− f | −→ 0 ; puisque f est intégrable, cela

impliquera à nouveau, par inégalité triangulaire, que
∫
fn converge bien vers

∫
f :∣∣∣∣∫ fn dµ−

∫
f dµ

∣∣∣∣ = ∣∣∣∣∫ (fn − f) dµ

∣∣∣∣ ≤ ∫ |fn − f | dµ −−−→
n→∞

0.

Pour prouver (22), on applique la conclusion précédente (21) en remplaçant fn et
gn par f̃n = |fn − f | et g̃n = gn + |f |. L’hypothèse (i’) est bien vérifiée pour f̃n (et
d’ailleurs aussi l’hypothèse (i), si (fn) la vérifie). D’où

0 ≤ lim sup

∫
|fn − f | ≤

∫
lim sup |fn − f | = 0,

ce qui prouve bien (22). □
Exercice IV-17. Retrouver en cas particulier de ce théorème le critère connu :

une série (xn) absolument convergente de nombres réels est commutativement conver-
gente, i.e. (xσ(n)) converge pour toute bijection σ : N → N, et la valeur de la somme
ne dépend pas de σ.

Remarque IV-18. Ici j’ai déduit le Théorème de convergence dominée du Lemme
de Fatou, qui lui-même découlait du Théorème de convergence monotone. Mais à
partir du Théorème de convergence dominée on peut aussi retrouver le Théorème de
convergence monotone, au moins quand X est σ-fini ; de sorte que les trois énoncés
sont quasiment équivalents. En effet, supposons que fn ≥ 0 converge en croissant
vers f . Si f est sommable, alors fn est dominée par f , et on peut passer à la li-
mite dans l’intégrale par convergence dominée. Et si f n’est pas sommable, alors on
peut trouver une famille (χm)m∈N de fonctions étagées, telles que 0 ≤ χm ≤ f et∫
χm → +∞ ; quitte à remplacer χm par χm1Xk

, où µ[Xk] < +∞ et ∪Xk = X, on
peut supposer χm intégrable ; alors min(fn, χm) est dominée par χm et converge vers
χm pour n→ ∞, d’où lim inf

∫
fn ≥

∫
limmin(fn, χm) =

∫
χm, et en faisant tendre

m vers l’infini on conclut que
∫
fn → +∞.

En guise d’application du théorème de convergence dominée, voici un théorème
simple de continuité des intégrales à paramètre.

Théorème IV-19 (continuité des intégrales à paramètre). Soient (X,A, µ) un
espace mesuré, et Z un espace métrique. On se donne f : X × Z → [−∞,+∞] une
fonction telle que
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(i) pour tout z ∈ Z, x 7−→ f(x, z) est mesurable ;
(ii) pour tout x ∈ X, z 7−→ f(x, z) est continue ;
(iii) Pour tout (x, z) ∈ X × Z on a |f(x, z)| ≤ g(x), où g est une fonction

mesurable telle que
∫
g(x)µ(dx) < +∞.

Alors l’application φ(z) =
∫
f(x, z)µ(dx) est bien définie et continue sur Z.

Démonstration. L’hypothèse (iii) implique la sommabilité de |f(·, z)| pour
tout z ; l’intégrale

∫
f(x, z) dµ(x) est donc bien définie. Soit (zn) une suite conver-

geant vers z ; le problème est de montrer que φ(zn) → φ(z). Posons fn(x) = f(x, zn),
et f(x) = f(x, z). Par (ii), on a convergence (partout) de f vers fn ; et par (iii) la
famille (fn) est dominée par g. La conclusion s’ensuit du théorème de convergence
dominée, appliqué à la famille (fn). □

Remarque IV-20. Les propriétés de mesurabilité et d’intégrabilité des intégrales
à paramètre, à dépendance pas forcément continue, seront étudiées plus loin dans
ce chapitre ; voir le Théorème IV-56.

Voici un corollaire pratique du Théorème IV-19 :

Corollaire IV-21 (Dérivation des intégrales à paramètre). Soient (X,A, µ) un
espace mesuré, I un intervalle de R, et f : X × I → R. On suppose que

(i) Pour tout t ∈ I, x 7−→ f(x, t) est mesurable et
∫
|f(x, t)|µ(dx) < +∞ ;

(ii) Pour tout x ∈ X, t 7−→ f(x, t) est continûment différentiable ;
(iii) Pour tout (x, t) ∈ X × I,∣∣∣∣∂f∂t (x, t)

∣∣∣∣ ≤ g(x),

où g est une fonction mesurable telle que
∫
g(x)µ(dx) < +∞.

Alors F : t 7−→
∫
f(x, t)µ(dx) est dérivable sur I, et pour tout t ∈ I on a

F ′(t) =

∫
X

∂f

∂t
(x, t)µ(dx).

Démonstration. Soit t ∈ I fixé, et ε > 0 tel que [t− ε, t+ ε] ⊂ I. Pour x ∈ X
et s ∈ [−ε, ε] on définit

h(x, s) =


f(x, t− s)− f(x)

s
si 0 < |s| < ε

∂f

∂t
(x, t) si s = 0.

La fonction h(x, s) est alors mesurable en x, continue en s, et majorée uniformément
par g(x) en vertu du théorème des accroissements finis. D’après le Théorème IV-19,
lims→0

∫
h(x, s)µ(dx) =

∫
h(x, 0)µ(dx), ce qui équivaut au résultat recherché. □

Exercice IV-22. Énoncer et prouver une variante du Corollaire IV-21 qui s’ap-
plique à des fonctions convexes plutôt que lipschitziennes, et qui soit basée sur le
Théorème de Convergence Monotone plutôt que sur le Théorème de Convergence
Dominée.
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IV-1.4. Que penser de l’hypothèse de domination ? Dans le théorème de
convergence dominée, la condition de domination peut sembler un peu forte, mais
les Exemples IV-11 montrent qu’on ne peut l’éliminer purement et simplement de
l’énoncé du Théorème IV-12. Peut-on cependant la remplacer par une hypothèse
moins contraignante ? Existe-t-il des situations où la convergence des intégrales est
vraie sans qu’il y ait domination ? Voici deux exemples de telles situations, faisant
intervenir la mesure de Lebesgue sur R :

Exemples IV-23 (la convergence peut avoir lieu sans domination). (i) Soit (an)
une famille de nombres positifs, tendant vers 0, dont la somme diverge, et soit,
sur R, la fonction fn = an1[n,n+1[. Alors fn converge vers 0, et l’intégrale de
fn également ; cependant la fonction sup fn est la fonction constante par mor-
ceaux valant an sur l’intervalle [n, n+1[, qui n’est pas intégrable, la suite (fn)
n’est donc pas dominée.

En revanche, on peut extraire de (fn) une sous-suite qui vérifie l’hypothèse
de domination. Et même, de toute sous-suite de (fn) on peut extraire une
sous-suite qui soit dominée (exercice).

(ii) Soit fn définie sur R par

fn(x) =



−n si − 1

n
≤ x < 0;

+n si 0 < x ≤ 1

n
;

0 sinon.
Alors chaque fn est sommable, d’intégrale nulle, et fn converge simplement
vers la fonction nulle, mais la suite (fn) n’est pas dominée, ni aucune de
ses sous-suites extraites. En effet, si une sous-suite extraite, toujours dénotée
(fn), était dominée, alors il en serait de même de (fn1x≥0), et l’intégrale de
fn sur R+ convergerait vers 0 ; or elle est toujours égale à 1.

Dans le deuxième exemple, on peut attribuer le phénomène de non-domination au
fait que de grandes valeurs positives et de grandes valeurs négatives se compensent.
La théorie de Lebesgue est impuissante à exploiter de tels phénomènes. En revanche,
dès que l’on exclut cette possibilité, par exemple en minorant f par une fonction
intégrable, la domination devient la règle, pourvu que l’on autorise l’extraction de
sous-suites comme dans le premier exemple ci-dessus.

Théorème IV-24 (en l’absence de fortes compensations, la domination est néces-
saire pour passer à la limite). Soit (fn) une famille de fonctions mesurables, définies
sur un espace mesuré (X,A, µ), à valeurs dans R, convergeant presque partout vers
une fonction sommable.

(i) On suppose que la famille (fn) est uniformément minorée par une fonction
intégrable, et que lim(

∫
fn) =

∫
(lim fn). Alors, il existe une sous-suite extraite de

(fn), notée (fn′), et une fonction g intégrable, telle que |fn′ | ≤ g presque partout.
(ii) Si

lim
n→∞

∫
|fn| =

∫
| lim
n→∞

fn|,
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f7

f4

Figure 2. compensation entre grandes valeurs positives et négatives

alors il existe une sous-suite extraite de (fn) qui vérifie l’hypothèse de domination.

Il est clair que l’énoncé (ii) découle de (i). On démontrera ce théorème dans la
section suivante, comme conséquence du Théorème d’Egorov.

Remarque IV-25. L’énoncé (ii) du Théorème IV-24 peut se démontrer, dans le
cas particulier où les fn tendent vers 0, comme une conséquence de la complétude
de l’espace L1, dont on reparlera au Chapitre VIII.

En combinant les Théorèmes IV-12 et IV-24, on obtient facilement le corollaire
suivant.

Corollaire IV-26 (en l’absence de fortes compensations, l’échange limite--
somme est quasiment équivalent à la domination). Soient (X,A, µ) un espace me-
suré, et (fn)n∈N une famille de fonctions mesurables, définies de (X,A, µ) dans R,
uniformément minorée par une fonction sommable. On suppose que fn converge
presque partout vers une fonction sommable. Alors les deux énoncés

“ lim

∫
fn dµ =

∫
(lim fn) dµ ”

et
“De toute suite extraite (fn′) on peut extraire une sous-suite dominée”

sont équivalents.
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IV-1.5. Théorème d’Egorov. Comment faire le lien entre la notion naturelle
de convergence dans la théorie de Lebesgue, c’est-à-dire la convergence presque par-
tout, et la notion naturelle de convergence des fonctions continues, c’est-à-dire la
convergence uniforme ? Par définition, la convergence uniforme implique la conver-
gence simple, en particulier presque partout. Du point de vue des fonctions continues,
la différence entre les deux notions est considérable : par exemple, une limite simple
de fonctions continues n’est en général pas continue. Mais du point de vue de la
théorie de la mesure, la différence n’est pas si grande, au sens de l’énoncé suivant.

Théorème IV-27 (Théorème d’Egorov). Soit (X,A, µ) un espace mesuré, tel
que µ[X] < +∞, et soit (fn)n∈N une famille de fonctions mesurables, définies sur X,
à valeurs dans R. On suppose que (fn) converge presque partout dans R. Alors, (fn)
converge uniformément en-dehors d’un ensemble de mesure arbitrairement petite.
En d’autres termes, pour tout ε > 0 il existe un ensemble mesurable Aε ⊂ X tel que
µ[Aε] < ε et (fn) converge uniformément vers sa limite sur X \ Aε.

Exemple IV-28. Un exemple classique de suite qui converge simplement mais
non uniformément est la famille des fonctions fn : x 7−→ xn sur [0, 1]. Cette suite
converge simplement vers la fonction valant 1 en 1, et 0 ailleurs ; pour tout n on
a sup[0,1] |fn − f | = 1, la convergence n’est donc pas uniforme. Cependant, elle est
uniforme sur tout intervalle [0, 1− ε], si petit que soit ε > 0.

Remarque IV-29. Puisque la convergence uniforme laisse stable la classe des
fonctions continues, le théorème d’Egorov admet, dans un cadre topologique, le
corollaire suivant :

Corollaire IV-30 (une limite de fonctions continues est presque continue).
Soit X un espace topologique, muni de sa tribu borélienne, et soit µ une mesure
de Borel finie sur X. Soit (fn)n∈N une suite de fonctions continues à valeurs dans
R, convergeant simplement vers une fonction f : X → R. Alors f est continue
en-dehors d’un ensemble de mesure arbitrairement petite.

On retrouve ainsi un énoncé très proche du Théorème III-69 de Lusin. Le Corol-
laire IV-30 n’implique pas le théorème de Lusin, car il ne s’applique qu’aux limites
de fonctions continues, et pas à des fonctions mesurables arbitraires ; en revanche il
est valable sans hypothèse topologique sur X.

Remarque IV-31. On ne peut se passer de l’hypothèse de finitude de µ dans le
Théorème IV-27 ; pour s’en convaincre, on peut considérer le cas où µ est la mesure
de comptage sur N, et la suite de fonctions fn est définie par fn(k) = 1k≥n.

Preuve du Théorème d’Egorov. Quitte à poser fn(x) = 0 sur le complé-
mentaire de l’ensemble où (fn) ne converge pas, on peut supposer que (fn) converge
partout vers une fonction mesurable f à valeurs dans R. Soit, pour tout k ∈ N,
n ∈ N, l’ensemble mesurable

Sn,k :=
⋂
i,j≥n

{
x ∈ X; |fj(x)− fi(x)| ≤ 1/k

}
.

Pour tout k, la famille (Sn,k) est croissante en n, et par hypothèse,

∀k,
⋃
n

Sn,k = X.
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Pour tout k, on peut donc trouver n = nk tel que
µ[X \ Snk,k] < ε 2−k.

Posons
S =

⋂
k≥1

Snk,k.

Si x ∈ S, alors x ∈ Snk,k pour tout k, ce qui veut dire que pour tout k il existe nk,
dépendant seulement de k et pas de x, tel que pour tous i, j ≥ nk, |fj(x) −
fi(x)| ≤ 1/k. En faisant tendre i vers l’infini dans cet énoncé, on voit que pour tout
k il existe nk tel que pour tout j ≥ nk, |fj(x) − f(x)| ≤ 1/k. En d’autres termes,
(fn) converge uniformément sur S. D’autre part,

µ[X \ S] ≤
∞∑
k=1

µ[X \ Snk,k] < ε
(∑
k∈N

2−k
)
= ε.

L’ensemble Aε = X \ S vérifie donc la conclusion du théorème. □
Pour illustrer l’efficacité du théorème d’Egorov, montrons comment on peut en

déduire le théorème de convergence dominée de Lebesgue, et comment on peut l’uti-
liser pour démontrer le Théorème IV-24. En fait on aurait pu présenter toute la
théorie du passage à la limite en prenant comme point de départ le théorème d’Ego-
rov plutôt que le théorème de convergence monotone.

Nouvelle démonstration du Théorème IV-12. Soit (fn) une suite de fonc-
tions convergeant presque partout, dominée par la fonction intégrable g. Soit Z l’en-
semble négligeable où g vaut +∞, on redéfinit fn(x) = 0 et f(x) = 0 pour tout x ∈ Z,
sans changer les valeurs des intégrales des fn ou de f , ni l’hypothèse de convergence
presque partout. D’autre part, de la domination il s’ensuit que fn(x) = 0 dès que
g(x) = 0. On peut donc appliquer la Proposition IV-9 :∫

fn dµ =

∫
hn dν,

∫
f dµ =

∫
h dν,

où
hn =

fn
g
, h =

f

g
, ν = gµ.

L’ensemble des points où g s’annulle est de mesure nulle pour ν ; en-dehors de cet
ensemble, hn converge vers h := f/g. Par ailleurs, ν est une mesure finie. On peut
donc appliquer le théorème d’Egorov à la famille (hn) et à la mesure ν, et on trouve
que pour tout ε > 0 il existe Aε tel que ν[Aε] < ε, et hn converge uniformément vers
h sur X \ Aε. Par hypothèse de domination, hn est borné par 1, donc h également.
D’où ∣∣∣∣∫

X\Aε

hn dν

∣∣∣∣ ≤ ε,

∣∣∣∣∫
X\Aε

h dν

∣∣∣∣ ≤ ε.

On en déduit ∣∣∣∣∫ hn dν −
∫
h dν

∣∣∣∣ ≤ ∣∣∣∣∫
X\Aε

(hn − h) dν

∣∣∣∣+ 2ε.

Pour tout ε fixé, grâce à la convergence uniforme on a∣∣∣∣∫
X\Aε

(hn − h) dν

∣∣∣∣ ≤
(

sup
x∈X\Aε

|hn − h|

)
ν[X] −−−→

n→∞
0,
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donc
lim sup
n→∞

∣∣∣∣∫ hn dν −
∫
h dν

∣∣∣∣ ≤ 2ε.

On conclut en faisant tendre ε vers 0. □
Démonstration du Théorème IV-24. Comme on l’a déjà dit, il suffit de

démontrer la partie (i) de ce théorème. On se donne donc une famille (fn)n∈N de
fonctions positives, convergeant presque partout vers une limite f , intégrable, telle
que

∫
fn →

∫
f .

Soit A un ensemble mesurable arbitraire. En appliquant le Lemme de Fatou et
l’inégalité lim inf an + lim inf bn ≤ lim inf(an + bn), laissée en exercice, on a∫

X

f =

∫
A

f +

∫
X\A

f ≤ lim inf
n→∞

∫
A

fn + lim inf
n→∞

∫
X\A

fn ≤ lim inf
n→∞

∫
X

fn =

∫
X

f.

Les deux membres étant égaux, il y a égalité à chaque étape, d’où

(24)
∫
A

f dµ = lim inf
n→∞

∫
A

fn dµ.

Soit ν = fµ ; comme f est sommable, la mesure ν est finie. Pour tout k ∈ N, on
pose

Bk = {x; f(x) ≤ 1/k}.
Les Bk forment une famille décroissante, dont l’intersection est l’ensemble où f s’an-
nule, de mesure nulle pour ν. Pour ε > 0 arbitrairement petit, on peut donc choisir
k assez grand pour que ν[Bk] ≤ ε. Par le Théorème d’Egorov, on sait également
qu’il existe E tel que ν[E] < ε et fn converge uniformément vers f en-dehors de E.
Si l’on pose Cε = Bk ∪ E, on a construit un ensemble de ν-mesure plus petite que
2ε, tel que pour tout x ∈ X \C on ait f(x) > 1/k et fn converge uniformément vers
f sur X \ C. En particulier, pour tout n ≥ m assez grand, on aura

x ∈ X \ C =⇒ fn(x) ≤ 2f(x).

D’après (24), appliqué à A = C, on sait que lim inf
∫
A
fn ≤ 2ε. En particulier,

on peut trouver N ≥ m tel que ∫
C

fN ≤ 4ε.

Récapitulons : pour tout ε > 0, pour tout p ∈ N, nous pouvons construire un
ensemble C et un entier N ≥ p tels que

∫
Cε
fN ≤ 4ε, et fN ≤ 2f en-dehors de C.

On répète cette construction avec ε = 2−k : nk étant donné, on construit C = Ck et
N = nk+1 ≥ nk tels que∫

Ck

fnk
≤ 4 · 2−k; x ∈ X \ Ck ⇒ fnk

(x) ≤ 2f(x).

On définit alors
g := 2f +

∑
k∈N

fnk
1Ck

.

Par construction, g majore tous les fnk
; d’autre part, g est sommable car f elle-même

est sommable, et ∫ ∑
k∈N

fnk
1Ck

=
∑
k∈N

∫
Ck

fnk
≤ 4

∑
k∈N

2−k < +∞.
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□

IV-1.6. Les quatre faces de la convergence. Les énoncés de Beppo Levi,
Fatou, Lebesgue et Egorov sont finalement très proches les uns des autres ; c’est
seulement l’usage qui leur a attribué des statuts différents de lemme ou théorème, et
chacun d’entre eux pourrait être choisi comme base dans un exposé sur le passage
à la limite dans la théorie de Lebesgue. C’est en fonction de la situation que l’on
choisit d’appliquer l’une ou l’autre de ces quatre faces du problème de la convergence
des intégrales.

IV-1.7. Formule de sommation par tranches. Voici maintenant une ap-
plication importante et parlante des résultats de la section précédente. Soit λ la
mesure de Lebesgue sur R, définie dans la section II-8. Si f est mesurable, on notera
{f > t} = {x; f(x) > t}.

Théorème IV-32 (Formule de sommation par tranches). Soient (X,A, µ) un
espace mesuré, et f une fonction mesurable positive ; alors∫

X

f(x)µ(dx) =

∫
R+

µ[{f > t}]λ(dt)

= lim
n→∞

∑
k∈N

1

2n
µ

[{
x; f(x) ≥ k

2n

}]
.

Remarque IV-33. Cet énoncé justifie en un sens le dessin de la figure 1 dans
l’introduction.

Démonstration du Théorème IV-32. Dans le cas où f = 1A, A étant un
ensemble mesurable quelconque, les trois quantités ci-dessus valent µ[A] et sont donc
égales.

Considérons ensuite le cas où f est une fonction simple, prenant donc un nombre
fini de valeurs non nulles, toutes de la forme k/2n0 . Pour n fixé, on pose Ak,n =
{f ≥ k/2n}. Dès que n ≥ n0, on peut écrire f =

∑
2−n1Ak,n

, et pour tout t ∈
[(k− 1)2−n, k2−n[ on a {f > t} = µ[Ak,n]. Alors il est facile de se convaincre que les
trois quantités apparaissant dans l’énoncé du Théorème IV-32 sont encore égales.

Soit enfin f une fonction mesurable positive. Par le Théorème III-36, on peut
construire une suite (fn) de fonctions simples telles que 0 ≤ fn ≤ f , fn converge en
croissant vers f , et fn prend ses valeurs dans N/2n. D’après le résultat précédent,
on sait que ∫

X

fn dµ =

∫
R
µ[{fn > t}]λ(dt).

Par le Théorème de convergence monotone,
∫
fn dµ converge vers

∫
f dµ. D’autre

part, il est équivalent de dire que f(x) > t ou que fn(x) > t pour n assez grand ; en
particulier, {f > t} est l’union croissante des {fn > t}. Par σ-additivité,

µ[{f > t}] = lim
n→∞

µ[{fn > t}].

On peut alors appliquer le Théorème de Convergence Monotone une seconde fois, à
la suite de fonctions (dans la variable t !) µ[{fn > t}], pour découvrir que∫

R
µ[{fn > t}]λ(dt) −−−→

n→∞

∫
R
µ[{f > t}]λ(dt).
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On conclut que ∫
X

f dµ =

∫
R
µ[{f > t}]λ(dt).

Enfin, posons ϕ(t) = µ[{f > t}], et soit ϕn(t) la fonction (constante par mor-
ceaux) égale à ϕ(k2−n) sur chaque intervalle ](k − 1)2−n, k2−n] (on pose ϕn(0) =
ϕ(0)). La fonction ϕ étant décroissante, on a 0 ≤ ϕn ≤ ϕ, et on vérifie facilement
que ϕn converge en croissant vers ϕ. On peut donc encore appliquer le Théorème de
convergence monotone pour obtenir∫

R
ϕ(t)λ(dt) = lim

n→∞

∫
R
ϕn(t)λ(dt),

ce qui revient à∫
R
µ[{f > t}]λ(dt) = lim

n→∞

∑
k∈N

1

2n
µ

[{
x; f(x) ≥ k

2n

}]
.

□
La formule de sommation par tranches admet une généralisation importante :

Théorème IV-34 (Sommation par tranches, encore). Soient (X,A, µ) un espace
mesuré, f une fonction mesurable positive, et ν une mesure de Borel sur R+. Pour
tout r ≥ 0, on définit Φ(r) = ν[ [0, r[ ]. Alors,∫

X

Φ(f(x))µ(dx) =

∫
R
µ[{f > t}] ν(dt)

= lim
n→∞

∑
k∈N

ν
]
(k − 1)2−n, k2−n

]
µ

[{
x; f(x) ≥ k

2n

}]
Remarque IV-35. On retrouve le Théorème IV-32 via le cas particulier ν = λ.

Exemple IV-36. Soit ϕ une fonction positive continue par morceaux sur R+, et
Φ sa primitive (avec Φ(0) = 0). Alors∫

X

Φ(f(x))µ(dx) =

∫
R
µ[{f > t}]ϕ(t)λ(dt).

Par exemple,

(25)
∫
X

|f |p dµ =

∫
R
µ[{f > t}] ptp−1 dt.

Je démontrerai le Théorème IV-34 plus tard. Il est clair qu’il suffit d’établir
l’égalité

∫
X
Φ(f(x))µ(dx) =

∫
R µ[{f > t}] ν(dt) ; la suite de la conclusion en découle

facilement. On donnera d’abord une démonstration dans le cas particulier où X est
σ-fini, comme conséquence du Théorème de Fubini ; c’est la preuve la plus simple. Le
cas général, sans hypothèse de σ-finitude, sera ensuite prouvé grâce à un théorème
de changement de variables.

IV-2. Intégration sur les espaces produits
La théorie abstraite de l’intégrale de Lebesgue aborde efficacement les intégrales

multiples, pourvu que l’on prenne garde à quelques subtilités.
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IV-2.1. Rappels et compléments sur la tribu produit.

Définition IV-37 (tribu produit). Soient (X,A) et (Y,B) deux espaces mesu-
rables. On appelle tribu produit de A et B, et on note A⊗B, la σ-algèbre engendrée
par les pavés, c’est à dire les parties de la forme A×B, où A et B sont des parties
mesurables de X et Y respectivement.

Proposition IV-38 (génération de la tribu produit). Soient X et Y deux en-
sembles. On se donne F une famille de parties de X, et G une famille de parties de
Y . On suppose que X est union dénombrable d’éléments de F , et Y union dénom-
brable d’éléments de G. Alors la famille F ⊗G des pavés A×B, où A ∈ F et B ∈ G,
génère la tribu produit σ(F)⊗ σ(G). En d’autres termes,

σ(F ⊗ G) = σ(F)⊗ σ(G).

Preuve de la Proposition IV-38. Une inclusion est immédiate : σ(F ⊗ G)
est la tribu engendrée par la famille des pavés de la forme A × B, où A ∈ F et
B ∈ G ; alors que σ(F) ⊗ σ(G) est engendrée par la famille des pavés de la forme
A× B, où A ∈ σ(F) et B ∈ σ(G). Donc

σ(F ⊗ G) ⊂ σ(F)⊗ σ(G).
C’est l’inclusion réciproque qu’il faut établir. Pour cela, il suffit de montrer que

∀A ∈ σ(F), ∀B ∈ σ(G), A× B ∈ σ(F ⊗ G).
Pour cela, on remarque tout d’abord que pour tous A ∈ F , B ∈ G, les ensembles

A × Y et X × B appartiennent à σ(F ⊗ G) : en effet, on peut les écrire comme
unions dénombrables d’éléments de F ⊗ G. A partir de là, la démonstration suit un
schéma classique, déjà utilisé dans la preuve du Théorème II-77. On montre dans un
premier temps que A× B ∈ σ(F ⊗ G) pour tous A ∈ σ(F) et B ∈ G ; pour cela on
vérifie que, B étant fixé dans G, l’ensemble des A tels que A×B ∈ σ(F ⊗G) est une
σ-algèbre contenant F . Dans un second temps on montre que A × B ∈ σ(F ⊗ G)
pour tous A ∈ σ(F) et B ∈ σ(G), par un argument similaire. □

Dans un cadre abstrait, la tribu produit peut être très difficile à décrire. Mais
pour les tribus boréliennes, le problème se simplifie grâce à la proposition suivante.

Proposition IV-39 (produits de tribus boréliennes). Soient X et Y deux espaces
topologiques, munis de leurs tribus boréliennes respectives B(X) et B(Y ). Si X et Y
sont des espaces métriques séparables, alors

B(X × Y ) = B(X)⊗ B(Y ).

Démonstration. 1. Appliquons la Proposition IV-38 avec F la famille des
ouverts de X, et G la famille des ouverts de Y : on obtient que B(X)⊗B(Y ) est la
tribu engendrée par les ouverts de la forme A × B, où A est un ouvert de X et B
un ouvert de Y . En particulier,

B(X)⊗ B(Y ) ⊂ B(X × Y ).

Cette conclusion ne fait pas appel à l’hypothèse de séparabilité, qui sera utilisée
seulement pour établir l’inclusion inverse.

2. Comme X est métrique séparable, il contient une base dénombrable d’ou-
verts : les boules ouvertes B(xk, 1/n), où (xk) est une suite dense. Cela veut dire
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que tout ouvert O est réunion dénombrable de telles boules : comme dans la preuve
du Théorème II-39, il suffit d’écrire

O =
⋃

B(xk,1/n)⊂O

B(xk, 1/n).

Soient maintenant O un ouvert de X × Y , et (x, y) ∈ O. Par définition de la
topologie produit, il existe un ouvert O′ = U × V inclus dans O et contenant x, où
U est un ouvert de X et V un ouvert de Y . En particulier, (x, y) ∈ B(xk, 1/n) ×
B(yℓ, 1/m) pour k, ℓ,m, n bien choisis. Donc O s’écrit comme une union dénombrable
de B(xk, 1/n)× B(yℓ, 1/m) ; en particulier O appartient à la tribu produit B(X)⊗
B(Y ). Par définition de la tribu borélienne, B(X×Y ) ⊂ B(X)⊗B(Y ), ce qui conclut
la preuve. □

Exemple IV-40. B(Rm+n) = B(Rm)⊗ B(Rn).
Remarque IV-41. La complétion en revanche passe mal au produit tensoriel.

Soient A et B deux tribus surX et Y respectivement, et A, B leurs tribus complétées,
construites à l’aide du Théorème II-93. Soit d’autre part A⊗ B la complétion de la
tribu produit A⊗ B. En général,

A⊗ B 6= (A⊗ B).

On verra au Chapitre VI que même dans le cas simple où A = B est la tribu boré-
lienne sur [0, 1], la complétion de la tribu produit n’est pas identique au produit des
tribus complétées (ou tout au moins qu’il est impossible de prouver cette identité).

IV-2.2. Applications partielles. On parle ici d’application partielle dans le
même sens que “dérivée partielle”, i.e. quand on considère une fonction de deux
variables comme fonction d’une seule de ces variables, l’autre étant fixée.

La terminologie suivante n’est pas universelle, mais sera bien commode pour
préciser les idées.

Définition IV-42 (section). Soit C un ensemble mesurable dans un espace
produit X × Y , muni de la tribu produit. Pour tout x ∈ X, on appelle section (ou
coupe, ou tranche) de C en x le long de Y l’ensemble

Cx =
{
y ∈ Y ; (x, y) ∈ C

}
.

Proposition IV-43 (les sections sont mesurables). Soient (X,A) et (Y,B) deux
espaces mesurables, on munit X × Y de la tribu produit A ⊗ B. Alors, pour toute
partie C mesurable de X × Y , et pour tout x ∈ X, la section Cx est une partie
mesurable de Y .

Démonstration. Soit x ∈ X, on définit
C =

{
C ⊂ X × Y ; Cx ∈ B

}
.

Il est clair que C est une tribu ; en fait c’est la tribu image de A par l’application
φx : y 7−→ (x, y). Si P = A × B est un pavé, alors Px vaut soit B (si x ∈ A), soit
∅ (si x /∈ A), et dans les deux cas c’est une partie mesurable de Y . Donc C contient
tous les pavés, et partant, toute la tribu produit. □

Remarque IV-44. La conclusion de la proposition précédente est mise en défaut
par des tribus d’usage courant qui sont plus grandes que la tribu produit — ne serait-
ce que la tribu des ensembles Lebesgue-mesurables dans R× R, comme on le verra
au chapitre suivant.
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Le théorème simple ci-dessous est le premier pas vers la construction des in-
tégrales multiples : étant donnée une fonction de plusieurs variables, il permettra
d’intégrer d’abord par rapport à une variable.

Théorème IV-45 (mesurabilité par rapport à une composante). Soient X et Y
deux espaces mesurables, et f : X × Y → R une fonction mesurable pour la tribu
produit sur X × Y . Alors, pour tout x ∈ X, la fonction y 7−→ f(x, y) est mesurable
de X dans R. Le même résultat reste vrai si R est remplacé par un espace métrique
complet.

Démonstration. On sait que f est limite d’une suite de fonctions simples fn.
Chaque fn s’écrit sous la forme

∑
λk1Ck

, l’application partielle y 7−→ fn(x, y) n’est
autre que

∑
λk1(Ck)x . Par la Proposition IV-43, cette application est mesurable sur

Y ; comme elle ne prend qu’un nombre fini de valeurs elle est simple. En conséquence,
f(x, ·) = lim fn(x, ·) est également limite de fonctions simples, donc mesurable. □

IV-2.3. Définition de la mesure produit. Dans R2, il est naturel de définir
l’aire d’un rectangle comme le produit des longueurs des côtés, et c’est la base de la
mesure d’aire dans le plan. On généralise cette démarche à un cadre abstrait avec
la notion de pavés.

Théorème IV-46 (mesure produit). (i) Soient (X,A, µ) et (Y,B, ν) deux espaces
mesurés, σ-finis. On munit X × Y de la tribu produit A ⊗ B. Alors il existe une
unique mesure θ sur X × Y telle que

∀(A,B) ∈ A× B, θ[A× B] = µ[A]× ν[B].

Cette mesure est appelée mesure produit de µ par ν et notée µ⊗ ν.
(ii) En outre, si F (resp. G) est une famille de parties de X (resp. Y ), stable

par intersection finie, telle que A = σ(F) (resp. B = σ(G)), et si X est union
dénombrable croissante d’éléments de F (resp. Y est union dénombrable d’éléments
de G), alors la mesure produit sur X × Y est caractérisée par la propriété

∀(A,B) ∈ F × G, θ[A× B] = µ[A]× ν[B].

Remarque IV-47. La notation de produit tensoriel traduit l’idée que les va-
riables x ∈ X et y ∈ Y sont “indépendantes”. Quand on considère µ⊗ν, on conserve
toute l’information sur µ et toute l’information sur ν, on les apparie ensemble de
façon bilinéaire.

Notation IV-48 (intégrale produit). Soient (X,A, µ) et (Y,B, ν) sont deux
espaces mesurés, et f une fonction mesurable de (X × Y,A⊗B) dans R. Alors, dès
que

∫
f d(µ⊗ ν) est bien défini, on notera indifféremment∫

X×Y

f d(µ⊗ ν) =

∫
X×Y

f(x, y) d(µ⊗ ν)(x, y)

=

∫∫
X×Y

f(x, y) (µ⊗ ν)(dx dy) =

∫∫
X×Y

f(x, y)µ(dx) ν(dy),

la valeur de cette intégrale produit. (On peut aussi utiliser le symbole
∫∫

dans les
deux premières expressions si l’on souhaite insister sur la nature produit de cette
intégrale.)
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Démonstration. C’est, comme d’habitude, le Théorème de prolongement II-82
qui permettra de construire la mesure θ. Il va s’agir de prolonger la mesure produit
de l’algèbre faite des unions finies de pavés, à la σ-algèbre engendrée par ces pavés.

On définit donc P comme l’ensemble de tous les pavés P = A×B, où A ∈ A et
B ∈ B, et θ[P ] = µ[A]×ν[B]. Clairement, P est stable par intersection. D’autre part,
si (Xk) (resp. Yk) est une suite croissante d’ensembles mesurables dont l’union est
X (resp. Y ), alors X ×Y est réunion croissante des ensembles Xk ×Yk, qui vérifient
θ[Xk × Yk] < +∞. L’unicité du prolongement éventuel de θ est donc assurée par la
partie (i) du Théorème II-82.

Soient A1 × B1 et A2 × B2 deux pavés ; leur intersection (A1 ∩ A2)× (B1 ∩ B2)
est un pavé ; et leur différence est l’union de deux pavés disjoints, (A1 \ A2) × B1,
et (A2 \A1)× (B1 \B2) (faire un dessin ou se rappeler la figure 1 !). Les hypothèses
de la partie (iii) du Théorème II-82 sont donc vérifiées, et il ne reste à vérifier que
la σ-additivité de θ sur P .

Soit P = A×B un pavé, et (Pk)k∈N un recouvrement de P par des pavés disjoints
de la forme Ak ×Bk (comme suggéré sur la figure IV-2.3) ; notre but est de prouver
que θ[P ] =

∑
θ[Pk].

P1

P2

P3

P4
etc.

P5

Figure 3. Recouvrement (infini) de P par des pavés Pk

Pour tout k on définit sur X

fk(x) = ν[Bk] 1Ak
(x).

Clairement, fk est une fonction mesurable positive, et

(26)
∫
X

fk(x)µ(dx) = ν[Bk]µ[Ak] = θ[Pk].

En outre pour tout x, la fonction 1(x,y)∈Pk
est clairement mesurable sur B (si x ∈ Ak,

c’est la fonction indicatrice de Ak, sinon c’est la fonction nulle), et

fk(x) =

∫
Y

1Bk
(y) 1Ak

(x) ν(dy) =

∫
Y

1Pk
(x, y) ν(dy).

Pour tout x fixé, par convergence monotone, appliquée à la mesure ν,

(27)
∑
k

fk(x) =
∑
k

∫
Y

1Pk
(x, y) ν(dy) =

∫
Y

∑
k

1Pk
(x, y) ν(dy).
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Puisque chaque (x, y) de P appartient à un et un seul des Pk,∑
k

1Pk
= 1P ,

donc (27) devient∑
k

fk(x) =

∫
Y

1P (x, y) ν(dy) =

∫
Y

1A(x)1B(y) ν(dy) = ν[B] 1A(x).

En appliquant à nouveau la convergence monotone, cette fois pour la mesure µ, on
échange à nouveau somme et intégrale :∑

k

∫
X

fk dµ =

∫
X

∑
k

fk dµ =

∫
ν[B]1A dµ = ν[B]µ[A].

En appliquant (26) et la définition de la mesure produit, cette dernière égalité devient∑
k

θ[Pk] = θ[P ],

ce qui achève la démonstration du point (i).
Pour prouver le point (ii), il suffit de remarquer que la famille F ⊗ G génère

la tribu produit d’après la Proposition IV-38, et que X × Y est réunion croissante
d’une suite d’éléments de cette famille. On peut alors appliquer le Théorème II-82
(ii) pour conclure à l’unicité d’une mesure satisfaisant aux conditions requises. □

Remarque IV-49. La démonstration du point (i) n’est pas très intuitive. Voici
une esquisse d’argument plus intuitif, mais qui ne marche pas ! Introduisons une
partition de A plus fine que tous les ensembles Ak, et une partition de B plus fine
que tous les Bk. Chaque pavé Ak × Bk peut se redécouper en une union (au plus
dénombrable) disjointe de pavés obtenus à partir des partitions plus fines : P est donc
recouvert par une union dénombrable de pavés A′

k×B′
ℓ, où tous les A′

k sont disjoints,
et tous les B′

ℓ sont disjoints. Tous les couples (k, ℓ) sont forcément représentés, sinon
l’union de tous les A′

k ×B′
ℓ ne recouvrirait pas A×B. On se ramène alors à montrer

que ∑
k,ℓ

µ[A′
k] ν[B

′
ℓ] = µ[A] ν[B],

ce qui est vrai puisque toutes deux quantités sont égales à
(
∑
k

µ[A′
k]) (

∑
ℓ

ν[B′
ℓ]).

L’erreur dans ce raisonnement est qu’il est impossible en général de définir une
partition dénombrable qui soit plus fine qu’une famille dénombrable de partitions
finies. Ainsi, sur [0, 1], la seule partition qui soit plus fine que toutes les partitions
[0, qn[∪[qn, 1], où (qn)n∈N est une énumération des rationnels de [0, 1], est la partition
triviale, non dénombrable, de tous les singletons.

Remarque IV-50. La mesure produit a une importance considérable en théorie
des probabilités, où elle est associée à la notion d’indépendance. C’est assez natu-
rel : pour calculer la probabilité jointe de deux événements A et B qui n’ont rien à
voir l’un avec l’autre, il est conforme à l’intuition de multiplier les probabilités res-
pectives de ces deux événements. Et finalement c’est la définition de l’indépendance :
si A et B sont deux ensembles mesurables (appelés événements) dans l’espace Ω des
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possibles, et P une mesure de probabilité, on dira que A et B sont indépendants si
P[A∩B] = P[A]P[B]. Dans le cas où P[B] > 0, cela se reforme de façon encore plus
parlante avec la notion de probabilité conditionnelle : la probabilité que A se réalise
“sachant que B est vrai” (ou simplement “sachant B”) vaut P[A ∩ B]/P[B], dite
probabilité de A conditionnée à B. Avec cette notion, dire que A et B sont indépen-
dants, c’est dire que la probabilité de A conditionnée B est égale à la probabilité de
A ; et aussi, si P[Ω \ B] > 0, à la probabilité de A conditionnée au complémentaire
de B. Autrement dit, la probabilité de A reste la même que B soit vrai ou pas, la
même indépendamment de la réalisation de B. Et plus généralement, en probabilité
on dit que deux fonctions mesurables (deux variables aléatoires) f et g sur un espace
de probabilité (X, C, π) sont indépendantes si (f, g)#π = (f#π)⊗ (g#π).

Exemple IV-51. Soit λ1 = λ la mesure de Lebesgue sur R ; on peut définir
λ2 = λ ⊗ λ, c’est une mesure borélienne sur R2, appelée mesure de Lebesgue 2-
dimensionnelle. Alors que λ1 mesure les longueurs, λ2 mesure les aires. On reviendra
par la suite sur les propriétés de cette mesure et de ses analogues en dimension plus
grande.

IV-2.4. Généralisation : mesures dépendant d’un paramètre.

Proposition IV-52 (produit tensoriel par une famille de mesures). Soient (X,µ)
un espace mesuré, et Y un espace mesurable. Soit une famille (νx)x∈X de mesures
définies sur Y . On suppose que x 7−→ νx est mesurable, au sens où pour tout B ⊂ Y
l’application

x 7−→ νx[B]

est mesurable sur X. On suppose également que Y = ∪Yk, où chaque Yk est un
ensemble mesurable de νx-mesure finie pour tout x. On peut alors définir sur la tribu
produit une mesure µ⊗ νx par la formule

(µ⊗ νx)[A] =

∫
X

νx[Ax]µ(dx).

Remarque IV-53. Dans cette notation la variable x au membre de gauche est
formelle. Il serait plus correct mais moins parlant de noter µ⊗ ν· cette mesure.

Preuve de la Proposition IV-52. Il y a deux choses à vérifier : (i) que la
fonction x 7−→ νx[Ax] est mesurable, et (ii) que la formule précédente définit bien
une mesure. Sans perte de généralité, on peut supposer les Yk disjoints ; alors les
ensembles A ∩ Yk induisent des sections (Yk)x disjointes, et

νx[Ax] = νx
[
∪k(A ∩ Yk)x

]
=
∑
k

νx[(A ∩ Yk)x].

Il suffit donc de vérifier que chaque application x 7−→ νx[(A ∩ Yk)x] est mesurable ;
on supposera donc, sans perte de généralité, que νx est finie pour tout x.

Pour l’assertion (i), soit A l’ensemble des éléments de la tribu produit tels que
νx[Ax] soit mesurable. Par hypothèse, A contient tous les pavés. Il est facile de voir
que A est stable par union disjointe : deux ensembles disjoints A1 et A2 donnent lieu
à des sections distinctes A1

x et A2
x le long de Y , pour chaque x, d’où νx[(A1∪A2)x] =

νx[A
1
x]+νx[A

2
x]. On montre de même que cet ensemble est stable par limite croissante.

En utilisant la finitude de νx, on montre également qu’il est stable par différence :
si A,B ∈ A, B ⊂ A, alors B \A ∈ A. En particulier, A contient la classe monotone
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engendrée par les pavés. Comme l’ensemble des pavés est stable par intersection finie,
le Lemme de classe monotone (Théorème II-77) assure que cette classe monotone
coïncide avec la tribu produit tout entière.

Pour l’assertion (ii) on note que, si (An) est une famille d’ensembles mesurables
disjoints, alors pour tout x les sections An

x sont disjointes, d’où∫
X

νx[(∪An)x]µ(dx) =

∫
X

∑
x

νx[A
n
x]µ(dx) =

∑
n

∫
X

νx[A
n]µ(dx).

□
Remarque IV-54. Si µ[A] = 0 alors (µ ⊗ νx)[A × Y ] = 0 ; je montrerai dans

la Section ?? que sous certaines hypothèses peu contraignantes, cette propriété
caractérise les mesures qui peuvent s’écrire sous la forme µ⊗ νx.

Exemple IV-55. Soit f une fonction intégrable positive sur R2 par rapport à la
mesure λ⊗λ (mesure de Lebesgue 2-dimensionnelle). Alors la mesure f(x, y)λ(dx)λ(dy)
peut être considérée de deux manières qui sont rigoureusement équivalentes : soit
comme la mesure de densité f par rapport à λ⊗ λ, soit comme le produit tensoriel
λ(dx)⊗ νx, où νx(dy) = f(x, y)λ(dy).

IV-2.5. Théorème de Fubini–Tonelli–Lebesgue. On nomme théorème de
Fubini, de façon générique, tout énoncé permettant d’échanger des opérations d’inté-
gration, ou plus généralement de définir des intégrales multiples, que ce soit dans la
théorie de Riemann, dans celle de Lebesgue ou dans une autre. On utilise parfois le
nom de théorème de Tonelli quand on considère des fonctions positives mesurables.
Accoler les trois noms de Fubini, Tonelli et Lebesgue est donc le plus juste pour le
présent cours ; en pratique et par commodité, on dit le plus souvent “théorème de
Fubini”.

Théorème IV-56 (Théorème de Fubini–Tonelli–Lebesgue). Soient (X,A, µ) et
(Y,B, ν) deux espaces mesurés, σ-finis. On munit X × Y de la tribu produit A⊗B.
Alors

(i) Pour toute fonction mesurable f définie sur X × Y , à valeurs dans [0,+∞],
les fonctions

x 7−→
∫
Y

f(x, y) ν(dy), y 7−→
∫
X

f(x, y)µ(dx)

sont mesurables sur X et Y respectivement. En outre,∫∫
X×Y

f(x, y) (µ⊗ ν)(dx dy) =

∫
X

(∫
Y

f(x, y) ν(dy)

)
µ(dx) =∫

Y

(∫
X

f(x, y)µ(dx)

)
ν(dy).

(ii) Soit f une fonction mesurable définie sur X × Y , à valeurs dans R. Si∫∫
X×Y

|f(x, y)| (µ⊗ ν)(dx dy) < +∞,

alors, pour µ-presque tout x, la fonction f(x, ·) est ν-sommable ; et pour ν-presque
tout y, la fonction f(·, y) est µ-sommable. La fonction

φ : y 7−→
∫
X

f(x, y)µ(dx)
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est alors ν-sommable sur l’ensemble SY des y tels que f(·, y) est µ-sommable ; et la
fonction

ψ : x 7−→
∫
Y

f(x, y) ν(dy)

est µ-sommable sur l’ensemble SX des x tels que f(x, ·) est ν-sommable. En outre,
si l’on redéfinit arbitrairement les valeurs de φ (resp. ψ) sur le complémentaire de
SX (resp. SY ), on a l’égalité∫∫

X×Y

f(x, y) (µ⊗ ν)(dx dy) =

∫∫
X

(∫
Y

f(x, y) ν(dy)

)
µ(dx)(28)

=

∫
Y

(∫
X

f(x, y)µ(dx)

)
ν(dy).

Remarque IV-57. Si l’on applique ce théorème dans le cas particulier où Y = N
et ν est la mesure de comptage, on retrouve les énoncés d’interversion somme-série
déjà vus en section IV-2 comme corollaire des théorèmes de convergence monotone, et
de convergence dominée. Ce n’est cependant pas vraiment une nouvelle démonstra-
tion car la convergence monotone joue un rôle clé dans la construction de l’intégrale
produit.

Démonstration du Théorème IV-56. Il est facile de se convaincre que (ii)
est une conséquence de (i). En effet, en appliquant (i) à la fonction positive |f(x, y)|,
on constate que les fonctions

x 7−→
∫
Y

|f(x, y)| ν(dy), y 7−→
∫
X

|f(x, y)|µ(dx)

sont sommables ; en particulier, elles sont finies presque partout, donc pour µ-presque
tout x, la fonction f(x, y) est ν-sommable ; et de même, pour ν-presque tout y,
cette fonction est µ-sommable. Les fonctions φ et ψ sont donc bien définies presque
partout. La fonction

x 7−→
∫
X

|f(x, y)| ν(dy)

étant mesurable, l’ensemble SX des x pour lesquels f(x, ·) est non sommable est
mesurable ; de même pour SY . On peut donc redéfinir φ et ψ en-dehors de ces
ensembles, sans altérer leur mesurabilité. L’inégalité∣∣∣∣∫

Y

f(x, y) ν(dy)

∣∣∣∣ ≤ ∫
Y

|f(x, y)| ν(dy)

assure alors que la fonction ψ est effectivement µ-sommable sur SX ; par symétrie, il
en est de même pour φ. Enfin, pour établir (28) on décompose f en partie positive
et partie négative, et on applique (i) à chacune de ces fonctions.

Il reste à établir (i). La preuve en est assez laborieuse et utilise des schémas
déjà rencontrés : remplacer les fonctions mesurables par des fonctions indicatrices,
remplacer les ensembles mesurables par des pavés. On va démontrer en même
temps l’assertion de mesurabilité et la formule d’échange des intégrales. Soit G
l’ensemble des fonctions f vérifiant (i), et A l’ensemble des parties mesurables de
X × Y dont la fonction indicatrice appartient à G. Dans un premier temps, on
supposera que µ et ν sont finies.
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1. A contient les pavés. En effet, dans ce cas l’application x 7−→
∫
f(x, y) ν(dy)

est un multiple de la fonction indicatrice d’un ensemble mesurable, donc mesurable.
En outre, le théorème de Fubini se réduit alors à la définition de la mesure produit
sur les pavés.

2. A est stable par limite croissante. Pour le montrer, on écrit, pour tout x∫
Y

1∪An(x, y) ν(dy) = lim
k→∞

∫
Y

1Ak
(x, y) ν(dy),

ce qui est une conséquence du théorème de convergence monotone ; et une rela-
tion similaire en échangeant les rôles de X et Y . On applique une deuxième fois le
théorème de convergence monotone pour établir la formule de Fubini.

3. A est stable par soustraction. Pour le voir, on écrit simplement que 1B\A =

1B − 1A si A ⊂ B, et on applique les règles d’addition de l’intégrale :
∫
(f − g) =∫

f−
∫
g. On note que la finitude de µ et ν est utilisée ici ; sans cette hypothèse

nous aurions des indéterminations du type (+∞)− (+∞).
4. A contient donc toute la tribu produit. C’est une conséquence du Lemme de

classe monotone (Théorème II-77). En termes équivalents, G contient toutes les
fonctions indicatrices mesurables.

5. G contient toutes les fonctions simples. C’est évident par linéarité de l’inté-
grale (on utilise ici la linéarité des deux intégrales, par rapport à µ et par rapport à
ν).

6. G contient toutes les fonctions mesurables. Pour le voir, on approche f mesu-
rable par une suite croissante de fonctions simples, et on passe à la limite dans toutes
les expressions en jeu en utilisant le Théorème de Convergence Monotone comme en
2).

Pour conclure la preuve, il ne reste plus qu’à remplacer l’hypothèse de finitude
par celle de σ-finitude. Par hypothèse, X est une union d’ensembles mesurables Xk

de mesure finie, et Y une union d’ensembles mesurables Yk de mesure finie. Pour
tout k, les conclusions de (i) sont donc vérifiées si l’on remplace X et Xk par Y et
Yk ; ou, de manière équivalente, si l’on remplace f par f1Xk×Yk

. Puisque f est la
limite croissante des f1Xk×Yk

, on conclut par application répétée du Théorème de
Convergence Monotone, comme en 2). □

Remarque IV-58. Dans l’énoncé, j’ai pris soin de définir (arbitrairement) les
fonctions φ, ψ en-dehors de certains ensembles négligeables où leur valeur n’était pas
définie (on ne définit pas l’intégrale d’une fonction non sommable dont le signe n’est
pas constant). Une alternative classique consisterait à admettre que les fonctions
φ, ψ ne sont définies qu’en-dehors d’un ensemble négligeable. Dans le contexte pré-
sent, peu importe, tant qu’on a les idées claires ! Dans d’autres situations, travailler
avec des fonctions définies partout (et pas seulement presque partout) peut éviter
certaines confusions.

Voici maintenant quelques remarques sur le Théorème de Fubini–Tonelli–Lebesgue,
que l’on pourra illustrer grâce à la mesure de Lebesgue λ sur R.

Remarque IV-59. La σ-finitude de X et Y est une hypothèse importante dans
le Théorème IV-56. Un contre-exemple classique consiste à considérer la mesure
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de Lebesgue λ sur [0, 1] d’une part, la mesure de comptage C sur [0, 1] d’autre part
(clairement, la mesure de comptage n’est pas σ-finie, sinon [0, 1] serait dénombrable).
Si l’on intègre la diagonale ∆ := {(x, x); x ∈ [0, 1]} de deux façons différentes, on
trouve

∀y,
∫

1∆(x, y)λ(dx) = 0; ∀x,
∫

1∆(x, y)C(dy) = 1.

En particulier,∫ ∫
1∆(x, y)λ(dx)C(dy) = 0;

∫ ∫
1∆(x, y)C(dy)λ(dx) = 1.

Noter que ∆ est mesurable puisque intersection d’une famille dénombrable d’union
de pavés (comme suggéré par la figure 4). Noter également que nos hypothèses ne
garantissent pas que la mesure produit λ ⊗ C soit bien définie ; est bien définie en
revanche la mesure extérieure (λ ⊗ C)∗ associée aux recouvrements par des pavés.
En l’occurrence, on se convainc facilement que (λ⊗ C)∗[∆] = +∞.
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Figure 4. La diagonale est limite d’une union de petits carrés

Remarque IV-60. Il est également important que la fonction f soit mesurable
pour la tribu produit ! Un contre-exemple surprenant dû à Sierpiński [Rudin, p. 167],
sous hypothèse d’axiome du choix, montre que les quantités∫

[0,1]

(∫
[0,1]

f(x, y)λ(dy)

)
λ(dx);

∫
[0,1]

(∫
[0,1]

f(x, y)λ(dx)

)
λ(dy)

peuvent être toutes deux bien définies comme intégrales de fonctions positives me-
surables, et pourtant différentes ! On peut toutefois exclure ce type de pathologie
par des hypothèses topologiques : par exemple, si f : R2 → R est telle que les appli-
cations partielles f(x, ·) et f(·, y) sont respectivement Borel-mesurables en y pour
tout x, et continues en x pour tout y, alors f est automatiquement Borel-mesurable
[Rudin, p. 176].

Avec le Théorème de Fubini, on peut démontrer la formule de sommation par
tranches généralisée qui avait été annoncée dans la Section IV-1.7, du moins sous
hypothèse de σ-finitude :
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Démonstration du Théorème IV-34 quand X est σ-fini. Puisque Φ(f) =
ν[[0, f [], on peut écrire, en utilisant Fubini-Tonelli-Lebesgue,∫

X

Φ(f(x)) dµ(x) =

∫
X

∫
R
1[0,f(x)[(t) ν(dt) dµ(x)

=

∫
R

(∫
X

1[0,f(x)[(t) dµ(x)

)
ν(dt)

=

∫
R
µ[{f > t}] ν(dt).

□
On verra plus tard (Section IV-3.3) comment se passer aussi de l’hypothèse de

σ-finitude.

IV-2.6. Généralisation : intégrales multiples. Il n’y a aucune difficulté à
généraliser les constructions précédentes à un produit fini d’un nombre quelconque
d’espaces mesurés ; on obtient ainsi le théorème ci-dessous, dont la preuve pourra
être traitée en exercice.

Théorème IV-61 (produits multiples et intégrales multiples). (i) Soient (X1,A1, µ1),
. . ., (Xn,An, µn) des espaces mesurés. Alors la tribu (((A1⊗A2)⊗A3) . . .⊗An) est
la tribu engendrée par les pavés multiples, de la forme A1 × . . . × An, où Ai ∈ Ai

pour tout i. On l’appelle tribu produit de A1, . . . ,An et on la note
A1 ⊗A2 . . .⊗An.

(ii) Soient X1, . . . , Xn des ensembles quelconques, et F1, . . . ,Fn des familles de
parties de X1, . . . , Xn respectivement. On suppose que Xi est réunion dénombrable
d’éléments de Fi, pour tout i ∈ {1, . . . , n}. Alors la tribu produit σ(F1)⊗σ(F2) . . .⊗
σ(Fn) est engendrée par les pavés de la forme A1 × . . . × An, où Ai ∈ Fi pour tout
i.

(iii) Soient X1, . . . , Xn des espaces métriques séparables, munis de leurs tribus
boréliennes respectives. Alors la tribu produit sur X1× . . .×Xn coïncide avec la tribu
borélienne sur X1 × . . .×Xn.

(iv) Soient (X1,A1), . . . , (Xn,An) des espaces mesurables, et soit A ⊂
∏
Xi un

ensemble mesurable pour la tribu produit. Alors pour tout k les (n− k)-sections
{(x1, . . . , xn−k) ∈ X1 × . . .×Xn−k; (x1, . . . , xn) ∈ A}

sont mesurables pour la tribu produit A1 ⊗ . . .⊗An−k.
(iv) Soient (X1,A1, µ1), . . . , (Xn,An, µn) des espaces mesurés σ-finis. Alors sur

X1× . . .×Xn, muni de la tribu produit, il existe une unique mesure µ telle que pour
tout pavé P = A1 × . . .× An, où Ai ∈ Ai pour tout i,

µ[P ] =
n∏

i=1

µi[Ai].

Cette mesure coïncide avec ((µ1 ⊗ µ2) ⊗ . . .) ⊗ µn ; on l’appelle mesure produit de
µ1, . . . , µn et on la note

µ1 ⊗ µ2 ⊗ . . .⊗ µn.
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Si F1, . . . ,Fn sont des familles de parties de X1, . . . , Xn telles que pour tout i,
Ai = σ(Fi), Fi est stable par intersection finie, et Xi est union dénombrable d’une
famille croissante d’éléments de Fi, alors la mesure produit est caractérisée par la
propriété

∀i, Ai ∈ Fi =⇒ µ[A1 × . . .× An] =
n∏

i=1

µi[Ai].

(v) Soient (X0,A0), . . . (Xn,An)n∈N des espaces mesurables. On se donne une
mesure µ0 sur X0 ; et pour tout j ∈ {1, . . . , n − 1} on se donne une famille de
mesures νxj

sur Xj+1, dépendant mesurablement de xj ∈ Xj. On pose X :=
∏
Xj

et on le munit de la tribu produit. Alors il existe une unique mesure µ sur X telle
que pour toutes parties mesurables Ai de Xi,

µ[
∏

Ai] =

∫
A0

∫
A1

. . .

∫
An−1

∫
An

νxn−1(dxn) νxn−2(dxn−1) . . . νx0(dx1)µ(dx0).

On la note µ0 ⊗ νx0 ⊗ . . .⊗ νxn−1 (étant entendu que dans cette notation les xi sont
des symboles formels rappelant juste la dépendance en la variable).

(vi) (Fubini pour des intégrales multiples) Soient (X1,A1, µ1), . . . , (Xn,An, µn)
des espaces mesurés σ-finis. On munit Xk := X1 × . . . × Xk de la tribu produit
A1 ⊗ . . . ⊗ Ak. Alors, pour tout k ∈ {1, . . . , n − 1} et toute fonction mesurable f
définie sur Xn, à valeurs dans [0,+∞], la fonction

(xk+1, . . . , xn) 7−→
∫
X1×...×Xk

f(x1, . . . , xn) d(µ1 ⊗ . . .⊗ µk)(x1, . . . , xk)

est mesurable sur Xk+1 × . . .×Xn. En outre∫
Xn

f(x1, . . . , xn) d(µ1⊗. . .⊗µn)(x1, . . . , xn) =

∫
Xn

. . .

∫
X1

f(x1, . . . , xn)µ1(dx1) . . . µn(dxn),

où le membre de droite peut être vu soit comme une suite d’intégrations successives
par rapport aux mesures µi, soit comme une seule intégration par rapport à la mesure
µ1 ⊗ . . .⊗ µn ; le résultat peut aussi être dénoté par∫

. . .

∫
Xn

f(x1, . . . , xn)µ1 ⊗ . . .⊗ µn(dx1 . . . dxn)

En outre, si f est une fonction mesurable définie sur Xn, à valeurs dans R, telle
que ∫

Xn

|f(x1, . . . , xn)| d(µ1 ⊗ . . .⊗ µn)(x1, . . . , xn) < +∞,

alors pour chaque k la fonction

(xk+1, . . . , xn) 7−→
∫
X1×...×Xk

f(x1, . . . , xn) d(µ1 ⊗ . . .⊗ µk)(x1, . . . , xk)

est bien définie et sommable hors d’un ensemble négligeable Zk ; quitte à la redéfinir
arbitrairement sur Zk, on a∫
Xn

f(x1, . . . , xn) d(µ1⊗. . .⊗µn)(x1, . . . , xn) =

∫
Xn

. . .

∫
X1

f(x1, . . . , xn)µ1(dx1) . . . µn(dxn)

=

∫
Xσ(n)

. . .

∫
Xσ(1)

f(x1, . . . , xn)µσ(1)(dxσ(1)) . . . µσ(n)(dxσ(n))



140 CHAPITRE IV (1er janvier 2026)

pour toute permutation σ de {1, . . . , n}.

Exemple IV-62. On peut définir la mesure de Lebesgue en dimension n par
λn = λ⊗n.

Remarque IV-63. On verra en fin de chapitre que l’on peut, sous certaines
conditions, définir aussi des produits infinis de mesures. Cette opération n’est pas
toujours permise, ainsi le produit λ⊗∞ n’a pas de sens.

IV-3. Changement de variable
Le changement de variable est le remplacement d’un espace d’intégration par un

autre. Les théorèmes classiques de changement de variable s’écrivent dans un cadre
différentiable : Rn, ou un ouvert de Rn, ou une variété riemannienne. L’un d’entre
eux dit que si φ est un C1-difféomorphisme entre ouverts O et U de Rn, alors∫

U

f(y) dy =

∫
O

f(φ(x)) | det∇φ(x)| dx,

où dx désigne la mesure de Lebesgue dans la variable x, et ∇φ est la matrice ja-
cobienne de φ. Cette formule permet de passer d’une intégrale dans la variable y à
une intégrale dans la variable x, où y = φ(x).

Mais le changement de variable peut aussi se formuler dans le cadre bien plus
général des espaces mesurés et des fonctions mesurables. Il ne sera plus question
alors de difféomorphisme ou de déterminant jacobien, qui n’ont pas forcément de
sens. C’est donc une formule bien plus abstraite qui sera au cœur de cette section,
basée sur la notion importante de mesure image. On verra plus tard comment faire
le lien avec les formules classiques de changement de variable dans Rn.

IV-3.1. Image d’une mesure par une fonction mesurable. La proposition
qui suit se contente de rappeler une notion introduite dans la Remarque III-3(i).

Proposition IV-64 (Tribu image). Soient (X,A) un espace mesurable, Y un
ensemble quelconque, et f : X → Y . On peut définir une tribu, notée f#A (ou f#A,
ou f∗A, ou fA) sur Y , par

f#A =
{
B ⊂ Y ; f−1(B) ∈ A

}
.

Cette tribu est appelée tribu image de A par f , et c’est la plus grande tribu qui rende
f mesurable.

Si Y est au départ un espace mesurable, muni d’une tribu B, et si f est une
application mesurable, alors B ⊂ f#A.

Définition IV-65 (Mesure image). Soit (X,A, µ) un espace mesuré, et f : X →
Y . Alors la formule

ν[B] = µ[f−1(B)]

définit une mesure sur la tribu image f#A appelée mesure image de µ par f et notée
f#µ (ou f#µ, ou f∗µ).

Si (Y,B) est au départ un espace mesurable, et f est une application mesurable,
alors f#µ définit par restriction une mesure sur B.

La preuve des assertions énoncées ci-dessus est un exercice simple de maniement
des axiomes de théorie de la mesure.
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Remarque IV-66. On rencontre parfois la notation fµ pour la mesure image
de f par µ, mais il y a alors risque de confusion avec la notion très différente de
mesure de densité f par rapport à µ.

IV-3.2. Théorème de changement de variable.

Théorème IV-67. Soient (X,A) et (Y,B) deux espaces mesurables, et φ : X →
Y une application mesurable. Soit µ une mesure sur l’espace mesurable X. Alors

(i) Pour toute fonction f mesurable sur Y , à valeurs dans [0,+∞],

(29)
∫
f d(φ#µ) =

∫
(f ◦ φ) dµ.

(ii) Pour toute fonction f mesurable sur Y , à valeurs dans R, la fonction f ◦ φ
est µ-sommable si et seulement si la fonction f est (φ#µ)-sommable, et l’égalité
ci-dessus est alors vérifiée.

Démonstration. Il est facile de voir que (i) implique (ii) ; on va donc se conten-
ter de démontrer (i). Si f est une fonction simple, l’égalité (29) découle de la défi-
nition de φ#µ. En effet, quand B est une partie mesurable, et que f est la fonction
indicatrice de B, alors les deux membres de (29) se ramènent à µ[f−1(B)].

Dans le cas général où f est seulement supposée mesurable, on peut approcher
f par une famille croissante de fonctions simples fn ; alors fn ◦ φ est une famille
croissante de fonctions simples convergeant vers f ◦ φ, et on passe à la limite par le
Théorème de convergence monotone de Beppo Levi (Théorème IV-1). □

Remarque IV-68. Il peut se produire que f ◦ φ soit mesurable sans que f le
soit. Par exemple c’est le cas, dès que φ(X) n’est pas mesurable, pour la fonction
f = 1φ(X).

IV-3.3. Morphismes d’espaces mesurés. La formule de changement de va-
riables vue précédemment ne suppose aucune régularité et s’applique donc dans des
problèmes théoriques abstraits.

Soit la situation où (X,A, µ) est un espace mesuré, φ une application X → Y , et
Y est muni de la tribu image φ#A et de la mesure image φ#µ. Tout énoncé faisant
intervenir la mesure µ et des ensembles mesurables, ou des intégrales de fonctions
mesurables, se traduira en un énoncé similaire sur (Y, φ#A, φ#µ). On peut dire que
φ réalise un morphisme entre les espaces mesurés X et Y .

Si maintenant f est bijective, de réciproque mesurable (on parle de fonction “bi-
mesurable”), alors f−1 réalisera également un morphisme entre Y etX, et les énoncés
de théorie de la mesure faisant intervenir (X,A, µ) seront équivalents aux énoncés
correspondants faisant intervenir (Y, f#A, f#µ). On dit que f réalise un isomor-
phisme entre les espaces mesurés X et Y . Cette notion permet parfois de ramener
des problèmes définis sur un espace en apparence compliqué, à des problèmes défi-
nis sur un espace beaucoup plus familier ; c’est tout simplement un changement de
variable abstrait.

A titre d’exemple, voici un surprenant résultat de classification selon lequel tout
espace polonais est isomorphe à [0, 1].

Théorème IV-69 (représentation des espaces polonais). Soit (X,A, µ) un espace
polonais muni d’une mesure de Borel finie. Soit I l’intervalle [0, 1] muni de sa tribu
borélienne B. Alors
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(i) Il existe une mesure finie λ sur I, et une application mesurable f : I → X
qui réalise un morphisme entre (I,B, λ) et (X,A, µ). Autrement dit, toute mesure
finie sur un espace polonais est image d’une mesure finie sur [0, 1].

(ii) Si µ est sans atome, alors on peut choisir la fonction f bijective. Autrement
dit, toute mesure finie sans atome sur un espace polonais est isomorphe à une mesure
finie sans atome sur [0, 1].

Remarque IV-70. On rappelle que la réciproque d’une bijection mesurable entre
espaces polonais est automatiquement mesurable (Théorème III-24).

Exemple IV-71. Comme on le verra au Chapitre VI, l’espace [0, 1], muni de la
mesure de Lebesgue, est isomorphe à l’espace {0, 1}N, muni de la mesure produit
(infini) ν obtenue par produit tensoriel dénombrable de la mesure de Bernoulli sur
{0, 1}, i.e. la mesure qui attribue un poids identique 1/2 à {0} et à {1} :

ν =

(
1

2
δ0 +

1

2
δ1

)⊗N

.

Pour autant, R et {0, 1}N ne sont pas topologiquement isomorphes : ainsi, le premier
est connexe, alors que le second est totalement discontinu (ses composantes connexes
sont tous ses points, il y en a une infinité non dénombrable). On voit sur cet exemple
que la théorie de la mesure selon Lebesgue est insensible à la topologie.

On va maintenant appliquer le théorème de changement de variable pour prou-
ver le Théorème IV-34 dans le cas général (rappelons que ce théorème a déjà été
démontré dans le cas où X est σ-fini à l’aide du Théorème de Fubini).

Démonstration du Théorème IV-34. Appliquons le Théorème IV-32 à la
fonction positive Φ ◦ f : ainsi∫

X

Φ ◦ f dµ =

∫
R+

µ[{Φ ◦ f > t}]λ(dt).

De par sa définition, la fonction Φ est croissante et continue à gauche (en effet,
ν[0, x[ = limk→∞ ν[0, x− k−1[ . On définit son inverse généralisé par la formule

Φ−1(t) := inf
{
s ≥ 0; Φ(s) > t

}
.

Il est facile de vérifier que Φ−1 est croissante et continue à droite. Par définition de
Φ−1, si f > Φ−1(t) alors Φ(f) > t. Si maintenant Φ(f) > t, par continuité de Φ à
gauche on peut trouver ε > 0 tel que Φ(f − ε) > t, et par définition de Φ−1 on a
Φ−1(t) ≤ f − ε < f . On a donc

Φ(f) > t⇔ f > Φ−1(t).

Il s’ensuit∫
R
µ[{Φ ◦ f > t}]λ(dt) =

∫
R
µ[{f > Φ−1(t)}]λ(dt) =

∫
R
µ[{f > s}]

[
(Φ−1)#λ

]
(ds).

Pour conclure, il suffit d’établir que
(Φ−1)#λ = ν.

Or la tribu borélienne sur R+ est engendrée par les intervalles de la forme [0, s[ ; il
suffit donc de vérifier que

λ[{Φ−1 < s}] = ν[0, s[.
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Or la première quantité est λ[0,Φ(s)[= Φ(s), puisque Φ−1(t) < s équivaut à t <
Φ(s) ; et la deuxième quantité est par définition Φ(s). □

IV-4. Inégalités intégrales élémentaires
Pour établir des majorations sur des quantités faisant intervenir des intégrales,

on utilise le plus souvent un petit nombre d’inégalités souples et puissantes, qui
apparaissent dans un nombre incalculable de contextes différents. Les trois inégali-
tés fondamentales, valables en toute généralité, sont les inégalités de Tchebychev,
Jensen et Hölder. Deux autres inégalités viennent compléter le tableau : les in-
égalités de Young intégrées, plus générales que celle de Hölder ; et les inégalités de
Minkowski, qui joueront un rôle majeur au Chapitre VIII.

Toutes ces inégalités, pour l’essentiel antérieures à la théorie de Lebesgue, ont
été découvertes, redécouvertes et améliorées par des analystes et statisticiens ac-
tifs durant la seconde moitié du dix-neuvième siècle : Viktor Bouniakovski, Her-
mann Amandus Schwarz, Leonard James Rogers, Otto Hölder, Johan Jensen, Paf-
nouti Tchebychev, William Henry Young, Andrey Andreyevitch Markov, Irénée-Jules
Bienaymé, Hermann Minkowski... La paternité est particulièrement brouillée : par
exempe, l’inégalité de Jensen est d’abord établie par Hölder, et l’inégalité de Hölder
par Rogers... En outre elles sont toutes étroitement liées, et relèvent d’une même
philosophie : utiliser la convexité pour borner une intégrale faisant intervenir un
produit de deux fonctions, par des intégrales faisant intervenir chaque fonction sé-
parément. Elles s’appliquent pareillement à des sommes discrètes (et dans ce cadre
remontent au moins à Augustin-Louis Cauchy) et à toute notion acceptable d’inté-
grale ; de sorte que la théorie de Lebesgue n’a eu aucun souci à les inclure quand elle
s’est développée.

Avec le développement de la théorie de l’information, sont venues s’ajouter à la
liste les inégalités intégrales entropiques, qui sont à la fois un cas particulier des
inégalités de Young et un cas limite des inégalités de Hölder ;

Une certaine familiarité avec les propriétés des fonctions convexes sera utile pour
lire cette section ; en cas de besoin on pourra se reporter aux rappels contenus dans
l’Appendice en fin de chapitre.

IV-4.1. Inégalité de Thebychev. L’inégalité de Tchebychev (un nom que l’on
orthographie de multiples autres manières, comme Chebisheff) est aussi élémentaire
qu’utile, particulièrement dans le domaine des probabilités.

Théorème IV-72 (inégalité de Tchebychev). (i) Soient (X,A, µ) un espace
mesuré et f : X → R+ une fonction mesurable positive. Alors, pour tout a > 0,

(30) µ
[
{x ∈ X; f(x) ≥ a}

]
≤ 1

a

∫
X

f dµ.

(ii) Soient (X,A, µ) un espace mesuré, f : X → R+ une fonction mesurable
positive, et Φ : R+ → R+ une fonction mesurable croissante. Alors, pour tout a ≥ 0,

µ
[
{x ∈ X; f(x) ≥ a}

]
≤ 1

Φ(a)

∫
X

Φ(f(x))µ(dx).

Remarques IV-73. (a) Dans le cas dégénéré où a = 0 et f est nulle presque
partout, l’inégalité (30) est a priori fausse (sous la convention habituelle 0/0 =
0).
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(b) L’énoncé (i) est souvent appelé inégalité de Markov ; l’énoncé (ii) est souvent
appelé inégalité de Bienaymé–Tchebychev quand Φ(r) = r2, et inégalité de
Tchebychev exponentielle quand Φ(r) = eαr. Si l’on peut choisir des fonctions
Φ croissant très vite à l’infini, mais telles que Φ ◦ f soit toujours intégrable,
on peut obtenir des estimations de décroissance très rapide de la mesure
de {x; f(x) ≥ a} quand a → ∞. En fait, dans la plupart des situations
concrètes, on obtient des estimations de décroissance presque optimales par
un choix convenable de Φ.

(c) En corollaire de l’inégalité de Tchebychev, si
∫
|f | dµ < +∞ on a

(31) ∀δ > 0 µ[{|f | ≥ δ}] < +∞.

Quand f vérifie (31) on dit parfois que f “s’annule à l’infini”. La même
conclusion est vraie si

∫
Φ(f) dµ < +∞ pour Φ une fonction R → R+

dont les restrictions à R+ et R− sont strictement croissantes ; par exemple
si
∫
|f |p dµ < +∞ pour un certain p ∈]0,+∞[.

Démonstration du Théorème IV-72. Posons A := {x ∈ X; f(x) ≥ a}.
Comme f est positive, on a

(32) f ≥ a1A.

L’ensemble A est mesurable puisque f l’est ; donc a1A est étagée, et son intégrale
est aµ[A]. La définition même de l’intégrale implique donc

∫
f dµ ≥ aµ[A], d’où (i).

Pour en déduire l’énoncé (ii), il suffit d’appliquer (i) avec f remplacé par Φ ◦ f ,
et de noter que, Φ étant croissante,

{x; f(x) ≥ a} ⊂
{
x; Φ(f(x)) ≥ Φ(a)

}
.

□

Remarque IV-74. Il est facile de vérifier que l’énoncé est en général faux si f
n’est pas positive ! (exercice) Dans la pratique, on cherchera donc toujours à se rame-
ner à des fonctions f positives, par exemple en prenant la valeur absolue. En utilisant
des normes, on peut aussi appliquer ce théorème à des estimations de fonctions à
valeurs vectorielles.

IV-4.2. Inégalité de Jensen.

Théorème IV-75 (inégalité de Jensen dans Rn). Soient (X,A) un espace mesuré
équipé d’une mesure de probabilité µ, f : X → Rn une fonction mesurable dont
chaque composante est µ-sommable, et Φ : Rn → R ∪ {+∞} une fonction convexe
semi-continue inférieurement. On note

∫
f dµ le vecteur de Rn dont la composante

d’ordre i est
∫
fi dµ. Alors

Φ

(∫
f dµ

)
≤
∫

(Φ ◦ f) dµ.

De plus, si les deux membres de l’inégalité sont finis, il y a égalité si et seulement si
Φ coïncide, f#µ-presque partout, avec une fonction affine ; en particulier, si Φ est
strictement convexe, f doit être égale à une constante, µ-presque partout.
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Corollaire IV-76 (inégalité de Jensen pour des puissances). Soient (X,A) un
espace mesurable, µ une mesure de probabilité sur X, f : X → Rn une fonction
mesurable dont chaque composante est µ-sommable, et p ∈ [1,+∞[. On note

∫
f dµ

le vecteur de Rn dont la composante d’ordre i est
∫
fi dµ. Alors∣∣∣∣∫ f dµ

∣∣∣∣p ≤ ∫ |f |p dµ.

De plus, si le membre de droite de l’inégalité est fini et p > 1, il y a égalité si et
seulement si il existe une constante a ∈ Rn telle que, µ-presque partout, f = a.

Remarques IV-77. (i) Si Φ est continue à valeurs réelles, elle est automati-
quement continue, l’hypothèse de semi-continuité inférieure dans le Théorème
IV-75 devient donc superflue.

(ii) Quand µ = λδx + (1− λ)δy, l’inégalité de Jensen se réduit à la définition de
la convexité. Plus généralement, si l’on pose X = {1, . . . , N}, µ =

∑
λiδi et

f(i) = xi, l’inégalité de Jensen se réduit à l’inégalité
N∑
i=1

λi = 1 =⇒ Φ
(∑

λixi
)
≤
∑

λiΦ(xi),

que l’on peut également adopter comme définition de la convexité. L’inégalité
de Jensen n’est donc qu’une “version continue” ou “limite continue”
de l’inégalité ci-dessus.

(iii) L’inégalité de Jensen s’étend à n’importe quelle notion “raisonnable” d’inté-
grale à valeurs vectorielles, même si l’espace d’arrivée de f est de dimension
infinie ; voir le Théorème ??. En fait, compte tenu de son importance dans
des contextes très divers, on pourrait ajouter l’inégalité de Jensen au cahier
des charges d’une intégrale abstraite.

Démonstration de l’inégalité de Jensen. Je vais d’abord présenter une
démonstration générale, qui ne craindra pas les valeurs infinies, mais ne permettra
pas de traiter les cas d’égalité.

Considérons d’abord le cas où f prend un nombre fini de valeurs y1, . . . , yk ∈ Rn,
et notons Ak = f−1(yk), αk = µ[Ak]. Les ensembles Ak sont mesurables et

∑
αk = 1.

Par convexité de Φ,

Φ

(∫
f dµ

)
= Φ

(∑
αkyk

)
≤
∑

αk Φ(yk) =

∫
Φ ◦ f dµ.

Supposons maintenant que Φ est lipschitzienne. Par hypothèse f ∈ L1(µ), donc
chaque composante fj de f peut être approchée dans L1(µ) par une famille (g

(ℓ)
j )ℓ∈N

de fonctions prenant un nombre fini de valeurs réelles. On en déduit∫
g(ℓ) dµ −−−→

ℓ→∞

∫
f dµ,

donc

Φ

(∫
g(ℓ) dµ

)
−−−→
ℓ→∞

Φ

(∫
f dµ

)
;
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et par lipschitzianité de Φ,∣∣∣∣∫ Φ(f(x))µ(dx)−
∫

Φ(g(ℓ)(x))µ(dx)

∣∣∣∣ ≤ ∫ |Φ(f(x))− Φ(g(ℓ)(x))|µ(dx)

≤ ‖Φ‖Lip
∫

|f(x)− g(ℓ)(x)|µ(dx) −−−→
ℓ→∞

0.

On peut donc passer à la limite dans l’inégalité de Jensen appliquée à chaque fonction
g(ℓ), et obtenir l’inégalité de Jensen pour la fonction f .

Pour conclure, on note que si Φ est convexe semi-continue inférieurement, à va-
leurs dans R∪{+∞}, on peut écrire Φ = supk∈N Φk, où chaque Φk est lipschitzienne.
On a donc

Φ

(∫
f dµ

)
= sup

k∈N
Φk

(∫
f dµ

)
≤ sup

k∈N

∫
Φk ◦ f dµ ≤

∫
Φ ◦ f dµ.

Pour obtenir les cas d’égalité, nous devrons travailler un peu plus. Sans perte de
généralité, on peut supposer que f(x) = x : pour s’y ramener, il suffit de remplacer
µ par f#µ. L’inégalité devient alors

Φ(ξ) ≤
∫

Φ dµ, ξ =

∫
xµ(dx).

(En d’autres termes, ξ est le barycentre de µ.) Supposons donc que Φ(ξ) =
∫
Φ dµ.

Plaçons-nous dans l’espace affine E engendré par le support de µ. Soit Ω = Φ−1(R)∩
E le domaine de Φ, ou plutôt de sa restriction à E. Si

∫
Φ dµ < +∞, forcément

µ[E \Ω] = µ[Φ = +∞] = 0, autrement dit µ peut être considéré comme une mesure
de probabilité sur Ω. Par le lemme IV-79 ci-dessous, ξ est intérieur à Ω (dans E) ;
le sous-différentiel ∂Φ(ξ) est donc non nul (on démontrera plus tard ce résultat sous
des hypothèses plus générales, voir le Corollaire ??). Soit y ∈ ∂Φ(ξ) ; pour tout
z ∈ E, on a

Φ(z)− Φ(ξ)− 〈y, z − ξ〉 ≥ 0.

Comme l’intégrale de cette fonction vaut∫
Φ dµ− Φ(ξ)−

∫
〈y, z − ξ〉µ(dz) =

(∫
Φ dµ− Φ(ξ)

)
−
∫
〈y, ξ − ξ〉

= 0− 0 = 0,

elle est forcément nulle. On conclut que
Φ(z) = Φ(ξ) + 〈y, z − ξ〉,

µ-presque partout, ce qui démontre la conclusion. □

Remarque IV-78. Dans la preuve des cas d’égalité, on a en fait redémontré
l’inégalité de Jensen, sous l’hypothèse supplémentaire que Φ est finie µ-presque par-
tout.

Lemme IV-79. Soit Ω ⊂ Rn un convexe (non nécessairement ouvert ou fermé),
et soit µ une mesure de probabilité borélienne sur Ω, telle que

∫
|x|µ(dx) < +∞.

On note E l’espace affine euclidien engendré par le support de µ, et ξ =
∫
xµ(dx)

le barycentre de µ. Alors ξ est intérieur à Ω ∩ E dans E.
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Démonstration. On note Ω′ = Ω∩E. Supposons que ξ ∈ ∂Ω′ ; par le Théorème
de séparation de Hahn–Banach (dont la démonstration sera rappelée plus tard dans
un cadre général, voir le Théorème ??) il existe une forme linéaire λ ∈ E∗, et α ∈ R,
tels que λ ≤ α sur Ω′ et λ(ξ) = α. On considère ν = λ#µ : c’est une mesure sur
(−∞, α] dont le barycentre est égal à α ; elle est donc forcément égale à δα. On en
déduit que µ est concentrée sur un hyperplan de E, ce qui est en contradiction avec
la définition de E. □

Il faut prendre bien garde, quand on applique l’inégalité de Jensen, à l’hypothèse
sur la mesure µ : ce doit être une mesure de probabilité. Il existe cependant
un cas intéressant où cette hypothèse peut être omise : c’est celui où la fonction Φ
est homogène de degré 1, au sens où
(33) ∀λ > 0, ∀x ∈ Rn, Φ(λx) = λΦ(x).

Théorème IV-80 (inégalité de Jensen pour des fonctions convexes 1-homo-
gènes). Soient X un espace mesuré, µ une mesure sur X, f : X → Rn une fonction
mesurable dont chaque composante est µ-sommable, et Φ : Rn → R ∪ {+∞} une
fonction convexe, semi-continue inférieurement, homogène de degré 1 au sens de
(33). Alors

Φ

(∫
f dµ

)
≤
∫

(Φ ◦ f) dµ,

où l’on convient que le membre de droite vaut +∞ si Φ ◦ f n’est pas sommable.

Remarque IV-81. La convention sur le membre de droite est très naturelle :
on peut montrer que Φ est minorée par une fonction affine, et il s’ensuit que Φ ◦ f
est minorée par une fonction intégrable ; Φ ◦ f est donc la somme d’une fonction
sommable et d’une fonction positive.

Démonstration du Théorème IV-80. La µ-sommabilité de chaque compo-
sante de f implique celle de |f |. Pour tout entier k ≥ 1, notons Ak := {x ∈
X; |f(x)| ≥ k−1}. L’inégalité de Tchebychev implique

µ[Ak] ≤ k

∫
|f | dµ.

En particulier, µ[Ak] est fini. Soit µk la mesure de probabilité définie par

µk[B] :=
µ[Ak ∩ B]

µ[Ak]
.

L’inégalité de Jensen implique

Φ

(∫
f dµk

)
≤
∫

Φ ◦ f dµk.

En utilisant l’homogénéité de Φ, on en déduit

Φ

(
µ[Ak]

∫
f dµk

)
= µ[Ak] Φ

(∫
f dµk

)
≤ µ[Ak]

∫
Φ ◦ f dµk.

En résumé,

(34) Φ

(∫
Ak

f dµ

)
≤
∫
Ak

Φ ◦ f dµ.
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En distinguant les cas f(x) = 0 et f(x) 6= 0, on voit que f1Ak
converge partout vers

f quand k → ∞. Par convergence dominée,∫
Ak

f dµ −−−→
k→∞

∫
X

f dµ,

et par semi-continuité inférieure de Φ,

(35) Φ

(∫
f dµ

)
≤ lim inf

k→∞

∫
Ak

Φ ◦ f dµ.

D’autre part, l’homogénéité de Φ impose Φ(0) = 0, ce qui permet de montrer que
la fonction (Φ ◦ f)1Ak

converge partout vers Φ ◦ f . Si cette fonction est intégrable,
alors, par convergence dominée,∫

Ak

f dµ −−−→
k→∞

∫
X

f dµ.

Cela conclut l’argument. □

Remarque IV-82. Soit φ une fonction convexe sur Rn−1 ; alors la fonction définie
sur Rn−1 × R+ par

Φ(x, z) = z φ
(x
z

)
est convexe, comme on peut le voir en revenant à la définition de la convexité (exer-
cice) ; et elle est homogène de degré 1.

IV-4.3. Inégalités de Young intégrées. Pour toutes fonctions f et g à va-
leurs réelles, définies sur un espace X quelconque, et toute fonction convexe Φ sur
R, on peut écrire

f(x) g(x) ≤ Φ(f(x)) + Φ∗(g(x)),

où Φ∗ est la transformée de Legendre de Φ. Si X est muni d’une mesure µ et que
toutes ces fonctions sont intégrables, on a alors∫

X

fg dµ ≤
∫
X

Φ ◦ f dµ+

∫
X

Φ∗ ◦ g dµ.

Plus généralement, si f et g sont à valeurs dans Rn, on peut écrire

(36)
∫
〈f, g〉 dµ ≤

∫
X

Φ ◦ f dµ+

∫
X

Φ∗ ◦ g dµ,

dès que ces intégrales sont bien définies dans R.
Ces inégalités aussi élémentaires que cruciales peuvent parfois être améliorées,

en particulier quand Φ est homogène, comme on va le voir.

IV-4.4. Inégalité de Hölder. Très souvent, quand on majore des produits de
fonctions, on cherche à exploiter des intégrabilités différentes pour les deux facteurs.
Un exemple évident est l’inégalité utile

|f | ≤ C µ-presque partout =⇒
∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ C

∫
|g| dµ.

L’inégalité de Hölder affine cette inégalité grâce à l’usage de fonctions puissances.
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Théorème IV-83 (inégalité de Hölder). Soit (X,A, µ) un espace mesuré, soit
p ∈]1,+∞[, et soit p′ = p/(p − 1) l’exposant conjugué de p. Soient f et g deux
fonctions mesurables sur X, à valeurs dans R. Alors

(37)
∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ (∫ |f |p dµ
)1/p(∫

|g|p′ dµ
)1/p′

,

où l’on convient que le membre de gauche vaut +∞ si fg n’est pas intégrable. De
plus, si le membre de droite de l’inégalité est fini et non nul, il y a égalité si et
seulement si il existe α > 0, ε ∈ {±1} tel que, µ-presque partout, f et ε g ont même
signe et |f |p = α|g|p′, ce qui revient à g = |f |p−2f .

Les mêmes conclusions valent si f et g sont à valeurs dans Rn, quitte à remplacer
le produit fg par le produit scalaire 〈f, g〉, et à interpréter |f | et |g| comme les normes
euclidiennes de f et g.

Remarques IV-84. (i) Dans le cas où p = p′ = 2, l’inégalité de Hölder est
appelée inégalité de Cauchy–Schwarz ; on peut alors la démontrer par un
argument abstrait, et cette inégalité revient à dire que la fonction f 7−→

∫
|f |2

est une forme quadratique positive. On reviendra sur cela dans les chapitres
VIII et ??.

(ii) L’inégalité de Minkowski fait aussi intervenir des fonctions puissance et
de la convexité ; elle sera introduite dans le Chapitre VIII,

(iii) L’inégalité de Hölder reste vraie pour p = 1 ou p = ∞, si l’on convient de
poser(∫

|g|∞ dµ

)1/∞

:= inf
{
C ∈ R; |g| ≤ C µ-presque partout

}
.

Cette dernière quantité est appelée le supremum essentiel de |g| ; il s’agit
de la définition habituelle du supremum, à laquelle on a ajoutée les mots
“µ-presque partout”.

(iv) Pour 0 < p ≤ 1, il existe une inégalité de Hölder renversée : l’exposant p′ est
remplacé par q = p/(1− p) = −p′, le signe d’inégalité dans (37) est renversé,
et les fonctions f et g sont supposées positives :

(38) f, g ≥ 0 =⇒
∫
fg dµ ≥

(∫
f p dµ

)1/p(∫
gq dµ

)1/q

.

Cette inégalité, d’usage beaucoup moins fréquent que (37), repose sur les
mêmes bases que l’inégalité habituelle, et elle est laissée en exercice.

Démonstration de l’inégalité de Hölder. Si l’une des intégrales du membre
de droite est nulle, alors, µ-presque partout, fg = 0, et l’inégalité est satisfaite. Si
l’une de ces intégrales est infinie et l’autre non nulle, alors l’inégalité est bien sûr
satisfaite. Supposons donc que les deux intégrales sont strictement positives et finies.
On pose alors f̃ = f/(

∫
|f |p)1/p, g̃ = g/(

∫
|g|p′)1/p′ , on a alors

∫
|f̃ |p =

∫
|g̃|p′ = 1 et

on doit prouver ∣∣∣∣∫ f̃ g̃, dµ

∣∣∣∣ ≤ 1.

On sait déjà que ∣∣∣∣∫ f̃ g̃ dµ

∣∣∣∣ ≤ ∫ |f̃ g̃| dµ,
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et si le membre de droite est fini, l’égalité n’est possible que si, µ-presque partout,
f̃ g̃ = |f̃ g̃|, c’est-à-dire si f̃ et g̃ ont même signe, ou de façon équivalente, si f et g
ont même signe.

Pour récapituler, on s’est ramené, par cet argument d’homogénéité, au cas par-
ticulier suivant : montrer que, si f et g sont deux fonctions positives,∫

f p =

∫
gp

′
= 1 =⇒

∫
fg ≤ 1,

avec égalité si et seulement si f = g presque partout. On écrit alors l’inégalité du
Lemme IV-126 avec a := f(x), b := g(x), et on intègre par rapport à µ : on trouve∫

fg dµ ≤ 1

p
+

1

p′
= 1;

avec égalité si et seulement si f = g presque partout, ce qui conclut l’argument. □

L’inégalité de Hölder admet plusieurs avatars simples et intéressants.

Théorème IV-85 (variantes de l’inégalité de Hölder). (i) Soit (X,A, µ) un
espace mesuré, soit p ∈]1,+∞[ et soit p′ = p/(p− 1) son exposant conjugué. Soient
f et g deux fonctions mesurables sur X, à valeurs dans R. Alors, pour tout λ > 0,∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ λp

p

∫
|f |p dµ+

1

λp′p′

∫
|g|q dµ,

où l’on convient que le membre de gauche vaut +∞ si fg n’est pas intégrable.
(ii) Soit (X,A, µ) un espace mesuré, soient p1, . . . , pk ∈]1,+∞[ tels que

k∑
i=1

1

pi
= 1,

et soient f1, . . . , fk des fonctions mesurables sur X, à valeurs dans R. Alors∣∣∣∣∣
∫

(
∏
i

fi) dµ

∣∣∣∣∣ ≤∏
i

(∫
|fi|pi dµ

)1/pi

,

où l’on convient que le membre de gauche vaut +∞ si
∏
fi n’est pas intégrable.

(iii) Soient (X,A, µ) un espace mesuré σ-fini et (Y,B, π) un espace de probabilité.
Alors, pour toute fonction F mesurable de X × Y dans R+ ∪ {+∞}, on a∫

X

exp

(∫
Y

logF (x, y) π(dy)

)
µ(dx) ≤ exp

(∫
Y

log

(∫
X

F (x, y)µ(dx)

)
π(dy)

)
.

(iv) Soient X et Y deux ensembles quelconques, et L un opérateur linéaire, défini
sur un sous-espace vectoriel de l’ensemble des fonctions de X dans R, à valeurs dans
l’ensemble des fonctions de Y dans R. On suppose que L est positif, i.e. Lf ≥ 0 si
f ≥ 0. Soient f, g ≥ 0 dans le domaine de L, soit p ∈]1,+∞[ et p′ = p/(p− 1) son
exposant conjugué. Alors

L(fg) ≤ [L(f p)]1/p [L(gp
′
)]1/p

′
,

ce qui est une inégalité entre deux fonctions de Y dans R.
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(v) Soient (X,µ) un espace mesuré, E un espace vectoriel normé, et E∗ l’espace
des formes linéaires continues sur E, muni de sa norme naturelle. Soient f : X → E∗

et g : X → E des fonctions mesurables, soit p ∈]1,+∞[ et q := p/(p− 1). Alors∣∣∣∣∫ 〈f, g〉E∗×E dµ

∣∣∣∣ ≤ (∫ ‖f‖pE∗

)1/p(∫
‖g‖p

′

E

)1/p′

,

où l’on convient que le membre de gauche vaut +∞ si 〈f, g〉 n’est pas intégrable.
(vi) Soit (X,A, µ) un espace mesuré, f, g : X → C deux fonctions mesurables à

valeurs complexes, p ∈]1,+∞[ et q := p/(p− 1). Alors∣∣∣∣∫ fg dµ

∣∣∣∣ ≤ (∫ |f |p dµ
)1/p(∫

|g|p′ dµ
)1/p′x

,

où l’on convient que le membre de gauche vaut +∞ si fg n’est pas intégrable. De
plus, si le membre de droite de l’inégalité est fini et non nul, il y a égalité si et
seulement si il existe α > 0 et θ ∈ R tels que, µ-presque partout, fg ∈ eiθR et
|f |p = α|g|q.

Démonstration. (i) Il suffit de remarquer que

inf
λ∈[0,1]

{
λp

p

∫
|f |p dµ+

1

λp′p′

∫
|g|p′

}
=

(∫
|f |p dµ

)1/p(∫
|g|p′ dµ

)1/p′

.

Cette façon de procéder fournit d’ailleurs la base d’une autre démonstration de
l’inégalité de Hölder : on commence par appliquer l’inégalité du Lemme IV-126 avec
a := λf(x), b := g(x)/λ, où λ > 0 est arbitraire. On intègre l’inégalité obtenue par
rapport à µ, puis on optimise par rapport au paramètre λ.

(ii) Sans perte de généralité, on peut supposer que toutes les fonctions fi sont
positives ; l’inégalité à démontrer s’obtient alors à partir de l’inégalité de Hölder par
récurrence.

(iii) Par homogénéité, on peut supposer que

∀y ∈ Y,

∫
X

F (x, y) dµ(x) = 1,

auquel cas l’inégalité à établir est∫
X

exp

(∫
Y

logF (x, y) π(dy)

)
µ(dx) ≤ 1.

C’est alors une conséquence immédiate de l’inégalité de Jensen pour la fonction
convexe − log et pour la mesure de probabilité π, combinée avec le théorème de
Fubini.

Les énoncés (iv), (v) et (vi) se démontrent sans difficulté en adaptant la preuve de
l’inégalité de Hölder ou en s’y ramenant, par exemple en écrivant que 〈f, g〉E∗×E ≤
‖f‖E∗‖g‖E. □

Remarque IV-86. Pour comprendre en quoi l’énoncé (iii) est une variante de
l’inégalité de Hölder dans le cas où les fonctions f et g sont strictement positives,
il suffit de poser Y := {0, 1}, π := (1/p)δ0 + (1/p′)δ1, F (x, 0) := f(x)p, F (x, 1) :=
g(x)p

′ . En fait, on peut facilement se convaincre que l’énoncé (iii) est une “limite
continue” de l’énoncé (ii). L’énoncé (iii) n’est pas très utile en pratique, son principal
intérêt pour nous est de mettre en évidence un lien étroit entre les inégalités de
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Hölder et de Jensen. L’énoncé (iv) quant à lui a le mérite de montrer que l’inégalité
de Hölder est vraie dans un cadre beaucoup plus général que celui de l’intégration ;
noter que l’inégalité de Hölder correspond au cas où Y est réduit à un point.

IV-4.5. Inégalités entropiques. L’inégalité de Hölder fait intervenir des puis-
sances des fonctions en jeu, ce qui est largement suffisant pour la majorité des pro-
blèmes. Cependant, il arrive que l’on considère d’autres fonctions, par commodité
ou par nécessité. L’une de ces fonctions est l’entropie d’une mesure ou d’une den-
sité, un concept introduit au dix-neuvième siècle par Ludwig Boltzmann, le héros
de la théorie atomique, et redécouvert dans les années 1940 par Claude Shannon,
père fondateur de la théorie de l’information et de la communication, et l’un des
pères de l’informatique. Les propriétés numériques de l’entropie ont été étudiées au
milieu du vingtième siècle par des spécialistes d’information et statistique comme
Mark Semonovitch Pinsker, Richard Leibler, Imre Csiszár, Johannes Kemperman,
Solomon Kullback.

Définition IV-87 (entropie). Soient (X,µ) un espace mesuré et f : X →
R+ ∪ {+∞} une fonction positive. On appelle entropie de f par rapport à µ la
quantité

Sµ(f) := −
∫
X

f log f dµ.

On appelle information de Kullback de fµ par rapport à µ la quantité

H(fµ|µ) :=
∫
X

(f log f − f + 1) dµ.

Remarque IV-88. La fonction f 7−→ f log f − f + 1 est positive, et donc l’in-
formation de Kullback toujours positive, alors que l’entropie peut prendre l’un ou
l’autre signe.

En physique statistique, si f est une densité de probabilité par rapport à la me-
sure µ := L, mesure de Lebesgue sur Rn, on appelle Sµ(f) l’entropie de Boltzmann ;
en théorie de l’information, on appelle Sµ(f) l’entropie de Shannon. Par ailleurs, l’in-
formation de Kullback, aussi appelée divergence de Kullback–Leibler, coïncide avec
l’opposé de l’entropie dès que

∫
fdµ =

∫
dµ, ce qui est très souvent le cas. Dans

chacun de ces domaines, l’entropie joue un rôle fondamental. L’inégalité suivante
remplace alors l’inégalité de Hölder :

Théorème IV-89 (inégalité de convexité pour l’entropie). Soit (X,A, µ) un
espace de probabilité, et soient f, g : X → R+ ∪ {+∞} deux fonctions mesurables
positives. Alors, ∫

fg dµ ≤
∫

(f log f − f + 1) dµ+ log

∫
eg dµ.

Démonstration du Théorème IV-89. Par homogénéité, on peut se ramener
au cas où

∫
eg dµ = 1, et il s’agit alors de prouver que∫

fg dµ ≤
∫

(f log f − f + 1) dµ.

Pour cela on écrit l’inégalité de Young logarithmique ci-dessus avec a := f(x),
b := g(x), et on l’intègre contre µ. Il vient∫

fg dµ ≤
∫

(f log f − f + 1) dµ+

∫
(eg − 1) dµ,
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et la dernière intégrale s’annule car
∫
eg = 1 et µ est une mesure de probabilité. □

Une autre question naturelle que l’on peut se poser est la façon dont l’entropie
se compare aux fonctions définies par des puissances. On ne peut bien sûr espérer
contrôler par l’entropie aucune puissance de f strictement supérieure à 1. L’inégalité
suivante répond de manière assez précise à cette question.

Théorème IV-90 (inégalité de Pinsker). Soit (X,µ) un espace de probabilité, et
soit f une densité de probabilité, i.e. fµ est une mesure de probabilité sur X. Alors∫

X

|f − 1| dµ ≤

√
2

∫
X

(f log f − f + 1) dµ.

Remarque IV-91. Cette inégalité se rencontre aussi sous le nom de Csiszár–
Kullback–Pinsker, ou diverses combinaisons de ces trois noms.

Démonstration. Par formule de Taylor avec reste intégrale,

f log f − f + 1 = (f − 1)2
∫ 1

0

(1− t) dt

1 + t(f − 1)
.

La mesure µ étant finie, on est en droit d’appliquer le Théorème de Fubini, d’où∫
(f log f − f + 1) dµ =

∫ 1

0

(1− t)

[∫
X

(f − 1)2

1 + t(f − 1)
dµ

]
dt.

Par inégalité de Cauchy–Schwarz, pour tout t ∈ [0, 1],(∫
|f − 1| dµ

)2

≤
(∫

X

(f − 1)2

1 + t(f − 1)
dµ

)(∫
(1 + t(f − 1)) dµ

)
=

∫
X

(f − 1)2

1 + t(f − 1)
dµ,

puisque µ et fµ sont toutes deux des mesures de probabilité. On conclut que(∫ 1

0

(1− t) dt

)(∫
|f − 1| dµ

)2

≤
∫

(f log f − f + 1) dµ,

ce qui est équivalent à la conclusion souhaitée. □

IV-5*. Équi-intégrabilité et tension
Cette section plus technique aborde les deux critères majeurs de compacité liés

à l’intégration de Lebesgue ; elle pourra être omise en première lecture.
IV-5.1. Équi-intégrabilité. On dit qu’un ensemble F de fonctions définies sur

un espace métrique est équicontinu s’il admet un module de continuité uniforme :
pour tout ε > 0 il existe δ > 0 tel que pour tous x, y distants d’au plus δ, les images
f(x) et f(y) soient distantes d’au plus ε, et ce pour tout f ∈ F . Écrit autrement :

∀ε > 0 ∃δ > 0; ∀x, y ∈ X, ∀f ∈ F d(x, y) ≤ δ =⇒ |f(y)− f(x)| ≤ ε.

Bien noter que dans cette é́criture δ est indépendant de f ∈ F : c’est en ce sens que
le module de continuité est dit uniforme. Bien évidemment, si F est équicontinu,
alors tout f ∈ F est uniformément continu ; et la réciproque est fausse.

La notion d’équicontinuité joue un rôle important, par exemple dans l’étude de
la compacité dans des espaces de fonctions continues. Ainsi, le théorème d’Ascoli
indique si K est un espace métrique compact, alors les ensembles précompacts dans
C(K) sont exactement les ensembles équicontinus.

En théorie de la mesure, un concept analogue est l’équi-intégrabilité :
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Définition IV-92 (Équi-intégrabilité). Soit (X,A, µ) un espace mesuré.
(i) On dit qu’un ensemble F de fonctions f : X → R est équi-intégrable si pour

tout ε > 0 il existe δ > 0 tel que

(39) µ[A] ≤ δ =⇒ ∀f ∈ F ,
∫
A

|f | dµ ≤ ε.

(ii) On dit que F est équi-intégrable à l’infini si pour tout ε > 0 il existe une
partie Yε ⊂ X, de mesure finie, telle que

(40) ∀f ∈ F ,
∫
X\Yε

|f | dµ ≤ ε.

L’équi-intégrabilité se prouve le plus souvent grâce au critère suivant :

Proposition IV-93 (Équi-intégrabilité : reformulation). Soient (X,A, µ) un
espace mesuré, et F un ensemble de fonctions mesurables de X dans R, tel que

sup
f∈F

∫
|f | dµ < +∞.

Alors
(i) F est équi-intégrable si et seulement si il existe une fonction Φ : R+ → R+,

telle que

(41) lim
r→∞

Φ(r)

r
= +∞ et sup

f∈F

∫
X

Φ(|f |) dµ < +∞.

En outre, sans perte de généralité, on peut choisir la fonction Φ convexe et régulière.

(ii) F est équi-intégrable à l’infini s’il une fonction φ : X → R+ telle que

∀r > 0, µ[{φ ≤ r}] < +∞; et sup
f∈F

∫
X

|f |φdµ < +∞.

Démonstration. Commençons par la propriété (i). Supposons (41) réalisé, et
soit ε > 0. On pose I := supf∈F

∫
Φ(|f |)|, dµ, et on choisit R assez grand pour que

r ≥ R =⇒ Φ(r)

r
≥ C

2ε
.

On pose ensuite δ := ε/(2R). Alors, pour tout f ∈ F ,∫
|f |≤R

|f | dµ ≤ ε

2C

∫
|f |≥R

∫
X

Φ(|f |) dµ ≤ ε

2
.

Donc, pour tout ensemble A de mesure µ[A] ≤ δ et pour tout f ∈ F ,∫
A

|f | dµ ≤ ε

2
+

∫
A∩{|f |≤R}

|f | dµ ≤ ε

2
+Rµ[A] ≤ ε

2
+
ε

2
;

et F est bien équi-intégrable. (Cette implication n’utilise pas la borne sur les inté-
grales

∫
|f | dµ.)

Réciproquement, supposons que F est équi-intégrable, et
∫
|f | dµ ≤ C. Par l’in-

égalité de Tchebychev, pour tout N ≥ 1 on a

µ
[
{|f | ≥ N}

]
≤ 1

N

∫
|f | dµ ≤ C

N
.
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Pour ε > 0, soit δ comme dans (39), et N tel que C/N ≤ δ. Alors on a, pour tout
f ∈ F , ∫

|f |≥N

|f | dµ ≤ ε.

En conséquence,

∀ε > 0, ∃N(ε) ≥ 1; ∀f ∈ F ,
∫
|f |≥N(ε)

|f | dµ ≤ ε.

On pose N0 = 0 et on construit par récurrence une suite d’entiers (Nk)k≥1 tels que
pour tout k ≥ 1,

Nk > 2Nk−1, et sup
f∈F

∫
|f |≥Nk

|f | dµ ≤ 2−k.

La suite (Nk)k∈N tend bien sûr vers l’infini, et pour tout x ≥ 0 il existe un nombre
fini d’indices k tels que Nk ≤ x. On définit

Φ(x) := x
∑
Nk≤x

k.

Il est clair que Φ(x)/x −→ +∞ quand x→ ∞. D’autre part, pour tout f ∈ F on a∫
X

Φ(|f |) dµ =

∫
X

|f |
∑

|f |≥Nk

k dµ =
∑
k∈N

k

∫
X

|f |1|f |≥Nk
dµ ≤

∑
k∈N

k 2−k < +∞.

En particulier, les quantités
∫
Φ(|f |) dµ sont bien majorées uniformément pour f ∈

F .
La fonction Φ ainsi construite est affine par morceaux, et discontinue. On définit

Φc comme son “enveloppe affine continue”, i.e. la plus grande fonction affine par
morceaux et continue qui minore f , obtenue en joignant les points (Nk,Φ(Nk−)).
Sur l’intervalle [Nk, Nk+1] cette fonction varie d’une quantité kNk+1 − (k− 1)Nk, sa
pente est donc

pk =
kNk+1 − (k − 1)Nk

Nk+1 −Nk

= k +
Nk

Nk+1 −Nk

.

Par construction, Nk+1 > 2Nk, donc Nk/(Nk+1−Nk) < 1. On a donc k ≤ pk < k+1,
ce qui montre que la suite pk est strictement croissante, et la fonction Φc est donc
convexe.

Pour conclure, il suffit de vérifier qu’on peut trouver une fonction convexe positive
Ψ, de classe C∞, telle que Φc − 1 ≤ Ψ ≤ Φ. C’est un exercice d’analyse réelle
classique, laissé à la lectrice.

On passe ensuite à la partie (ii), qui est plus simple. Cette partie n’utilise pas non
plus la borne uniforme sur les

∫
|f | dµ. Soit F un ensemble de fonctions vérifiant

la condition indiquée, on pose C = sup{
∫
|f |φdµ; f ∈ F}. Soient r = C/ε et

Ar := {x; φ > r}. Pour tout f ∈ F , on applique l’inégalité de Tchebychev à la
fonction φ et à la mesure |f |µ :∫

Ar

|f | dµ ≤ C

r
≤ ε.

Puisque Ar est de mesure finie, l’ensemble F est bien équi-intégrable à l’infini.
Réciproquement, supposons que F est équi-intégrable à l’infini. Par récurrence,

on peut construire une suite croissante d’ensembles Yk, de mesure finie, tels que
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∫
X\Yk

|f | dµ ≤ 2−k pour tout f ∈ F . Posons Y = ∪Yk. Si f ∈ F est fixé, on a par
convergence monotone ∫

X\Y
|f | dµ = lim

k→∞

∫
X\Yk

|f | dµ = 0.

Il s’ensuit que f est nulle presque partout en-dehors de Y .
On pose

φ =
∑
k∈N

k1Yk
.

En outre on définit φ(x) = +∞ sur X \Y . Si φ(x) ≤ k, alors x n’appartient à aucun
des Yj pour j > k, et n’appartient pas non plus à X \Y ; x appartient donc à Yk, qui
est un ensemble de mesure finie. Autrement dit, l’ensemble {φ < k} est de mesure
finie. D’autre part, pour tout f ∈ F ,∫

X

φf dµ =

∫
Y

φf dµ =
∑
k∈N

k

∫
Ak

|f | dµ ≤
∑
k

k

2k
< +∞.

□

On sait bien qu’une fonction continue sur un espace métrique compact X est
automatiquement uniformément continue, et que donc un singleton dans C(X) est
équicontinu (ce qui, via le critère d’Ascoli, revient à dire qu’un singleton est bien
compact !) Un énoncé analogue est valable dans le cadre de l’équi-intégrabilité :

Proposition IV-94. Soit f une fonction sommable dans un espace mesuré
(X,µ). Alors f est uniformément intégrable, au sens où l’ensemble {f} est équi-
intégrable, et équi-intégrable à l’infini.

Démonstration. Soit fM := max(−M,min(f,M)) (on tronque f aux hauteurs
−M et M). Par convergence dominée,

η(M) :=

∫
|f |≥M

|fM − f | dµ −−−−→
M→∞

0.

Il s’ensuit que, pour toute partie mesurable A avec µ[A] ≤ δ,∫
A

|f | dµ ≤
∫
A

|fM | dµ+ ε(M) ≤Mδ + η(M).

Si ε > 0 est donné, on choisit donc M assez grand pour que η(M) ≤ ε/2, et
δ = ε/(2M). Ceci prouve l’équi-intégrabilité.

Pour obtenir l’équi-intégrabilité à l’infini, si ε > 0 est donné, on pose Ak = {x ∈
X; |f(x)| ≥ k−1}. L’inégalité de Tchebychev entraîne que Ak est de mesure finie
pour tout k. D’autre part, la fonction |f |1|f |<k−1 converge vers 0 partout, et elle est
majorée par la fonction intégrable |f |. Donc, par convergence dominée,∫

X\Ak

|f | dµ =

∫
1|f |<k−1 |f | dµ −−−→

k→∞
0.

On peut donc trouver k assez grand pour que cette quantité soit majorée par ε. □
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Remarque IV-95. Ce résultat, de démonstration simple, est conceptuellement
subtil !! Il entraîne que si une fonction f est intégrable, alors il existe une fonction
Φ positive, avec Φ(r)/r → ∞, telle que∫

X

Φ(|f |) dµ < +∞.

En un certain sens, “si une fonction est intégrable, alors elle est un petit mieux
qu’intégrable”... !

Remarque IV-96. On verra au Chapitre ?? que l’équi-intégrabilité est associée
à un critère de compacité, ce qui est en accord avec le fait que cette propriété soit
automatiquement vérifiée par les singletons, ou plus généralement par les ensembles
finis ; et approfondit le parallèle avec la propriété d’équi-intégrabilité.

IV-5.2. Tension. La tension est l’analogue naturel de la propriété d’équi-intégrabilité
quand on parle de familles de mesures sur une σ-algèbre donnée, et non plus de
familles de fonctions intégrables sur un espace mesuré. Elle s’exprime en termes
d’ensembles compacts et non en termes d’ensembles de mesure finie.

Définition IV-97 (tension). Soient X un espace topologique, muni de sa tribu
borélienne, et M un ensemble de mesures de Borel sur X. On dit que M est tendu
si, pour tout ε > 0 on peut trouver un compact Kε dans X tel que

sup
µ∈M

µ[X \Kε] ≤ ε.

La notion de tension n’est pas sans rapport avec l’équi-intégrabilité à l’infini :
si ν est une mesure de référence qui attribue une mesure finie aux compacts, alors
la tension d’une famille de mesures de la forme fν implique son équi-intégrabilité
à l’infini ; et en fait les deux concepts sont équivalents modulo le remplacement des
compacts par les ensembles de mesure finie. Le lien entre les deux notions est clarifié
par la formulation équivalente de la tension que voici :

Proposition IV-98 (tension : reformulation). Soient X un espace métrique,
muni de sa tribu borélienne, et M un ensemble de mesures de Borel sur X. Alors
M est tendu si et seulement si il existe une fonction φ : X → R+, tendant vers
l’infini à l’infini (au sens où pour tout r > 0 il existe un compact Kr tel que
x /∈ Kr =⇒ φ(x) ≥ r), et telle que

sup
µ∈M

∫
X

φdµ < +∞.

En outre, si X est localement compact, on peut sans perte de généralité choisir la
fonction φ continue.

Démonstration. Supposons l’existence de φ tendant vers l’infini à l’infini, et
telle que pour tout µ ∈ M,

∫
φdµ ≤ C. On pose r = C/ε : par inégalité de

Tchebychev,
µ[{φ ≥ r}] ≤ C/r = ε.

Soit Kr comme dans l’énoncé ; on a alors X \Kr ⊂ {φ ≥ r}, d’où µ[Kr] ≤ ε.
Réciproquement, soit M un ensemble tendu. Par récurrence, on peut construire

une suite croissante de compacts Kn tels que pour tout µ ∈ M,
µ[Kn] ≤ 2−n.
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On pose alors φ =
∑
n1X\Kn , et on effectue un raisonnement similaire à celui de la

démonstration de la Proposition IV-93(ii).
La dernière assertion (on peut choisir φ continue si X est localement compact)

est laissée en exercice. □

IV-6*. Produits infinis
Cette section pourra être omise en première lecture. La théorie de la mesure

dans des produits infinis a une importance considérable en théorie des probabilités.
Les outils de la section IV-2 permettent de démontrer les principaux résultats de ce
sujet.

IV-6.1. Tribu et topologie d’un produit infini. Commençons par rappe-
ler la définition de la tribu produit dans le cas d’un produit infini (pas forcément
dénombrable) d’espaces mesurés.

Définition IV-99 (cylindre). Soit T un ensemble arbitraire et (Xt)t∈T une
famille d’ensembles indexés par le paramètre T ; on pose X =

∏
Xt. Pour toute

partie finie F ⊂ T , on pose XF =
∏

t∈F Xt. Pour tout sous-ensemble AF de XF , on
définit le cylindre CF (AF ), aussi noté abusivement C(AF ), par

C(AF ) =
{
(xt)t∈T ; (xt)t∈F ∈ AF

}
.

Remarques IV-100. Comme dans le langage courant, un cylindre n’est pas
forcément un pavé. D’autre part, le concept n’a d’intérêt que pour un ensemble
d’indices infini : si T est fini, alors tout ensemble mesurable est un cylindre.

Définition IV-101 (tribu produit infini). Soit T un ensemble arbitraire et
(Xt,At)t∈T une famille d’espaces mesurables, indexés par le paramètre T ; on pose
X =

∏
Xt. Pour toute partie finie F ⊂ T , on pose XF =

∏
t∈F Xt, que l’on munit

de la tribu produit. Pour toute partie mesurable AF de XF , on appelle C(AF ) le
cylindre mesurable de base AF . Si AF est de la forme

∏
t∈F At, avec At ∈ At, on dit

que C(AF ) est un cylindre mesurable produit.
On définit alors la tribu produit sur X comme la tribu engendrée par les cylindres

mesurables, ou de manière équivalente comme la tribu engendrée par les cylindres
mesurables produits.

Cette définition est formellement analogue à celle de la topologie produit, rap-
pelée ci-après :

Définition IV-102 (topologie produit infini). Soient T un ensemble arbitraire
et (Xt,At)t∈T une famille d’ensembles mesurables, indexés par le paramètre T ; on
pose X =

∏
Xt. Pour toute partie finie F ⊂ T , on pose XF =

∏
t∈F Xt, que l’on

munit de la topologie produit. Pour tout ouvert OF de XF , on appelle C(OF ) le
cylindre ouvert de base OF . Si OF est de la forme

∏
t∈F Ot, où chaque Ot est un

ouvert de Xt, on dit que C(OF ) est un cylindre ouvert produit.
On définit alors la topologie produit sur X comme la topologie engendrée par les

cylindres ouverts, ou de manière équivalente comme la topologie engendrée par les
cylindres ouverts produits.

Remarques IV-103. (i) Soit C(AF ) un cylindre produit ; alors c’est l’inter-
section des cylindres C(At) pour t ∈ F . Aussi bien les tribus que les topologies
étant stables par intersection finie, on pourrait donc, dans les définitions pré-
cédentes, se limiter à des familles F ne contenant qu’un élément.
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(ii) Soit S ⊂ T ; pour tout s ∈ S on se donne As une partie mesurable (resp.
ouverte) deXs. En général, on ne peut rien dire de AS =

∏
s∈S As. Si la famille

S est dénombrable et les As sont mesurables, alors AS est mesurable. Si la
famille S est finie et les As sont ouverts, alors AS est ouvert.

(iii) Si t ∈ T , on peut définir un opérateur de projection πt qui à x ∈ X associe
xt ; et si F est une partie finie de T , on peut définir un opérateur de projection
πF , qui à toute partie de (Xt)t∈T associe par restriction une partie de (Xt)t∈F .
La tribu produit est alors la plus petite tribu qui rende mesurables toutes les
applications πF , ou, de manière équivalente, la plus petite tribu qui rende
mesurable toutes les applications πt. De même, la topologie produit est la
plus grossière topologie qui rende continues toutes ces applications.

La tribu produit sera l’objet de la suite de ce chapitre.

IV-6.2. Produit infini de mesures. Dans le Chapitre II, nous avions prouvé
le Théorème II-87 uniquement dans le cas particulier où les espaces considérés étaient
de cardinal fini. On va maintenant proposer une démonstration dans le cas général.
On pourra consulter [Dudley, pp. 257-259] pour une variante.

Théorème IV-104 (produit dénombrable de mesures). Soient (Xk, µk)k∈N une
famille d’espaces mesurés, tels que∏

k≥1

µk[Xk] < +∞.

Alors il existe une unique mesure µ∞ sur X :=
∏
Xk telle que pour tout n ≥ 1, et

pour toutes parties mesurables Ai de Xi, 1 ≤ i ≤ n,

µ∞[A1 × . . .× An ×
∏

i≥n+1

Xi] = µ1[A1]× . . .× µn[An]×
∏

i≥n+1

µi[Ai].

On a alors, pour toutes parties mesurables Ak de Xk,

µ∞[
∏

Ak] =
∏

µk[Ak].

Exemple IV-105. Soit γ(dx) = (2π)−1/2 e−x2/2 dx la mesure gaussienne standard
sur R. On peut définir la mesure gaussienne standard γn sur Rn par γn = γ⊗n, mais
aussi la mesure gaussienne standard γ∞ = γ⊗∞ sur R∞ (que l’on peut identifier à
ℓ2).

Démonstration du Théorème IV-104. Si A1, . . . , An sont des parties me-
surables de X1, . . . , Xn respectivement, on note

C(A1 × . . .× An) =
{
x ∈ X; ∀i ≤ n, xi ∈ Ai

}
le cylindre produit de A1, . . . , An, et on note C l’ensemble de tous ces cylindres, pour
toutes valeurs de n ∈ N.

Il est facile de vérifier que C engendre la tribu produit, est stable par intersection
finie, et que le complémentaire de tout élément de C est une réunion finie disjointe
d’éléments de C. Comme µ[X] < +∞, le Théorème II-82(i) garantit l’unicité du
prolongement éventuel. Pour prouver l’existence de ce prolongement, en vertu du
Théorème II-82(iii) il suffit de vérifier la σ-additivité de µ sur C.

Soient donc C un cylindre produit, et (Ck)k∈N une famille de cylindres produits ;
on suppose que les Ck sont disjoints et d’union égale à C, et on cherche à montrer que
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µ∞[C] =
∑

k µ
∞[Ck]. Quitte à restreindre chaque mesure µk à la k-ème composante

de C, on peut supposer que le cylindre C est l’espace tout entier ; on fera cette
hypothèse dans la suite.

Supposons par l’absurde que

(42)
∑

µ∞[Ck] < µ[X].

Sans perte de généralité, on supposera tous les Ck non vides.
Un cylindre produit (ou pavé) Ck étant donné, on définit son ordre comme le plus

petit entier K tel que Ck s’écrive sous la forme C(A1, . . . , AK) ; et sa composante
d’ordre ℓ comme Aℓ. On vérifie facilement, grâce à l’existence de la mesure produit
µ1⊗. . .⊗µK , que pour tout K, µ∞ est σ-additive sur l’ensemble des cylindres d’ordre
inférieur ou égal à K. En particulier, la relation

∑
µ∞[Ck] < µ∞[X] implique qu’il

y a des Ck d’ordre arbitrairement grand. Il est également clair que la mesure de la
projection d’un cylindre est au moins égale à la mesure du cylindre lui-même.

La mesure de l’union des cylindres Ck d’ordre 1 est la somme des mesures de
ces cylindres, strictement inférieure à µ[X]. Soit Z1 le complémentaire de l’union
des bases de ces cylindres : c’est un sous-ensemble mesurable, de mesure ε1 > 0. il
est recouvert par les cylindres d’ordre 2 ou plus, et la somme des mesures de ces
cylindres est strictement inférieure à M2 ε1, où M2 =

∏
j≥2 µj[Xj] (sinon (42) serait

contredit).
Chaque cylindre Ck s’écrit comme un produit infini de Aj

k pour j ∈ N, Aj
k ∈ Aj.

Soit, pour x1 ∈ Z1,

ϕ1(x1) :=
∞∑
k=1

∞∏
j=2

µj[A
j
k] 1x1∈A1

k
.

La fonction ϕ1 est mesurable, et son intégrale vaut∫
Z1

ϕ1 =
∞∑
k=1

∞∏
j=2

µj[A
j
k]µ1[A

1
k ∩ Z1].

Pour tout pavé Ck d’ordre 1, A1
k ∩ Z1 = ∅ ; et pour tout pavé Ck d’ordre 2 ou plus,

A1
k ⊂ Z1. On en déduit que

∫
Z1
ϕ1 vaut la somme des mesures des pavés d’ordre 2

ou plus. En particulier,∫
Z1

ϕ1(x1)µ1(dx1) < µ1[Z1] =M2 ε1.

Il existe donc au moins un x1 dans Z1 tel que ϕ1(x1) < M2 =
∏

j≥2 µj[Xj]. On
décompose chaque pavé Ck dont la première projection contient x1, en A1

k ×C ′
k. Les

C ′
k recouvrent alors X ′ :=

∏∞
j=2Xj, et, si l’on note µ′[C ′

k] =
∏∞

j=2[Ak], on trouve
∞∑
k=1

µ′[C ′
k] < µ′[X ′].

On note que les composantes d’ordre ℓ des C ′
k sont exactement les composantes

d’ordre ℓ + 1 des Ck, et que x1 a été construit de telle sorte qu’il n’est première
composante d’aucun cylindre Ck d’ordre 1. En particulier, il est équivalent de dire
que x1 et x2 appartiennent respectivement aux deux premières composantes d’un
des cylindres Ck, ou de dire que x1 appartient à la première composante de Ck, que
Ck se décompose en A1 × C ′

k, et que x2 appartient à la seconde composante de C ′
k.
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On peut alors recommencer le même raisonnement avec X ′ et les C ′
k en place

de X et des Ck. Par récurrence, on construit une suite x = (x1, x2, . . .) telle que
pour tout K, (x1, . . . , xK) ne sont les K premières composantes d’aucun cylindre
d’ordre K. Comme x appartient nécessairement à l’un des cylindres Ck, on aboutit
à une contradiction. Ceci achève la preuve de l’existence de µ∞.

La dernière assertion de l’énoncé s’obtient sans peine par σ-additivité, si l’on
note que les ensembles A1 × . . . × An ×

∏
j≥n+1Xj décroissent vers

∏
Ak quand

n→ ∞, et que µ[X] < +∞. □

Pour généraliser ce résultat à un produit infini quelconque d’ensembles mesurés
Xt, il est naturel d’imposer des conditions plus fortes sur les mesures des Xt ; par
exemple, pour que ce produit ne soit ni 0 ni +∞, il est nécessaire qu’au plus une
infinité dénombrable des nombres µt[Xt] soit différente de 1. Il est donc naturel,
dans ce cadre général, d’imposer toutes ces mesures égales à 1, autrement dit de se
restreindre à des espaces de probabilités.

Théorème IV-106 (produit infini de mesures de probabilités). Soient T un
ensemble quelconque, et (Xt,At, µt)t∈T une famille d’espaces mesurés de probabilités ;
on pose X :=

∏
Xt, et on le munit de la tribu produit. Pour toute famille finie F ⊂ T ,

et pour toute famille d’ensembles mesurables AF = (At)t∈F , on définit le cylindre
produit de base AF , noté CF (AF ), ou par abus de notation C(AF ), par

C(AF ) :=
{
x ∈ X; ∀t ∈ F, xt ∈ At

}
.

Alors il existe une unique mesure de probabilités µ sur X telle que pour toute famille
finie F ⊂ T , et tout cylindre produit C(AF ), on ait

µ[C(AF )] =
∏
t∈F

µt[At].

En d’autres termes, si πF désigne la projection de XT dans XF =
∏

t∈F Xt, et
µF =

∏
t∈F µt, alors pour toute famille finie F ⊂ T on a

(πF )#µ = µF .

En outre, si pour chaque t ∈ T on se donne une famille Ft qui engendre la tribu
At, alors µ est caractérisée par les valeurs qu’elle attribue aux cylindres produits
C(AF ) pour AF ∈

∏
t∈F Ft.

Démonstration. La preuve de l’unicité est facile : les cylindres dont la base
est choisie parmi les produits d’éléments de Ft (t ∈ F ) engendrent les cylindres
dont la base est choisie parmi les produits d’éléments de At, grâce à la partie (ii)
du Théorème IV-61 (noter que chaque Xt est de mesure finie) ; on en déduit que ces
cylindres particuliers suffisent à engendrer toute la tribu produit, et l’unicité découle
du résultat d’unicité dans le Théorème II-78.

Pour démontrer l’existence, il nous suffit encore une fois de vérifier la σ-additivité
sur les cylindres produits. Comme cette propriété ne concerne qu’une famille dénom-
brable de cylindres, dont la définition ne fait intervenir qu’une famille dénombrable
d’indices t, on peut toujours, quitte à changer les notations, supposer que T est
dénombrable. (Comme toujours en théorie de la mesure, on se ramène à la dénom-
brabilité.) La σ-additivité est alors une conséquence du Théorème IV-104. □
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Quand le nombre de variables d’intégration est infini, la signification même d’un
énoncé du type du Théorème de Fubini n’est pas très claire ; on conserve cepen-
dant l’invariance par permutation et/ou regroupement des variables, ce que traduit
l’énoncé suivant, assez abstrait. Sa preuve est une conséquence presque immédiate
de l’unicité dans le Théorème IV-106.

Proposition IV-107 (invariance de l’intégrale produit par permutation ou re-
groupement des variables). Soient T un ensemble arbitraire, et (Xt, µt)t∈T une fa-
mille d’espaces de probabilités.

(i) Soient T ′ un ensemble en bijection avec T , et π une application bijective de T ′

dans T ; π induit alors par permutation des coordonnées un isomorphisme d’espaces
mesurables entre

∏
t∈T Xt et

∏
t′∈T ′ Xπ(t′), de telle sorte que

π#
∏
t′∈T ′

µπ(t′) =
∏
t∈T

µt.

(ii) Si T =
∏

s∈S(
∏

t∈Ts
Xt), alors∏

t∈T

µt =
∏
s∈S

(∏
t∈Ts

µt

)
.

Un exemple simple d’application de la règle précédente est∏
k∈N

µk = µ1 ⊗ µ2 ⊗ . . .⊗ µN ⊗

( ∏
k≥N+1

µk

)
,

où l’on a décomposé le produit infini en N + 1 facteurs ; on peut alors appliquer le
théorème de Fubini à ces facteurs, en les permutant, etc.

IV-6.3. Approximation cylindrique. Il n’est pas facile en général de se re-
présenter les éléments de la tribu produit infini, et on cherche le plus souvent à se
ramener par approximation à un nombre fini de variables.

Théorème IV-108 (approximation cylindrique pour la mesure produit). Soit
(Xn)n∈N une famille d’espaces mesurés ; on munit X =

∏
Xn de la tribu produit, et

on se donne une mesure finie µ sur X. Alors, pour toute partie mesurable A de X
il existe une suite (Cn)n∈N de cylindres tels que
(43) µ[Cn \ A] + µ[A \ Cn] −−−→

n→∞
0.

Démonstration. Soit C l’ensemble des parties mesurables A de X telles qu’il
existe une suite (An)n∈N de cylindres satisfaisant (43). Il est clair que C contient les
cylindres ; pour conclure il suffit de montrer que c’est une tribu.

Le complémentaire d’un cylindre étant un cylindre, il est évident que C est stable
par passage au complémentaire. De même, l’union de deux cylindres étant un cy-
lindre, C est stable par union finie. Soit maintenant (Ak)k∈N une suite d’éléments de
C, et A leur union. Soit ε > 0, notre but est de prouver qu’il existe un cylindre C
tel que

µ[C \ A] + µ[A \ C] ≤ ε.

Puisque µ est finie, par σ-additivité il existe N tel que

µ
[
A \ (∪1≤k≤NA

k)
]
≤ ε/2.
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D’autre part, puisque C est stable par union finie, il existe un cylindre C tel que

µ
[
C \ (∪1≤k≤NA

k)
]
+ µ
[
(∪1≤k≤NA

k) \ C
]
≤ ε/2.

On en déduit la conclusion souhaitée. □
IV-6.4. Lois du 0-1. Les lois du 0-1 concernent des probabilités définies sur

des produits infinis, et énoncent que dans certaines circonstances, la probabilité de
certains événements est forcément “triviale”. Il y a trois lois du 0-1 célèbres ; la plus
ancienne est celle d’Émile Borel (1909), défrichant alors l’application des mesures
au calcul des probabilités ; la seconde, la plus connue, est celle d’Andreï Kolmo-
gorov (1933), partie de son grand œuvre sur l’axiomatisation des probabilités ; et
la troisième, la plus générale, due aux mathématiciens américains Edwin Hewitt
(spécialiste de théorie des représentations) et Leonard Savage (théoricien des statis-
tiques) en 1955. On commencera par établir la loi de Hewitt–Savage pour en déduire
celle de Kolmogorov, qui à son tour impliquera celle de Borel.

Définition IV-109 (permutation finie). Soit σ : N → N une bijection ; on dit
que σ est une permutation finie s’il n’y a qu’un nombre fini d’entiers j tels que
σ(j) 6= j.

Définition IV-110 (ensemble symétrique). Soit X un ensemble quelconque ;
une partie A ⊂ XN est dite symétrique si pour toute permutation finie σ,

(xn)n∈N ∈ A ⇔ (xσ(n))n∈N ∈ A.

Définition IV-111 (tribu asymptotique). Soit (Xn)n∈N une suite d’espaces me-
surables. On définit la projection πn, de X :=

∏
Xk dans Xn, par restriction. On

définit Am comme la plus petite tribu qui rende mesurables toutes les applications πn
pour n ≥ m. On définit la tribu asymptotique, A∞, comme l’intersection de toutes
les tribus Am.

Remarque IV-112. Intuitivement, la tribu asymptotique est celle qui rassemble
tous les ensembles dont la définition peut s’exprimer en fonction de variables d’ordre
arbitrairement grand.

Exemples IV-113. On pose X = R+, de sorte que XN est l’ensemble des suites
réelles positives. L’ensemble des suites (xn) pour lesquelles

∑
nxn = 1 n’est pas

symétrique. L’ensemble des suites (xn) dont la somme vaut 1 est un ensemble sy-
métrique, mais non mesurable pour la tribu asymptotique : sa définition fait inter-
venir la valeur x1. L’ensemble des suites qui convergent, ou l’ensemble des suites
qui convergent vers 1, ou l’ensemble des suites dont la somme converge, sont des
ensembles symétriques et mesurables pour la tribu asymptotique.

Dans tous les exemples précédents, les ensembles asymptotiques se trouvaient
également être symétriques. La proposition suivante assure que c’est la règle.

Proposition IV-114 (asymptotique implique symétrique). Soit X un espace
mesurable, et soit A un ensemble mesurable pour la tribu asymptotique sur XN.
Alors A est symétrique.

Démonstration. On note, comme ci-dessus, An la plus petite tribu qui rende
mesurable les projections πm pour m ≥ n ; de manière équivalente, c’est la tribu
engendrée par les cylindres

C(m,B) := {x ∈ XN; xm ∈ B},



164 CHAPITRE IV (1er janvier 2026)

où m ≥ n et B décrit l’ensemble des parties mesurables de X.
Pour prouver la Proposition IV-114, il suffit de montrer que si A ∈ An, alors A est

invariant par les permutations finies qui n’affectent que les entiers {0, . . . , n−1}. Soit
donc C l’ensemble des parties de An qui sont invariantes par de telles permutations.
Il est clair que A laisse invariants tous les cylindres C(m,B) ; il suffit donc de vérifier
que C est une algèbre.

Soit A ∈ C, et soit σ une permutation n’affectant que les entiers {0, . . . , n}. Si
x ∈ X \ A, alors x /∈ A, d’où σ(x) /∈ A, i.e. σ(x) ∈ X \ A. De même, si x /∈ X \ A,
alors σ(x) /∈ X \ A. On voit donc que X \ A ∈ C.

Soit (Ak)k∈N une suite d’éléments de C, et soit σ une permutation n’affectant que
les entiers {0, . . . , n}. Si x ∈ (∪Ak), alors il existe k tel que x ∈ Ak, d’où σ(x) ∈ Ak,
en particulier σ(x) ∈ (∪Ak). La réciproque est identique, et on conclut que ∪Ak ∈ C.
L’ensemble C est bien stable par passage au complémentaire et union dénombrable,
ce qui achève la preuve. □

Considérons maintenant les lois du 0-1 proprement dites.

Théorème IV-115 (loi du 0-1 de Hewitt–Savage). Soit (X,A, µ) un espace de
probabilité ; on munit XN de la tribu produit, et de la probabilité produit µ⊗N. Soit
A une partie mesurable symétrique de XN, alors µ⊗N[A] vaut soit 0, soit 1.

En combinant cet énoncé avec la Proposition IV-114, on obtient le

Corollaire IV-116 (loi du 0-1 de Kolmogorov). Soit (X,A, µ) un espace de
probabilité ; on munit XN de la tribu produit, et de la probabilité produit µ⊗N. Soit
A un élément de la tribu asymptotique de XN, alors µ⊗N[A] vaut soit 0, soit 1.

Démonstration du Théorème IV-115. Soit ε > 0 ; par le Théorème IV-
108, il existe un cylindre C tel que
(44) µ⊗N[A \ C] + µ⊗N[C \ A] ≤ ε.

Le cylindre C est de la forme B×
∏

k≥n+1Xk, où B est une partie mesurable de Xn ;
et µ⊗N[C] = µn[B].

Soit σ une permutation finie qui échange {1, . . . , n} et {n + 1, . . . , 2n}. On fait
agir σ sur les éléments de X⊗N par permutation des coordonnées. L’invariance de
µ⊗N par permutation (Proposition IV-107) se traduit par

µ⊗N[σ(A) \ σ(C)] + µ⊗N[σ(C) \ σ(A)] ≤ ε.

Par hypothèse σ(A) = A, d’où en fait
µ⊗N[A \ σ(C)] + µ⊗N[σ(C) \ A] ≤ ε.

En combinant cela avec (44), on obtient
µ⊗N[C \ σ(C)] + µ⊗N[σ(C) \ C] ≤ 2ε.

Autrement dit,
µ⊗2n[(B ×Xn) \ (Xn × B)] + µ⊗2n[(Xn × B) \ (B ×Xn)] ≤ 2ε,

Chacun des deux termes du membre de gauche est égal à
µ⊗2n[B × (Xn \B)] = µ⊗n[B]µ⊗n[Xn \B] = µ⊗n[B] (1− µ⊗n[B]).

On a donc montré que
µ⊗n[B] (1− µ⊗n[B]) ≤ ε.
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Posons b := µ⊗n[B], a := µ⊗N[A]. On a donc

a(1− a) ≤ (b+ ε)(1− b+ ε) = b(1− b) + ε+ ε2 ≤ 2ε+ ε2.

En faisant tendre ε vers 0, on trouve a(1− a) = 0, ce qui conclut la preuve. □

Remarque IV-117. On peut aussi établir la loi du 0-1 de Kolmogorov direc-
tement, par un argument assez similaire à celui qui est présenté ci-dessus. Il est
également possible, mais beaucoup plus délicat, de déduire la loi de Hewitt–Savage
de celle de Kolmogorov, de sorte qu’en un sens ces deux lois sont équivalentes [Dud-
ley, p. 272].

Concluons avec la loi de Borel, dans un énoncé qui va un peu plus loin que juste
la règle 0-1. Elle repose sur la notion de limite supérieure d’une famille d’ensembles :
si (An)n∈N sont des ensembles, alors lim supAn est l’ensemble des éléments x qui
appartiennent à une infinité de An.

Théorème IV-118 (Loi du 0-1 de Borel). Soient (An)n∈N une famille de parties
mesurables indépendantes d’un espace de probabilité (X,A, µ). Alors µ[lim supAn] ∈
{0, 1}. En outre, cette probabilité vaut 1 si et seulement si

∑
µ[An] = +∞.

Preuve du Théorème IV-118. Soit fn = 1An ; la mesure produit (fn)#µ est
la mesure sur {0, 1} qui attribue µ[An] à {1}, et 1−µ[An] à {0}. Par indépendance,
la mesure image de µ par f = (fn)n∈N est le produit infini des (fn)#µ, que l’on
peut aussi noter f#µ. Dire que x ∈ lim supAn, c’est dire que la suite f(x) prend
une infinité de fois la valeur 1. Dans {0, 1}N, l’événement B défini par “(yn)n∈N
appartient à B si et seulement si yn prend une infinité de fois la valeur 1” est
bien évidemment asymptotique, la loi du 0-1 de Kolmogorov implique donc que
µ[lim supAn] = (f#µ)[B] ∈ {0, 1}.

Jusqu’ici l’énoncé est juste un corollaire de la loi de Kolmogorov. Mais on va
maintenant aller un peu plus loin en précisant l’alternative via la nature de la série∑
µ[An]. Supposons d’abord que

∑
µ[An] converge, alors pour tout k ∈ N,

µ
[
lim supAn

]
≤ µ

[⋃
n≥k

An

]
≤
∑
n≥k

µ[An].

En faisant tendre n vers l’infini, on trouve

µ
[
lim supAn

]
−−−→
n→∞

0.

Supposons maintenant que
∑
µ[An] diverge. Dire que x /∈ lim supAn, c’est dire qu’il

existe un entier k au-delà duquel x n’appartient à aucun Xn. D’où l’union croissante

X \ lim supAn =
⋃
k∈N

⋂
n≥k

(X \ An).

Par convergence monotone et indépendance,

µ
[
X \ lim supAn

]
= lim

k→∞

∏
n≥k

µ[X \ An].
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D’où

log µ
[
X \ lim supAn

]
= lim

k→∞

∑
n≥k

log µ[X \ An]

= lim
k→∞

∑
n≥k

log
(
1− µ[An]

)
≤ lim sup

k→∞

∑
n≥k

−µ[An] = −∞,

où l’on a utilisé log(1− u) ≤ −u et
∑
µ[An] = +∞. Soit µ[lim supAn] = 0. □

IV-6.5. Théorème de prolongement de Kolmogorov. Pour conclure cette
section sur les produits infinis, démontrons le Théorème II-90. Pour le confort de
la lectrice, je vais commencer par rappeler son énoncé, sous une forme équivalente
mais légèrement différente et un peu plus précise.

Théorème IV-119 (théorème de prolongement de Kolmogorov). Soit T un en-
semble arbitraire, et (Xt)t∈T une famille d’espaces polonais ; on définit

X :=
∏
t∈T

Xt,

que l’on munit de la tribu produit. Pour toute partie finie F = {t1, . . . , tK} ⊂ T , on
définit XF := Xt1 × . . .×XtK ; et pour tout borélien AF de XF , on définit le cylindre
CF (AF ), noté abusivement C(AF ), par

C(AF ) :=
{
x ∈ X; (xt1 , . . . , xtK ) ∈ AF

}
.

Pour toute partie finie F de T on se donne une mesure de probabilité µF sur XF .
On suppose que les µF sont compatibles, au sens où pour toutes parties finies F et
F ′, et pour tous boréliens AF et BF ′ de XF et XF ′ respectivement,[

C(AF ) = C(BF ′)
]
=⇒ µF [AF ] = µF ′ [BF ′ ].

Alors on peut définir une unique mesure de probabilité µ sur X, telle que pour toute
partie F finie de T , et pour tout Borélien AF de XF ,

µ[C(AF )] = µF [AF ].

Si pour tout t la tribu Borélienne sur Xt est engendrée par une famille Ft, alors
µ est caractérisée par la valeur qu’elle attribue aux ensembles élémentaires, i.e. les
ensembles C(AF ) avec

AF = At1 × . . .× AtK ,

chacun des At appartenant à Ft.

Preuve du Théorème IV-119. On vérifie facilement que l’ensemble A de
tous les cylindres C(AF ) est une algèbre, qui contient X. La condition de com-
patibilité nous permet de définir µ sur cette algèbre, et de prouver qu’elle y est
additive. Par le Théorème II-78, l’existence et l’unicité du prolongement de µ seront
assurées si l’on prouve la σ-additivité de µ sur A. Pour établir la fin de l’énoncé, il
suffit de remarquer que les cylindres élémentaires engendrent la tribu complète, et
que tous les espaces Xt sont de mesure finie.
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Soient donc (Ak)k≥1 des cylindres disjoints, dont l’union A = ∪Ak est aussi un
cylindre ; on doit prouver que

µ[A] =
∑
k≥1

µ[Ak].

Pour tout N , les cylindres A,A1, . . . , AN peuvent s’inclure dans un même cylindre,
et comme on sait que µ est σ-additive sur les cylindres on aura∑

1≤k≤N

µ[Ak] ≤ µ[A].

En passant à la limite quand N → ∞, on obtient∑
k≥1

µ[Ak] ≤ µ[A].

Notre problème est maintenant d’établir l’inégalité inverse, beaucoup plus délicate.
La définition des cylindres A, Ak, et de leur mesure, ne fait intervenir qu’une

partie dénombrable des espaces (Xt)t∈T ; quitte à changer les notations, on peut ou-
blier les autres espaces, et supposer que T est dénombrable ; sans perte de généralité
T = {1, 2, . . .}. On définit alors µn = µF pour F = {1, . . . , n}. La condition de
compatibilité implique bien sûr que µn+1 prolonge µn.

On conviendra qu’un cylindre C est d’ordre n si n est le plus petit indice tel que
la définition de C ne fasse intervenir que les n premiers espaces Xj. Un tel cylindre
est de la forme B × (

∏
j≥n+1Xj) ; on dit alors que B est sa base. En particulier,

µ[C] = µn[B]. On introduit n0 l’ordre de A, et nk l’ordre de Ak, pour tout k ≥ 1 ;
on définit également B comme la base de A, et Bk comme la base de Ak. On pose
enfin Xn = X1 × . . .×Xn.

L’espace Xn0 est produit fini d’espaces polonais, donc polonais lui-même. Par le
Théorème de régularité II-62, la mesure µn0 est régulière, et en particulier on peut
trouver un compact Kn0 contenu dans B tel que

µn0 [Kn0 ] ≥ µn0 [B]− ε = µ[A]− ε.

En particulier,
µn0+1[Kn0 ×Xn0+1] ≥ µ[A]− ε.

Par régularité de la mesure µn0+1[K × · ], on peut trouver un compact Kn0+1 de
Xn0+1, tel que

µn0+1[Kn0 ×Kn0+1] ≥ µ[A]− 3ε/2.

Par récurrence, on construit ainsi une famille de compacts Kn ⊂ Xn, n ≥ n0, tels
que pour tout n

µn[Kn0 × . . .×Kn] ≥ µ[A]− 2ε.

Le produit infini de ces compacts est un compact K contenu dans A.
De même, l’espace Xnk étant polonais, pour tout k on peut trouver un ouvert

Ok, contenant Bk et tel que
µ[Ok] ≤ µnk

[Bk] + ε2−k = µ[Ak] + ε2−k.

On définit alors Uk = Ok ×
∏

j≥nk+1
Xj : c’est un cylindre ouvert, qui contient Ak,

tel que µ[Uk] ≤ µ[Ak] + ε2−k.
Puisque K ⊂ A ⊂ ∪Ak ⊂ ∪Uk, que K est compact et que les Uk sont ouverts,

on peut extraire des Uk un sous-recouvrement fini, soit U1, . . . , UN . Leur union est
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un cylindre, d’ordre fini M ; comme ils recouvrent K, ils recouvrent également le
cylindre d’ordre M

CM(K) := Kn0 ×Kn1 × . . .×KM ×XM+1 ×XM+2 × . . .

En particulier, µ[CM(K)] ≤
∑N

k=1 µ[Uk]. Mais, par construction,
µ[CM(K)] = µM [Kn0 × . . .×KM ] ≥ µ[A]− 2ε

et ∑
k

µ[Uk] ≤
∑
k

µ[Ak] + ε.

On conclut que
µ[A] ≤

∑
k

µ[Ak] + 3ε.

Comme ε est arbitraire, il s’ensuit que µ[A] ≤
∑

k µ[Ak], ce qui était notre but. □
Remarque IV-120. Comme on l’a vu, même si T est un ensemble arbitraire, on

se ramène dans la preuve à ne considérer qu’une famille dénombrable.
On pourra trouver dans [Dudley, p. 441–443] une version légèrement différente

de l’argument présenté ci-dessus, et des hypothèses topologiques légèrement plus
souples, sans gain de généralité significatif toutefois.

Exercice IV-121. Montrer que le Théorème de Kolmogorov implique le résultat
suivant, qui fonde la théorie des chaînes de Markov en probabilités :

Théorème IV-122 (Théorème de Ionescu Tulcea). Soient (Xn,An)n∈N des es-
paces mesurables. On se donne une mesure de probabilité µ0 sur X0 ; et pour tout
n ∈ N on se donne une famille de mesures de probabilités νxn sur Xn+1, dépendant
mesurablement de xn ∈ Xn. On pose X :=

∏
Xn et on le munit de la tribu produit.

Alors il existe une unique mesure de probabilité µ∞ sur X telle que pour tout cylindre
C := A0 × A1 × A2 × . . .× An × (

∏
j≥n+1Xj) de X,

µ[C] =

∫
A0

∫
A1

. . .

∫
An−1

∫
An

νxn−1(dxn) νxn−2(dxn−1) . . . νx1(dx0)µ(dx0).

Voici maintenant un exemple où l’espace T n’est pas dénombrable.
Théorème IV-123 (Existence de processus stochastique). Soient T = R+ et X

un espace Polonais, muni de sa tribu borélienne. On se donne une probabilité µ0 sur
X, et une famille de mesures (γt,x)t≥0, x∈X , dépendant mesurablement du paramètre
(t, x) ∈ R+ ×X, satisfaisant ∫

X

γs,y γt−s,x(dy) = γt,x

pour tous (s, t) in R+ × R+, 0 ≤ s ≤ t, et pour tout x ∈ X. Pour toute famille
finie F = {t0, . . . , tN}, 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tN , pour toutes parties mesurables
A0, A1, . . . , AN de X, on défnit le cylindre

CF (A0, . . . , AN) =
{
x ∈ XR+ ; ∀k ∈ {0, . . . , N}, xtk ∈ Ak

}
.

Alors il existe une unique mesure de probabilité µ sur XR+ telle que pour tout cylindre
CF (A0, . . . , AN),

µ
[
CF (A0, . . . , AN)

]
=

∫
A0×...×AN

µt0(dx0) γt1−t0,x0(dx1) γt2−t1(dx2) . . . γtN−tN−1
(dxN).



THÉORÈMES FONDAMENTAUX D’INTÉGRATION 169

En outre, si F est une famille de parties de X engendrant la tribu borélienne,
telle que X est union dénombrable d’une suite croissante d’éléments de F , alors µ
est uniquement déterminée par sa valeur sur les cylindres CF (A0, . . . , AN), où F est
une partie finie arbitraire de T , et les Aj sont des éléments arbitraires de F .

Exemple IV-124. L’exemple le plus célèbre est celui où X = R, µ0 = δ0, F est
(par exemple) la famille des intervalles compacts, et

γt,x[[a, b]] =

∫ b

a

e−
|y−x|2

2t

√
2π

dy.

Dans ce cas, la mesure µ est appelée processus stochastique brownien sur RR+ :
c’est une mesure de probabilité définie sur l’ensemble de toutes les trajectoires, qui
sont les de R+ dans R.

Le théorème précédent est cependant loin d’impliquer l’existence de la mesure
de Wiener : en effet, la probabilité que nous avons construite est définie sur RR+ ; il
est bien plus délicat de prouver qu’elle est en fait concentrée sur l’espace C(R+) des
trajectoires continues.

Appendice : Rappels sur les fonctions convexes
Les fonctions convexes, jouent un rôle aussi important dans des espaces vectoriels

généraux, que les fonctions croissantes sur R. Elles apparaissent naturellement dès
que l’on veut estimer numériquement des intégrales. C’est l’occasion de faire quelques
rappels sur la théorie des fonctions convexes dans Rn. Le traité de référence en la
matière est [Rockafellar]. On se limitera ici aux fonctions convexes sur Rn ; plus tard
dans le cours, on parlera de convexité dans des espaces plus généraux.

On dit que C ⊂ Rn est une partie convexe de Rn si, pour tous x, y ∈ C, λ ∈ [0, 1],
la “combinaison convexe” (1− λ)x+ λy est un élément de C. On dit que Φ : Rn →
R ∪ {+∞} est une fonction convexe si, pour tous x, y ∈ X, λ ∈ [0, 1],

Φ
(
(1− λ) x+ λ y) ≤ (1− λ) Φ(x) + λΦ(y).

Du point de vue géométrique, cela veut dire que pour tous points x et y, “le graphe
de Φ est situé en-dessous de la corde joignant [x,Φ(x)] et [y,Φ(y)]”.

Il est équivalent dimposer que pour tout N ∈ N, et tous x1, . . . , xN ∈ Rn,
λ1, . . . , λN ≥ 0,

∑
λi = 1,

Φ(
∑

λixi) ≤
∑

λiΦ(xi).

L’ensemble des x tels que Φ(x) < +∞ est appelé domaine de Φ. C’est un convexe
(qui peut être ouvert, fermé, ou ni l’un ni l’autre).

Il est équivalent de dire qu’une fonction est convexe dans Rn, ou que sa restriction
à tout segment [x, y] de Rn est convexe.

Une fonction convexe sur Rn est automatiquement continue dans l’intérieur de
son domaine. En particulier, si elle est à valeurs dans R, elle est continue sur tout
Rn. Dans le cas où cette fonction prend la valeur +∞, il est naturel d’imposer que

(a) Φ ne soit pas identiquement +∞ ;
(b) Φ soit semi-continue inférieurement. Comme Φ est continue dans l’intérieur

de son domaine Ω, et vaut +∞ identiquement à l’extérieur, cette hypothèse
ne concerne en fait que le bord ∂Ω du domaine. Elle revient à imposer que
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pour tout segment [x0, x1], avec x0 dans l’intérieur de Ω et x1 ∈ ∂Ω, on ait
Φ(xt) −→ Φ(x1) quand t→ 1, où xt := (1− t) x0 + t x1.

Si une fonction est donnée par un supremum de fonctions affines, elle est auto-
matiquement convexe et semi-continue inférieurement.

Une fonction convexe n’est pas forcément différentiable, mais toujours sous-
différentiable : en tout point x de l’intérieur du domaine de Φ on peut trouver au
moins un vecteur z = z(x) tel que
(45) ∀y ∈ Rn, Φ(y) ≥ Φ(x) + 〈z, y − x〉.
Géométriquement, cette inégalité exprime le fait que le graphe de Φ est situé au-
dessus de l’hyperplan (dans Rn+1) passant par (x,Φ(x)) et orthogonal au vecteur
(z, 1). L’ensemble de tous les vecteurs z admissibles dans (45) est appelé sous-
différentiel de Φ en x, et noté ∂Φ(x).

Soit x dans l’intérieur du domaine de Φ. Si Φ est différentiable en x, alors ∂Φ(x)
contient le vecteur ∇Φ(x) constitué des dérivées partielles de Φ en x. En d’autres
termes,

∀y ∈ Rn, Φ(y) ≥ Φ(x) + 〈∇Φ(x), y − x〉.
En fait, ∂Φ(x) ne contient que ce vecteur : ∂Φ(x) = {∇Φ(x)}. Réciproquement, si
le sous-différentiel au point x se limite à un singleton z, alors Φ est différentiable en
x, et ∇Φ(x) = z.

Soit Φ une fonction deux fois dérivable dans un ouvert convexe de Rn. Alors Φ est
convexe si et seulement si sa matrice Hessienne ∇2Φ est positive en tout point
de Ω. C’est bien sûr la positivité au sens des matrices symétriques : explicitement,
cela veut dire

∀x ∈ Ω, ∀ξ ∈ Rn, 〈∇2Φ(x)ξ, ξ〉 ≥ 0.

C’est le critère que l’on utilise le plus souvent, en pratique, pour vérifier la convexité.
Une fonction Φ : Rn → R∪{+∞} étant donnée, on peut définir sa transformée

de Legendre :
Φ∗(y) := sup

x∈Rn

(
〈x, y〉 − Φ(x)

)
.

Comme supremum de fonctions affines, c’est une fonction convexe et semi-continue
inférieurement.

Si Φ est une fonction convexe et semi-continue inférieurement, alors
Φ∗∗ = Φ.

(Réciproquement, si Φ∗∗ = Φ, alors Φ est convexe et semi-continue inférieurement.)
C’est un cas particulier de la dualité de Fenchel-Rockafellar. Si Φ est convexe
mais pas semi-continue inférieurement, alors Φ∗∗ coïncide avec Φ dans l’intérieur
et l’extérieur du domaine de Φ, mais pas sur le bord de ce domaine. Si Φ n’est
pas convexe, alors Φ∗∗ est l’enveloppe convexe de Φ : c’est la plus grande fonction
convexe (semi-continue inférieurement) qui minore Φ.

Soit Φ une fonction convexe semi-continue inférieurement. Par définition de la
transformée de Legendre, on a, pour tous x, y ∈ Rn,

〈x, y〉 ≤ Φ(x) + Φ∗(y).

Cette inégalité est appelée inégalité de Young. On a l’équivalence
〈x, y〉 = Φ(x) + Φ∗(y) ⇐⇒ y ∈ ∂Φ(x).
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En particulier, si Φ est différentiable en x, alors
〈x,∇Φ(x)〉 = Φ(x) + Φ∗(∇Φ(x)),

et ∇Φ(x) est le seul vecteur possédant cette propriété.
Les fonctions ∇Φ et ∇Φ∗ sont inverses l’une de l’autre : si Φ est différentiable en

x et Φ∗ différentiable en ∇Φ(x), alors ∇Φ∗(∇Φ(x)) = x. C’est cette propriété que
l’on utilise le plus souvent en pratique pour calculer les transformées de Legendre.

Exercice IV-125. Vérifier que, pour tout p ∈ [1,+∞[,

Φ(x) =
|x|p

p
=⇒ Φ∗(y) =

|y|p′

p′
, p′ =

p

p− 1
.

Cette identité est vraie dans R ou plus généralement dans Rn. Vérifier également
que, sur R+,

Φ(x) = x log x− x =⇒ Φ∗(y) = ey.

La proposition qui suit est une conséquence immédiate de l’exercice.
Proposition IV-126 (inégalités de convexité de Young pour les puissances).

Soient x, y ∈ Rn, p ∈ [1,+∞] et p′ := p/(p− 1). Alors

x · y ≤ |x|p

p
+

|y|p′

p′
;

si p /∈ {1,+∞}, l’inégalité précédente est une égalité si et seulement si x et y sont
colinéaires et |x|p = |y|p′, autrement dit |y| = |x|p−2x.

Ces résultats sont d’usage constant, ce qui motive la définition suivante.
Définition IV-127 (exposant conjugué). Soit p ∈ [1,+∞] ; on appelle exposant

conjugué de p le nombre p′ = p/(p− 1) ≥ 1, caractérisé par l’identité
1

p
+

1

p′
= 1.

Remarque IV-128. L’exposant p′ est souvent noté q, ce qui a l’inconvénient de
ne pas imposer de lien notationnel avec p ; en outre, en théorie des probabilités, il est
également fréquent de noter q = 1− p si p ∈ [0, 1]... C’est pourquoi je recommande
d’utiliser la notation p′ (également très courante). Bien sûr, (p′)′ = p.

La deuxième partie de l’exercice IV-125 mène à l’inégalité suivante, également
fort utile.

Proposition IV-129 (inégalité de convexité de Young logarithmique). Soient
a, b deux nombres réels positifs. Alors

ab ≤ (a log a− a+ 1) + (eb − 1),

avec égalité seulement pour b = log a.





CHAPITRE V

Théorie descriptive des ensembles

Ce chapitre d’approfondissement, à réserver à une seconde lecture, aborde des
concepts plus techniques, indispensables dans certains problèmes d’analyse et de
probabilité. Il est motivé par quelques questions naturelles et liées entre elles, que
nous avons commencé à rencontrer dans les Chapitres II (nature des ensembles
boréliens), III (stabilité des fonctions boréliennes) et IV (boréliens dans les espaces
produits) ; par exemple

• Comment décrire, aussi constructivement que possible, les ensembles boréliens ?
• Si C est borélien dans un espace produit X × Y , on sait que ses sections selon

X ou Y sont mesurables (Proposition IV-43), mais que dire de ses projections ?
• Et peut-on choisir mesurablement une application y = y(x) telle que (x, y(x)) ∈

C pour tout x dans la projection de C ? De façon équivalente, peut-on trouver un
graphe borélien inclus dans C et avec même projection ?

Ces questions ont initié la théorie descriptive des ensembles, une vingtaine
d’années après les avancées de Baire, Borel et Lebesgue : tout un paysage mathé-
matique, à l’interface entre la logique et l’analyse, dont on ne soupçonnait pas la
richesse.

La naissance de la théorie est quelque peu dramatique et pleine de rebondisse-
ments. Lebesgue en 1905 avait cru prouver que la projection d’un borélien de R2

est un borélien de R. Mais en 1917, un jeune mathématicien russe, Mikhaïl Souslin,
fils de paysans pauvres, étudiant alors à Moscou sous la direction du célèbre pro-
fesseur Nikolai Luzin, découvrit une faille dans l’argument de Lebesgue (même les
meilleurs font des erreurs...). Pour résoudre le problème qui avait berné Lebesgue,
Souslin introduisit une panoplie d’outils conceptuels (aujourd’hui appelés problème
de Souslin, schéma de Souslin, opération de Souslin, droite de Souslin, propriété
de Souslin, représentation de Souslin, arbre de Souslin etc), donnant naissance au
concept d’ensemble analytique et ouvrant tout un champ mathématique nouveau.
Souslin meurt prématurément de maladie, dans les affres de la guerre civile russe,
sans avoir eu le temps de rien publier ou presque ; Luzin et d’autres continuent ses
travaux.

En écho dramatique, en 1936 le traitement réservé aux travaux de Souslin fait
partie du dossier monté à charge contre Luzin par ses jeunes collègues et anciens étu-
diants (dont Andreï Kolmogorov) dans le plus brûlant épisode de procès politique sta-
linien touchant la communauté mathématique – épisode historico-scientifique d’une
grande complexité qui voit toute la communauté se déchirer, et contribue à isoler
la Russie (parmi les nombreux griefs faits à Luzin il y avait celui de trop publier
en langues étrangères...). Au-delà de ces convulsions, la théorie de Souslin a ef-
fectivement prospéré, en particulier grâce aux communautés mathématiques russe,
polonaise et japonaise, jusqu’à aboutir dans les années 1970 à un paysage cohérent et
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puissant, riche de problèmes intrinsèques et toujours actif, la théorie descriptive
des ensembles.

Le concept central dans cette théorie est celui d’ensemble analytique, parfois
appelé ensemble souslinien : une notion assez proche mais plus générale que celle
d’ensemble borélien, et très stable. (Ce concept n’a rien à voir avec celui de fonc-
tion analytique d’une variable réelle ou complexe.) Il en existe plusieurs définitions
équivalentes dont voici la plus commode :

Définition V-1 (ensemble analytique). On dit qu’un ensemble A dans un espace
polonais est analytique s’il peut s’écrire sous la forme f(NN), où N est muni de la
topologie discrète, NN de la topologie produit, et f est continue.

On rappelle qu’un espace est dit polonais quand il est métrique, séparable et
complet ; c’est le cadre dans lequel se déploie presque entièrement la théorie des
ensembles analytiques.

On peut se représenter un ensemble analytique A comme étant “descriptible” au
moyen de NN : pour repérer un point y ∈ A, il suffit de se donner une suite à valeurs
entières : en gros, chacune des valeurs de cette suite indique l’appartenance de y à
l’un des ensembles d’une famille dénombrable de plus en plus fine. C’est ainsi une
suite de choix qui permet de repérer le point, un peu comme quand on cherche un
mot dans un dictionnaire en déterminant d’abord la première lettre, puis la seconde
et ainsi de suite (tenter de se représenter une infinité dénombrable de lettres, des
mots d’une longueur infinie, et une quantité non dénombrable de mots !).

Dans ce chapitre on va passer en revue certains des concepts centraux de la
théorie, concluant par les importants théorèmes de sélection. Certaines preuves ne
seront pas données en intégralité ; on renvoie à [Dellacherie, Kechris, Melleray, Miller,
Parthasarathy, Tserunyan] pour des exposés plus complets.

V-1*. Description d’un espace polonais
Si (X, d) est un espace polonais, alors on peut le recouvrir par une famille dé-

nombrable de boules (ouvertes ou fermées) de rayon r > 0 arbitrairement petit,
disons (Bn)n∈N. On peut aussi transformer ce recouvrement en partition en posant
B′

1 = B1, B′
2 = B2 \ B1, B′

3 = B3 \ (B1 ∪ B2), etc. Les ensembles B′
i ne seront plus

alors fermés, mais ils seront disjoints deux à deux. Si x ∈ Bn (ou x ∈ B′
n), l’indice

n donnera une première indication grossière de la position de x.
On peut ensuite itérer en raffinant ce recouvrement : chaque Bi pourra être

recouvert par des boules fermées Bi,j de rayon r/2 (chaque Bij est une boule dans
l’espace fermé Bi ; cela n’en fait pas une boule dans X, mais tout de même un
ensemble fermé de diamètre au plus r). Ou bien chaque B′

i peut être recouvert par
des boules ouvertes B̃ij dans X, de rayon r/2, et en intersectant ces boules avec B′

i,
puis en les transformant en partition par le procédé habituel, on aura alors recouvert
B′

i par des ensembles B′
ij pas forcément fermés, mais disjoints et de diamètre au plus

r.
On peut ainsi définir inductivement une famille d’ensemblesAn1,n2,...,nk

, où chaque
indice ni est un entier et k est un entier arbitraire ; tous ces ensembles appartenant
à l’algèbre engendrée par les boules ouvertes ; leur union, pour chaque k fixé, recou-
vrant X ; et leur diamètre, pour k fixé, étant au plus de 2−k.

Il y a bien des façons de varier la construction. On est parti des boules, on aurait
pu choisir une autre famille dénombrable recouvrant X ; ou choisir une autre suite
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de diamètres tendant vers 0 ; mais ce qui compte le plus, ce sont les deux propriétés
caractéristiques

• An1,n2,...,nk+1
⊂ An1,n2,...,nk

;
• diam (An1,n2,...,nk

) −−−→
k→∞

0 pour toute suite (n1, n2, . . .),
qui font des An un système souslinien régulier. Ici n varie dans l’espace N<N de
toutes les suites finies d’entiers.

Et selon que l’on travaille avec les familles Bs ou B′
s ci-dessus évoquées, on peut

en outre imposer que pour chaque (n1, . . . , nk) les (An1,...,nk+1
)nk+1∈N forment une

partition de An1,...,nk
(c’est alors un système de Lusin) ; ou encore que tous les

ensembles (An1,...,nk
) soient fermés.

Que l’on travaille avec l’une ou l’autre de ces variantes, ou d’autres encore,
cela permet de définir sans ambiguïté tout point x ∈ X par une liste des indices
des parties auxquelles il appartient : une suite (n1, n2, . . . , nk, . . .) ∈ NN, telle que
x ∈ An1,...,nk

(que l’on notera aussi An1n2...nk
pour tout k). Avec un système sousli-

nien de fermés, l’intersection sera non vide pour tout choix de suite (ni) (grâce au
théorème des fermés emboîtés), mais un même x pourra éventuellement être repré-
senté par plusieurs suites. Si pour chaque k fixé les ensembles An1...nk

sont distincts
l’intersection pourra être parfois vide, mais chaque x correspond à une seule suite
(ni). Et si c’est un système lusinien, on a finalement une bijection entre NN et X.
Dans tous les cas, cette technique de description permet de paramétrer X par une
partie de NN, et le repérage de ce point s’apparente à une suite dénombrable de
choix dénombrables (on verra des énoncés plus précis dans quelques instants).

FIGURE

L’application qui à n = (n1, n2, . . .) associe x est continue si NN est muni de la
topologie produit (chaque facteur N est muni de la topologie discrète). Cet espace
emblématique, appelé espace de Baire est une figure centrale de la théorie.

Définition V-2 (espace de Baire). On appelle espace de Baire l’ensemble N =
NN de toutes les suites entières, muni de la topologie produit ; c’est un espace polonais
totalement discontinu.

Bien sûr on n’a pas défini explicitement de métrique sur N , mais on a de multiples
choix induisant la même topologie, par exemple

d(m,n) =
∑
k∈N

2−k |nk −mk|
1 + |nk −mk|

,

ainsi la convergence de nj vers n signifie que pour tout k il existe J tel que nj
k = nk

pour j ≥ J ; et (N , d) est bien un espace séparable et complet. Il s’ensuit naturel-
lement une base dénombrable de voisinages : tous les {m1, . . . ,mk} × N , où k ∈ N
et mi ∈ N. L’espace dénombrable qui les indexe naturellement est l’ensemble des
suites finies d’entiers, qui jouera un rôle important dans la suite :

(46) N<N =
⋃
k∈N

Nk.

On peut se représenter le processus de description (la correspondance avec l’es-
pace de Baire) de plusieurs façons équivalentes : avec des unions et intersections de
parties comme on vient de le faire ; ou bien par un processus de repérage le long des
branches d’un arbre (chaque nouvel indice correspond à un branchement de l’arbre),



176 CHAPITRE V (1er janvier 2026)

ou encore par des familles de conditions logiques (conjonction pour l’intersection
de parties, etc). Dans ce chapitre on se contentera de la première approche, mais
les arbres et les familles de conditions font aussi partie de la panoplie de la théo-
rie descriptive de la mesure, de même que les jeux ensemblistes (on imagine que
deux joueurs, en compétition l’un avec l’autre, font des choix successifs d’ensembles
de façon à atteindre un certain objectif, et on se demande si l’un ou l’autre a une
stratégie gagnante).

Pour les espaces métriques compacts (qui sont a fortiori polonais), la même
construction s’applique évidemment ; mais en outre, par compacité, on peut se limi-
ter à un nombre fini de parties à chaque étape. Quitte à ajouter des étapes inter-
médiaires, on peut en fait se ramener à la situation où à chaque étape l’ensemble
An1,...,nk

est subdivisé en seulement deux parties An1,...,nk+1
. Ainsi, pour décrire un

compact, on peut se limiter à un espace plus petit que N , qui lui ressemble beaucoup
mais qui est compact : c’est l’espace de Cantor.

Définition V-3 (espace de Cantor). On appelle espace de Cantor l’ensemble
C = {0, 1}N de toutes les suites de 0 et de 1, muni de la topologie produit ; c’est un
espace métrique compact totalement discontinu.

Une base de voisinages de C est fournie par les ensembles {a1, . . . , ak} × C où
les ai appartiennent à l’ensemble {0, 1}, que l’on peut aussi noter 2 ; ainsi l’espace
dénombrable qui indexe cette base de voisinages est
(47) 2<N =

⋃
k∈N

{0, 1}k.

L’espace de Baire et l’espace de Cantor ont même cardinalité (il n’est pas difficile
de trouver une surjection de C dans N ), à savoir c, la même que R (c comme
“continu”). Par opposition, N<N et 2<N ont la cardinalité de N, soit ℵ0.

Nous avons maintenant tous les outils conceptuel pour démontrer le
Théorème V-4 (description des espaces polonais).
(a) Tout espace polonais est image par une application continue de l’espace de

Baire N ;
(b) Tout espace polonais est image par une bijection continue d’un fermé de N ;
(c) Tout espace métrique compact est image par une application continue de

l’espace de Cantor C.
Remarques V-5. (i) La bijection en (b) est continue mais son inverse a

priori ne l’est pas : il s’agit donc d’un plongement continu, mais pas d’un
homéomorphisme. Par exemple, R n’est homéomorphe à aucun sous-espace
de l’espace de Baire (pourquoi ?).

(ii) Tout espace métrique compact n’est pas image par une bijection continue
d’un fermé de C. En effet, si cette bijection f existait, d’un sous-espace fermé
F de C dans X, alors F serait compact, donc f enverrait les fermés de F dans
les fermés de X, donc les ouverts aussi ; donc f−1 serait continue, et f serait
un homéomorphisme, préservant toutes les propriétés topologiques de C. Or
C est totalement discontinu, ce qui n’est pas le cas des compacts en général.
Noter que l’application naturelle de C dans [0, 1], à savoir x 7−→

∑
2−nxn, est

continue mais non bijective (pourquoi ?)
Exercice V-6. Dans le cas où X = R, construire une bijection satisfaisant (b).



THÉORIE DESCRIPTIVE DES ENSEMBLES 177

Exercice V-7. Construire une application mesurable surjective de C dans N ;
vérifier directement qu’elle est discontinue.

Preuve du Théorème V-4. Ces résultats sont obtenus par des variantes de
schémas de Souslin.

Pour (a) on recouvre le polonais X par des boules ouvertes Bi ; quitte à répéter
une infinité de fois certaines boules, on peut supposer que c’est une famille dénom-
brable infinie ; puis on recouvre chacune de ces boules par des boules ouvertes Bij

telles que Bij ⊂ Bi, et ainsi de suite ; à chaque étape k on impose que le rayon
de ces boules soit majoré par 2−k. Ainsi le théorème des fermés emboîtés garantit
que l’intersection des Bi1...ik est réduit à un point, et ce pour tout suite d’entiers
(i1, i2, . . .). Pour n ∈ N on définit alors f(n) par

{f(n)} =
⋂
k∈N

Bn1n2...nk
.

Pour (b) on modifie la construction en prenant une partition borélienne à chaque
étape ; il y a une subtilité. Voici une première tentative. Pour la première étape : si
(Bi) est un recouvrement par des boules de diamètre au plus 1, on pose B′

1 = B1,
B′

i = Bi \ (B′
1 ∪B′

2 . . . ∪B′
i−1). On peut continuer ainsi en recouvrant chaque B′

i en
boules ouvertes de rayon plus petit et en transformant ce recouvrement à nouveau
en partition B′

ij de B′
i. Et ainsi de suite, de sorte que B′

i1i2...ik
=
⋃

ℓ∈NB
′
i1i2...ik+1

, et
on impose de même que le diamètre des ensembles B′

i1...ik
soit au plus 2−k. Ainsi

tout x ∈ X est repéré par une suite unique (i1, i2, . . .), et l’on peut définir

F =
{
n ∈ N ;

⋂
k∈N

B′
n1n2...nk

6= ∅
}
.

Mais on se retrouve alors dans une impasse pour prouver que F est fermé !
On modifie donc la construction des partitions pour imposer la condition sup-

plémentaire
B′

i1...ik
=
⋃
ℓ∈N

B′
i1...ikℓ

.

Pour cela on suppose par induction que chaque B′
i1...ik

est une union dénombrable
de fermés (un Fσ). La propriété élémentaire que l’on utilise est que : Si C est un
Fσ, alors il peut s’écrire comme union dénombrable disjointe de Fσ de diamètre
arbitrairement petit, dont l’adhérence est incluse dans C.

Pour cela on écrit C =
⋃
Fj, où chaque Fj est un fermé ; sans perte de généralité

cette union est croissante ; alors C est l’union disjointe des Cj+1 \ Cj, qui à leur
tour peuvent s’écrire comme l’union des fermés Cj+1 \C(m)

j , où C(m)
j est le voisinage

ouvert de Cj fait des boules ouvertes de rayon 1/m centrées en Cj ; on décompose
chacun de ces fermés en une quantité dénombrable de fermés de diamètre au plus
ε par le procédé habituel, on les transforme en partition constituée de Fσ par le
procédé habituel, les adhérences de tous les ensembles ainsi formés sont inclus dans
Cj, et donc dans C. On ne garde bien sûr que les ensembles non vides.

Une fois que cette condition supplémentaire est assurée, l’argument va de soi.
Pour tout n ∈ F , l’intersection

⋂
k∈NB

′
n1...nk

a un diamètre nul, donc elle est réduite
à un point, que l’on note f(n). Par construction f(F ) = X, et il est facile de vérifier
que f est une bijection continue. Par construction

⋂
B′

i1...ik
=
⋂
B′

i1......ik , cela et le
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théorème des fermés emboîtés montre que toute suite de Cauchy d’éléments de F
converge dans N , ainsi F est bien fermé.

Enfin pour (c) on raisonne comme en (a), mais par compacité chaque étape k
ne fait intervenir qu’un nombre fini d’ouverts, disons Nk ; on choisit alors mk tel
que 2mk ≥ Nk, et on choisit une surjection de {0, 1}mk dans {1, . . . , Nk}. Alors la
construction précédente réalise X comme image continue de

∏
k∈N{0, 1}mk , mais cela

est en fait la même chose que C. □

On traduit le Théorème V-4 en disant qu’un espace polonais, et a fortiori un
espace métrique compact, sont analytiques. Cette notion sera développée dans la
section suivante, mais notons d’ores et déjà un corollaire à la fois surprenant et utile
sur la nature des boréliens :

Corollaire V-8 (Boréliens comme plongements de fermés). Tout borélien d’un
espace polonais X est l’image d’un fermé F de N par une injection continue de F
dans X.

Preuve du Corollaire V-8. Soit B un borélien de X. Par l’Exercice III-6,
B est image d’un fermé F1 (de X muni d’une structure polonaise enrichie) par une
injection continue. Ce fermé F1 est lui-même un espace polonais, donc image d’un
fermé de N par une injection continue, d’après le Théorème V-4. □

V-2*. Ensembles analytiques
Définition V-9 (analyticité). Soit X un espace polonais. Une partie A de X est

dite analytique s’il existe une application continue f : N → X telle que f(N ) = A.
Plus généralement, un espace topologique Y est dit analytique (ou souslinien) s’il

est homéomorphe à une partie analytique d’un espace polonais.

Au vu du Théorème V-4, il est équivalent de définir les ensembles (ou les espaces)
analytiques comme les images des applications continues définies entre espaces po-
lonais ; de sorte que le choix de l’espace N dans la définition précédente n’est pas
aussi arbitraire qu’il semble.

On peut décrire les ensembles analytiques par des systèmes de Souslin réguliers
(Pn)n∈N<N , avec un procédé similaire à celui de la Section V. Et réciproquement, si
l’on se donne un système de Souslin régulier dans X, on peut en reconstituer un
ensemble analytique, par l’opération (A) de Souslin :

(48) A(P ) =
⋃
n∈N

⋂
k∈N

Pn1,...,nk
.

Noter que même si les Pn sont ouverts (ou fermés), A(P ) n’est pas a priori borélien,
puisque l’union est prise sur un ensemble non dénombrable. Il existe une quantité
vertigineuse de systèmes (P ) qui aboutissent au même ensemble A(P ), parfois appelé
le noyau du système.

Il y a de la flexibilité dans les hypothèses sur les parties Pn, que l’on peut choi-
sir dans une classe commode Γ : par exemple l’ensemble des boules ouvertes, ou
l’ensemble des boules fermées, ou l’ensemble des ouverts, ou l’ensemble des fermés,
ou l’ensemble des intersections dénombrables d’ouverts, ou même l’ensemble des
parties analytiques : tout cela mène toujours, via l’opération (A), aux ensembles
analytiques. En fait l’opération de Souslin est idempotente : partant d’une famille
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quelconque Γ, on a
AA(Γ) = A(Γ).

Cela vient de ce que si l’on itère l’opération (A), on va être amené à choisir, pour
chaque n ∈ N , une suite de parties indexées elles-mêmes par N ; autrement dit le
résultat sera indexé par N×N N ; mais cet ensemble (encore un paradoxe de l’infini !)
est lui-même homéomorophe à N .

On a aussi de la flexibilité dans la convergence de ces suites de parties. Quand
on se donne un système régulier de Souslin, on impose seulement que le diamètre de
Pn1,...,nk

tende vers 0 le long de chaque n ∈ N ; mais quitte à subdiviser, on peut aussi
imposer une convergence uniforme en k, par exemple diam (Pn1,...,nk

) ≤ 2−k. Si les
Pn sont fermés, l’intersection est automatiquement non vide par principe des fermés
emboîtés. Même sans l’hypothèse de fermeture, on peut choisir les Pn de façon à ce
que l’intersection soit non vide : si f est une application continue surjective de N
dans A, il suffit de choisir
(49) Pn1,...,nk

= f
(
{n1, . . . , nk} × N

)
;

ainsi on a bien
∀n ∈ N , f(n) ∈

⋂
k∈N

Pn1,...,nk
.

Noter que dans ce cas le diamètre de Pn1,...,nk
tend bien vers 0 (mais pas forcément

uniformément) car les {n1, . . . , nk}×N constituent une base de voisinages de n pour
la topologie produit.

En maniant les propriétés de restriction et de recollement des fonctions boré-
liennes induits (Proposition III-8), on démontre que la notion d’analyticité est in-
trinsèque : Si A est une partie quelconque d’un espace polonais (X, d), c’est équi-
valent de dire que A est un espace souslinien, ou qu’il est analytique dans (X, d), ou
qu’il est obtenu par application du schéma (A) de Souslin à partir d’une famille de
parties fermées (ou ouvertes, ou boréliennes, ou analytiques) dans X.

On peut avoir une autre intuition de l’opération (A) en examinant le cas parti-
culier d’un système lusinien : alors (exercice)

(50) A(P ) =
⋂
k∈N

⋃
m∈Nk

Pm1,...,mk
,

qui est une intersection décroissante d’unions d’ensembles élémentaires de plus en
plus fins (imaginer qu’on commence par une description grossière de l’ensemble,
puis de plus en plus fine, et ainsi de suite). Noter que si les Pm sont boréliens, alors
(50) définit un ensemble borélien ; mais cela est lié à l’hypothèse que le système est
lusinien.

La force des ensembles analytiques tient à ce que, tout en étant plus généraux et
plus stables que les boréliens, ils en restent “assez proches”, tant par les liens entre
les deux notions que par la similitude de leurs propriétés.

Théorème V-10 (Propriétés des ensembles analytiques). (a) Si X est un espace
polonais, les parties analytiques de X forment une famille de cardinalité au plus c,
la puissance du continu.

(b) Si f : X → Y est une application continue entre espaces polonais, alors les
images par f des ensembles analytiques sont analytiques, et les images réciproques par
f des ensembles analytiques sont analytiques ; de même si f est seulement supposée
borélienne et définie sur une partie borélienne B de X.
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(c) Une union dénombrable de parties analytiques est analytique ; de même pour
une intersection dénombrable de parties analytiques.

(d) Si X est un espace polonais, tout borélien de X est aussi analytique ; mais
dès que X est non dénombrable, il existe des ensembles analytiques non boréliens.

(e) Si X et Y sont deux espaces polonais, et B un borélien de X × Y , alors la
projection de B sur X est analytique ; en outre les parties analytiques de X sont
exactement les projections sur X des boréliens de X ×N .

Remarque V-11. (i) L’énoncé (e) implique en particulier que les projections
des boréliens de R2 dans R sont des ensembles analytiques, à défaut d’être
boréliens ; c’était le point de départ de la réflexion de Souslin ;

(ii) On a déjà vu (Exercice III-6) que tout borélien est image d’un fermé, et
même d’un ouvert fermé, par une injection continue. On a maintenant une
généralisation partielle : de par leur définition, tous les analytiques sont des
images continues d’ensembles ouverts fermés.

(iii) En résumé, la propriété d’analyticité est stable par union, intersection dé-
nombrable, image réciproque (par une fonction continue, ou borélienne), comme
les boréliens ; mais elle est aussi stable par image directe. En revanche, elle
n’est pas stable par passage au complé́mentaire. On appelle coanalytiques
les complémentaires des ensembles analytiques ; ils vérifient des propriétés
bien différentes des analytiques et ce n’est pas la même intuition qui leur
est associée. Boréliens, analytiques et coanalytiques sont les trois premières
classes de la classification de Lusin : Classe 0, les boréliens ; classe 1, les images
continues des boréliens (donc les analytiques) ; classe 2, les complémentaires
des analytiques (donc les coanalytiques) ; classe 3, les images continues de la
classe 2 ; classe 4, les complémentaires de la classe 3 ; etc.

Preuve (pas tout à fait complète) du Théorème V-10. 1. Un espace po-
lonais admet une base dénombrable de voisinages, disons (Vk)k∈N. Un ouvert O est
décrit par les voisinages Vk qu’il contient ; la cardinalité de la topologie de l’espace
est donc au plus celle de l’ensemble {0, 1}N. Cela est vrai en particulier des ouverts
de N .

2. Une fonction continue de f : N → X est déterminée par les ouverts f−1(Vk),
où les Vk forment une base dénombrable de voisinages de X. Donc il y a au plus
autant de fonctions continues de N dans X, que de suites à valeurs dans les ouverts,
ou de façon équivalente à valeurs dans {0, 1}N. Mais cela est aussi c, la puissance du
continu (car {0, 1}N×N ' {0, 1}N). Cela prouve (a).

3. Il est évident, par la Définition V-9, que l’image continue d’un ensemble ana-
lytique est aussi analytique.

4. Maintenant si f : X → Y est seulement borélienne, on peut toujours enrichir la
topologie de X en lui ajoutant tous les f−1(Vn), pour Vn dans une base de voisinages
de Y . L’espace ainsi enrichi par la topologie engendrée reste polonais, et la fonction
f devient continue grâce à sa nature borélienne (c’est l’Exercice III-6). Par l’étape
3, il en resulte que l’image directe d’un ensemble analytique par f est analytique.

5. Si les Ai = fi(N ) (i ∈ N) sont analytiques, on se donne des copies disjointes
Ni de N , alors ∪fi (définie sur l’union des Ni et coïncidant avec fi sur chaque Ni)
envoie continûment ∪Ni sur ∪Ai. Mais ∪Ni ' N×N peut aussi s’écrire comme image
continue de N . Cela prouve la stabilité par union dénombrable. De façon similaire,
on définit ∩fi sur l’espace polonais Y = {(x1, x2, . . .); f1(x1) = f2(x2) = . . .} par
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(∩fi)(x1, . . .) = f1(x1) (qui est en fait fk(xk) pour tout k) et cela envoie continûment
Y sur ∩Ai. Cela conclut le point (c).

6. Les analytiques sont stables par union et intersection dénombrables, et contiennent
bien sûr les ensembles fermés (qui sont des espaces polonais !) et les ensembles ouverts
(union dénombrables de boules fermées). Par l’Exercice II-14, la classe des ensembles
analytiques contient la classe des boréliens. Cela montre la première partie de (d) ;
je ne prouverai pas la seconde partie, mais citerai des exemples particuliers en fin
de section.

7. La projection est continue de X × Y dans X (ou dans Y ), les projections sur
X (ou sur Y ) des boréliens dans l’espace produit sont donc analytiques.

8. Si f est continue N → X, son graphe est borélien, et la projection de ce
graphe est f(N ) : cela prouve que tout analytique de X est la projection d’un graphe
borélien dans N ×X (ou d’un borélien dans X ×N , en inversant les facteurs).

9. Soit f mesurable. Par le Corollaire III-13, son graphe G(f) est mesurable dans
X×Y . Si A est analytique, f−1(A) est la projection sur X de l’ensemble analytique
G(f) ∩ X × A, c’est donc un ensemble analytique. Cela avec l’étape 4 achève de
prouver (b). □

Comme on l’a vu, les ensembles analytiques forment une classe plus générale
que les ensembles boréliens, mais ils ne sont pas plus nombreux ; pour exhiber des
ensembles analytiques non boréliens, on ne peut donc se contenter d’un argument
de cardinalité. On a déjà mentionné en passant un contre-exemple :

Exemple V-12 (analytiques non boréliens). L’ensemble de Lusin du Théorème
VI-47 est analytique dans R, non borélien. On notera que sa définition fait intervenir
des suites infinies de suites, c’est à dire une paramétrisation par N ; le développement
en fraction rationnelle étant le moyen de mettre R en correspondance avec N .

Bien sûr, cet ensemble est artificiellement conçu et sa définition assez tourmentée.
En fait il est difficile de trouver des contre-exemples à la fois explicites et assez
naturels. La liste ci-dessous regroupe quasiment tous ceux qui sont connus ; elle est
entièrement due à l’école de topologie polonaise de l’entre-deux guerres, très active à
Varsovie et Wrocław (Stefan Mazurkiewicz, Witold Hurewicz, Zygmunt Janiszewski,
Edward Marczewski (Szpilrajn), Kazimierz Kuratowski, ...)

Exemple V-13 (analytiques non boréliens, encore). (i) (Mazurkiewicz) L’en-
semble des fonctions dérivables de [0, 1] dans R est coanalytique, non borélien
dans C([0, 1];R).

(ii) (Hurewicz) L’ensemble des compacts non dénombrables de [0, 1] est analy-
tique, non borélien dans l’espace de Hausdorff des compacts de [0, 1].

(iii) (Kuratowski–Marcewski) L’ensemble des compacts de [0, 1] contenus dans
Q est coanalytique, non borélien dans l’espace de Hausdorff.

V-3*. De l’analyticité à la mesurabilité
Explorons maintenant les liens entre analyticité et mesurabilité. Pour commen-

cer, l’énoncé qui suit indique que l’on peut distinguer les ensembles analytiques via
des boréliens, bien que la structure de ces derniers soit moins fine.

Théorème V-14 (Théorème de séparation de Lusin). Soient (X, d) un espace
polonais et A1, A2 deux ensembles analytiques disjoints. Alors il existe des boréliens
disjoints B1 et B2 tels que Ai ⊂ Bi pour i = 1, 2. De même si X est souslinien.
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Remarques V-15. (i) Cet énoncé se généralise facilement à des familles dé-
nombrables d’ensembles analytiques deux à deux disjoints (∀i 6= j, Ai∩Aj =
∅) : on peut alors les inclure dans une famille dénombrable d’ensembles bo-
réliens deux à deux disjoints (Exercice). C’est plus délicat de le généraliser
pour des familles globalement disjointes (

⋂
j∈NAj = ∅) ; on y reviendra.

(ii) Ce théorème est faux si l’on remplace “analytiques” par “coanalytiques”
(d’après un contre-exemple du mathématicien russe Sergueï Novikov, un des
plus importants contributeurs à la théorie descriptive des ensembles).

Preuve du Théorème V-14. Le raisonnement est le même que X soit sup-
posé polonais ou plus généralement souslinien. Soient A1 et A2 deux ensembles ana-
lytiques disjoints dans X ; on les suppose tous deux non vides, sans quoi le résultat
est évident. Écrivons-les sous forme de schémas de Souslin réguliers :

Ai =
⋃
n∈N

⋂
k∈N

P i
n1...nk

où pour tout n ∈ N l’intersection
⋂

k∈N P
i
n1...nk

se réduit à exactement un élément
de Ai (Cf (49)).

Supposons par l’absurde qu’il n’existe aucune paire (B1, B2) de boréliens disjoints
qui sépare (A1, A2), au sens où Ai ⊂ Bi. Pour i = 1, 2 et n1 ∈ N on pose alors

Ai
n1

=
⋃

(n2,n3,...)∈N

⋂
k∈N

P i
n1n2...nk

,

de sorte que
A1 =

⋃
n1∈N

A1
n1
, A2 =

⋃
m1∈N

A2
m1
.

Si tous les couples (A1
n1
, A2

m1
) pouvaient être séparés par des boréliens disjoints C1

n1

et C2
m1

, alors on pourrait séparer A1 et A2 par les boréliens disjoints D1
1 =

⋃
n1∈NC

1
n1

et D2
1 =

⋃
m1∈NC

2
m1

; mais cela contredirait notre hypothèse. Il doit donc exister au
moins un n1 et un m1 tels que A1

n1
et A2

m1
ne peuvent être séparés par aucun couple

de boréliens disjoints. Comme le système est régulier on a A1
n1

⊂ P 1
n1

et A2
m1

⊂ P 2
m1

,
donc P 1

n1
∩ P 2

m1
6= ∅.

On peut alors recommencer le raisonnement, et par récurrence construire (n1, n2, . . .)
et (m1,m2, . . .), et

A1
n1n2...nℓ

=
⋂
s∈N

⋂
k∈N

P 1
n1...nℓs1...sk

⊂ P 1
n1n2...nℓ

,

A2
m1m2...mℓ

=
⋂
s∈N

⋂
k∈N

P 2
m1...mℓs1...sk

⊂ P 2
m1m2...mℓ

,

tels que (a) A1
n1...nℓ

et A2
m1...mℓ

ne peuvent être séparés par aucune paire de boréliens
disjoints, et (b) P 1

n1...nℓ
∩ P 2

m1...mℓ
6= ∅.

Par construction il existe a1 ∈ A1 et a2 ∈ A2 tels que⋂
ℓ∈N

P 1
n1...nℓ

= {aℓ1}
⋂
ℓ∈N

P 2
m1...mℓ

= {aℓ2}.

En particulier a1 6= a2 puisque les Ai sont disjoints. Soient alors B1 et B2 des boules
ouvertes disjointes telles que ai ∈ Bi. Pour ℓ assez grand on a A1

n1n2...nℓ
⊂ B1 et
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A2
m1m2...mℓ

⊂ B2. Mais cela contredit le fait que A1
n1...nℓ

et A2
m1...mℓ

ne sont séparables
par aucune paire de boréliens, concluant le raisonnement par l’absurde. □

Exercice V-16. Mettre en œuvre le même argument sans schéma de Souslin,
en partant de la définition des analytiques comme images continues de N .

V-3.1. Caractérisations et inclusions. Ce cours est maintenant mûr pour
les deux principaux résultats liant analyticité et mesurabilité.

Théorème V-17 (Caractérisation de Souslin des boréliens). Soit (X, d) un es-
pace polonais. Alors A ⊂ X est borélien si et seulement si il est analytique et
coanalytique dans X. De même si X est un espace souslinien.

Théorème V-18 (mesurabilité universelle des analytiques). Soit (X, d) un es-
pace polonais et µ une mesure borélienne σ-finie sur X. Alors tout ensemble analy-
tique A ⊂ X est µ-mesurable.

On rappelle qu’une partie A est µ-mesurable si elle appartient à la tribu boré-
lienne complétée pour µ, c’est à dire si A s’écrit commel ’union d’un borélien et d’un
ensemble µ-négligeable. Le Théorème V-18 dit que l’ensemble A sera µ-mesurable
pour toute mesure µ σ-finie : on dit alors que A est universellement mesurable.
On a de la flexibilité sur l’hypothèse de σ-finitude :

Définition V-19 (mesurabilité universelle). Soit (X, d) un espace polonais. On
dit que A ⊂ X est universellement mesurable s’il est µ-mesurable pour toute mesure
µ borélienne σ-finie sur X, ou de façon équivalente pour toute mesure de probabilité
borélienne sur X.

Exercice V-20. Prouver que les deux formulations sont effectivement équiva-
lentes.

Le tableau est donc le suivant (pour toute mesure σ-finie µ, par exemple la
mesure de Lebesgue sur Rn) :

{Ouverts, Fermés} ⊂ {Boréliens} ⊂ {Analytiques} ⊂ {µ-mesurables}
{Ouverts, Fermés} ⊂ {Boréliens} ⊂ {Coanalytiques} ⊂ {µ-mesurables}

{Boréliens} = {Analytiques} ∩ {Coanalytiques}

Remarque V-21. Dans Rn il y a c = 2ℵ0 ensembles boréliens et 2c ensembles
Lebesgue-mesurables ; combien d’ensembles universellement mesurables ? On ne sait
pas exactement, mais un résultat récent de Larson–Neeman–Shelah nous dit qu’il
n’y a pas de contradiction à supposer que c’est c. La classe des universellement
mesurables reste donc en un sens “bien plus petite” que la classe des mesurables.

Preuve du Théorème V-17. Si A et X \ A sont analytiques, alors par le
Théorème V-14 de séparation de Lusin, on trouve des boréliens disjoints B et B′

tels que A ⊂ B et X \ A ⊂ B′. Mais alors
B ⊂ X \B′ ⊂ A ⊂ B,

et donc A = B. □
La preuve du Théorème V-18 demandera quelques préparatifs impliquant la no-

tion d’enveloppe.
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Définition V-22 (enveloppe). Soit (X,B, µ) un espace mesuré et A ⊂ X un
ensemble quelconque. On dit que B ∈ A est une µ-enveloppe de A si (i) A ⊂ B, (ii)
pour tout B′ ∈ A contenant A, l’ensemble B \B′ est µ-négligeable.

Bien sûr la notion d’enveloppe dépend de la tribu considérée. L’intuition est
la suivante : l’enveloppe d’un ensemble non mesurable A est une partie mesurable
B qui épouse A de si près qu’aucune autre partie mesurable ne peut mieux faire.
Une enveloppe n’est en général pas unique, mais deux enveloppes coïncident à un
ensemble négligeable près. On a déjà vu (Remarque II-95 (i)) que si µ est une mesure
borélienne, alors toute partie µ-mesurable s’écrit sous la forme A = B \N , où B est
borélien et N est µ-négligeable ; alors B est une µ-enveloppe de A. Mais un résultat
bien plus général est vrai, du moins sous une hypothèse de σ-finitude :

Proposition V-23 (existence d’enveloppe). Sur un espace polonais (X, d), soit
µ une mesure borélienne σ-finie, alors toute partie A de X admet une µ-enveloppe
borélienne.

Voici maintenant l’autre ingrédient majeur en vue de la mesurabilité.

Lemme V-24 (Lemme de Szpilrajn/Marcewski). Soit T une tribu d’un espace
polonais (X, d) vérifiant la propriété suivante :
(Sz) Pour toute partie A ⊂ X il existe B ∈ T tel que A ⊂ B et tel que pour toute
partie B′ ∈ T contenant A, tout sous-ensemble de B \B′ appartient à T .
Alors l’opération (A) de Souslin préserve T . Plus explicitement, si toutes les parties
intervenant dans le schéma de Souslin appartiennent à T , alors la partie ainsi définie
appartient aussi à T .

Pour rappel, Edward Szpilrajn et Edward Marcewski sont une seule et même
personne. Le Théorème V-18 découlera immédiatement de la Proposition V-23 et
du Lemme V-24 :

Preuve du Théorème V-18. Soit µ une mesure σ-finie sur X. Par la Pro-
priété V-23, toute partie A ⊂ X admet une µ-enveloppe borélienne, donc un B ∈ B
tel que pour tout B′ ∈ B, B′ ⊃ A, on a µ[B \ B′] = 0. Soit maintenant T la tribu
des ensembles µ-mesurables, c’est à dire de la forme B ∪N où B est borélien et N
négligeable. Pour tout T ∈ T contenant A, on peut inclure T dans un borélien B′

tel que µ[B′ \ T ] = 0, et alors µ[B \ T ] ≤ µ[B \ B′] + µ[B′ \ T ] = 0 ; donc tous les
sous-ensembles de B \ T sont négligeables et en particulier appartiennent à T . On
conclut que T vérifie la propriété (Sz) ; l’application du schéma de Souslin à la tribu
B ⊂ T des boréliens induit donc un élément de T . □

Voici maintenant les preuves des deux énoncés clé intervenant dans l’argument
ci-dessus. (On pourra apprécier en particulier l’élégance de la preuve du Lemme
V-24, petit bijou de théorie des ensembles où tous les arguments s’enchaînent har-
monieusement.)

Preuve de la Proposition V-23. Soit A ⊂ X. Soit (Xn)n∈N une partition
borélienne de X avec µ[Xn] < +∞. Pour chaque Xn on cherche une µ-enveloppe
borélienne Bn de An = A∩Xn. Une fois cela accompli, on posera B =

⋃
Bn, de sorte

que B contiendra
⋃
An = A, et si B′ est un borélien contenant A, alors B′

n = B′∩Xn

contient An, donc µ[Bn \B′
n] = 0, et de même pour µ[B \B′] par σ-additivité.
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Il suffit donc de traiter le cas où µ est finie. On pose alors

I = inf
{
µ[B]; B ∈ B, B ⊃ A

}
∈ R+.

Soit (Bℓ)ℓ∈N une suite de boréliens telle que µ[Bℓ] −→ I ; quitte à remplacer Bℓ par
B̃ℓ = B1 ∩ . . . ∩Bℓ, on peut la supposer décroissante. On pose B∞ =

⋂
Bℓ, c’est un

borélien qui contient A et dont la mesure vaut I.
Si maintenant B′ est un borélien contenant A, alors B∞ ∩ B′ contient A, donc

I = µ[B∞] = µ[B∞ ∩B′] + µ[B∞ ∩ B′] ≥ I + µ[B∞ \B′],

donc µ[B∞ \B] = 0. □
Preuve du Lemme V-24. Soit donc (Ps)s∈N<N une famille d’éléments de T ,

indexée par N<N. On pose
(51) A = A(P ) =

⋃
n∈N

⋂
k∈N

Pn1...nk
.

Le but est de prouver, utilisant la propriété (Sz), que A ∈ T .
1. Quitte à remplacer Pn1...nk

par Qn1...nk
=
⋂

j≤k Pn1...nj
, on peut supposer que

Pm1...mk+1
⊂ Pm1...mk

pour tous m et k, c’est à dire que le système est régulier.
2. Pour tout m = (m1, . . . ,mk) ∈ N<N, on pose

Bm1...mk
=
⋃
q∈N

⋂
ℓ∈N

Pm1...mkq1...qℓ .

C’est l’opération (A) de Souslin appliquée à toutes les parties qui “raffinent” Pm

dans le schéma (51). Par l’étape 1, toutes les opérations se passent dans Pm. Par
ailleurs ⋂

ℓ∈N

Pm1...mkq1...qℓ =
⋂
ℓ≥2

Pm1...mkq1...qℓ ,

donc en renommant (q1, q2, . . .) = (r, q′1, q
′
2, . . .) on trouve

Bm1...mk
=
⋃
r∈N

⋃
q′∈N

⋂
ℓ∈N

Pm1...mkrq
′
1...q

′
ℓ
,

ce qui est l’union de tous les Bm1...mkr. Cela fonctionne aussi quand k = 0, pour A
tout entier. Pour récapituler,

(a) Bm ⊂ Pm

(b) ∀m ∈ N<N, Bm =
⋃

r∈NBmr

(c) A =
⋃

r∈NBr.
Si x ∈ A, par (c) on peut trouver m1 tel que x ∈ Bm1 , puis par (b) on trouve

m2 tel que x ∈ Bm1m2 , et ainsi de suite, de sorte qu’il existe m ∈ N tel que x ∈⋂
k∈NBm1...mk

. En d’autres termes, A ⊂ A(B). Réciproquement, comme Bm ⊂ Pm

on a A(B) ⊂ A(P ) = A. Donc
(d) A = A(B).
Le système (Bm) est donc un système alternatif pour A, très régulier en un sens ;

mais ses parties ne sont pas a priori mesurables.
3. Pour tout m ∈ N<N, on introduit une T -enveloppe de Bm : c’est à dire un

ensemble B∗
m ∈ T tel que

(e) ∀m ∈ N<N, Bm ⊂ B∗
m

(f) Pour toute partie B′ ∈ T contenant Bm, tous les sous-ensembles de B∗
m \ B′

appartiennent à T .



186 CHAPITRE V (1er janvier 2026)

(Noter que la défintion des B∗
m n’implique qu’une quantité dénombrable de choix

puisque N<N est dénombrable.) Alors

A(B∗) \ A(P ) =

[⋃
n∈N

⋂
k∈N

B∗
n1...nk

]
\

[ ⋃
m∈N

⋂
ℓ∈N

Pm1...mℓ

]

=
⋃
n∈N

⋂
k∈N

[
B∗

n1...nk
\
⋃
m∈N

⋂
ℓ∈N

Pm1...mℓ

]
⊂
⋃
n∈N

⋂
k∈N

(
B∗

n1...nk
\ Pn1...nk

)
⊂

⋃
m∈N<N

(B∗
m \ Pm).

Soit C =
⋃

m∈N<N B∗
m \Pm ∈ T (union dénombrable d’éléments de T ). Pour tout

D ⊂ C,
D = D ∩

( ⋃
m∈N<N

B∗
m \ Pm

)
=

⋃
m∈N<N

D ∩ (B∗
m \ Pm);

par (a) et (f) on a D ∩ (B∗
m \ Pm) ∈ T ; donc D ∈ T , et finalement

(52) A(B∗) \ A(P ) ∈ T .
4. Reste à prouver que A(B∗) ∈ T . Si l’on a gagné la mesurabilité et la propriété

d’enveloppe en passant des Bm aux B∗
m, on a perdu la propriété (b). Pour la regagner,

on va “compléter” le schéma. On définit donc (B̂m)m∈N<N par

∀ℓ ∈ N B̂ℓ = B∗
ℓ

∀k ∈ N ∀n ∈ Nk ∀ℓ ≥ 2 B̂n1...nkℓ = B∗
n1...nk(ℓ−1)

B̂n1...nk1 = B̂n1...nk
\
⋃
ℓ∈N

B∗
n1...nkℓ

.

Ainsi les B̂m sont T -mesurables, et par construction

B̂n1...nk
=
⋃
ℓ∈N

B̂n1...nkℓ.

Par le même raisonnement qu’en 1,

(53) A(B̂) =
⋃
ℓ∈N

B̂ℓ =
⋃
ℓ∈N

B∗
ℓ .

Par ailleurs toutes les intersections impliquées dans le schéma des B∗ se re-
trouvent dans le schéma des B̂ (quitte à changer d’indices pour suivre les décalages),
de sorte que A(B∗) ⊂ A(B̂). Et en désignant par mℓ la concaténation de la suite
finie m avec l’entier ℓ,

(54) A(B̂) \ A(B∗) ⊂
⋃

m∈N<N

B∗
m \

(⋃
ℓ∈N

B∗
mℓ

)
Par (b) et (e), Bm ⊂

⋃
ℓ∈NB

∗
mℓ ∈ T , on peut alors appliquer (f) pour conclure que

chacun des ensembles apparaissant au membre de droite de (54) a tous ses sous-
ensembles mesurables ; le membre de gauche est donc lui aussi mesurable :
(55) A(B̂) \ A(B∗) ∈ T .
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5. On récapitule :

A = A(P ) = A(B) ⊂ A(B∗) ⊂ A(B̂) =
⋃

B∗
ℓ

et

A =

(⋃
k∈N

B∗
k

)
\
[
A(B̂) \ A(B∗)

]
\
[
A(B∗) \ A(B)

]
appartient à la tribu T au vu de (52) et (55), ce qui conclut la preuve. □

V-3.2. Quelques conséquences. Concluons cette section avec deux résultats
intéressants qui découlent comme fruit mûr de la théorie. Bien que ces énoncés
ne fassent intervenir que des boréliens, leur démonstration passe par les ensembles
analytiques. Le premier avait été énoncé sans preuve en tant que Théorème III-24.

Théorème V-25 (Théorème de l’inverse mesurable, revu). Soient X et Y deux
espaces polonais munis de leurs tribus boréliennes respectives. Alors

(i) Si E est une partie borélienne de X et f une application injective mesurable
de E dans Y , alors f(E) est un borélien de Y et f−1 est mesurable de f(E) dans
E ;

(ii) En particulier, si f : X → Y est bijective mesurable, alors son inverse f−1

est mesurable de Y dans X.

Théorème V-26 (mesurabilité des images mesurables). Soient X et Y deux
espaces polonais munis de leurs tribus boréliennes respectives, A une partie borélienne
de X et f : X → Y une application mesurable. Alors f(A) est universellement
mesurable.

Remarque V-27. Attention, ce résultat dit que l’image d’un ensemble borélien
est mesurable (au sens de : µ-mesurable, pour toute mesure σ-finie µ), mais pas que
l’image d’un ensemble mesurable est mesurable !

Preuve du Théorème V-25. Toute partie borélienne A de E est analytique,
et son image f(A) par f est analytique dans Y (Théorème V-10(d) et (b)). Idem pour
f(E)\f(A) = f(E\A). L’ensemble f(A) est à la fois analytique et coanalytique dans
Y , il est donc borélien. Cela vaut en particulier pour f(E). Mais alors (f−1)−1(A) =
f(A) est borélien, pour tout borélien A ; l’application f−1 est donc bien mesurable.
(Ou de façon équivalente : Comme f est borélienne, son graphe est borélien dans
X×Y (Corollaire III-13) ; le graphe obtenu en échangeant Y et X est donc toujours
borélien ; mais c’est aussi le graphe de f−1.) □

Preuve du Théorème V-26. Il suffit d’enchaîner les Théorèmes V-10(d) (les
boréliens sont analytiques), V-10(b) (les analytiques sont stables par les applications
mesurables) et V-18 (les analytiques sont universellement mesurables). □

V-4*. Classification borélienne des espaces polonais
Nous voici en mesure de démontrer un résultat qui avait été évoqué sans preuve

dans les sections III-1 et IV-3 : la classification des espaces polonais, modulo bijection
bimesurable. Ici plus besoin d’hypothèse topologique, seul compte le cardinal. Le gros
du travail est effectué par le théorème de bijection mesurable ci-suit :

Théorème V-28 (Théorème de Cantor–Bernstein borélien). Soient X et Y deux
espaces polonais, ou sousliniens. On suppose qu’il existe une injection borélienne
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f : X → Y et une injection borélienne g : Y → X. Alors il existe une bijection
borélienne F : X → Y , d’inverse borélienne.

Remarque V-29. Ce théorème n’est autre que la version borélienne du théorème
de Cantor–Bernstein, selon lequel si X et Y sont deux ensembles, chacun s’injectant
dans l’autre, alors ils sont en bijection. Ce pilier de la logique, énoncé sans preuve par
Georg Cantor, a été démontré par Felix Bernstein à la toute fin du 19e siècle. C’est
Borel qui a le premier publié la preuve de Bernstein, ce qui montre bien le lien étroit
entre ce théorème et la naissance de la théorie de la mesure. Le nom d’Ernst Schröder
est aussi souvent associé, même si sa preuve était erronée ; d’autres mathématiciens
impliqués ont été Alwin Korselt, Richard Dedekind, Ernst Zermelo et Julius König,
dont l’argument s’est imposé comme le plus populaire.

Preuve du Théorème V-28. Quitte à remplacer X par X × {0} et Y par
Y × {1} on peut supposer X et Y disjoints.

Soit f : X → Y une injection borélienne ; en particulier f(X) est borélien et
f−1 est une bijection borélienne de f(X) dans X (Théorème V-25). De même, soit
g : Y → X une injection borélienne, alors g(Y ) est borélien et g−1 est une bijection
borélienne de g(Y ) dans Y .

À tout x ∈ X on va associer une suite finie ou infinie (x0, x1, . . .), prenant ses
valeurs alternativement dans X et dans Y , ainsi. On pose x0 = x. Si x0 ∈ g(Y ), on
pose x1 = g−1(x0), et sinon on ne définit pas x1. Si x1 est défini et appartient à f(X),
on pose x2 = f−1(x1), et sinon on ne définit pas x2. On continue ainsi indéfiniment.

À chaque étape, chaque composante de la suite S(x) ainsi définie est une fonction
mesurable de x. La longueur |S(x)| de cette suite est mesurable aussi : par exemple
{x; |S(x)| ≥ 2} = g(Y ) qui est bien borélien, {x; |S(x)| ≥ 3} = g(Y ) ∩ g(f(X))
qui est borélien car g est injective sur Y et donc a fortiori sur f(X), etc. Et par
différence, les ensembles |S| = n sont tous mesurables, pour tout n fini ou infini.

On partitionne alors X, et on définit F , ainsi :
• si |S(x)| est fini et pair (c’est à dire que le dernier élément xm appartient à Y )

on pose F (x) = f(x) ;
• si |S(x)| est fini et impair (c’est à dire que le dernier élément xm appartient à

X) on pose F (x) = g−1(x) ;
• si |S(x)| = ∞ (c’est à dire que la suite ne s’arrête jamais), on pose F (x) = f(x).
Il est clair que cette fonction est mesurable. On vérifie explicitement (exercice)

que si l’on réalise la même construction symétrique, avec des notations similaires,
sur Y , alors la réciproque de F est

• là où |S(y)| est fini et impair, f−1(y) ;
• là où |S(y)| est fini et pair, g(y) ;
• là où |S(y)| = ∞, f−1(y). □

Remarque V-30 (Présentation alternative). Voici une autre façon [Kechris] de
présenter la preuve du Théorème V-28. On définit deux suites d’ensembles boréliens
Xn, Yn comme suit : X0 = X, Y0 = Y , Xn+1 = g ◦ f(Xn), Yn+1 = f ◦ g(Yn), et
X∞ =

⋂
n≥0Xn, Y∞ =

⋂
n≥0 Yn. Alors f(X∞) = Y∞, f(Xn \ g(Yn)) = f(Xn) \ Yn+1,

g(Yn \ f(Xn)) = g(Yn) \ Xn+1. On pose alors A = X∞ ∪
⋃

n≥0(Xn \ g(Yn)), B =⋃
n≥0(Yn \ f(Xn)). Tous ces ensembles sont boréliens et f induit une bijection de

A sur Y \ B tandis que g induit une bijection de B sur X \ A. On définit alors F
comme étant égale à f sur A et g−1 sur X \ A.
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Maintenant voici le résultat annoncé :

Théorème V-31 (Classification borélienne selon le cardinal). Soit A un en-
semble borélien d’un espace polonais X. Alors

• si A a cardinal k ∈ N, il existe une bijection bimesurable de {1, . . . , k} sur A ;
• si A est infini dénombrable, il existe une bijection bimesurable de N sur A ;
• si A est infini non dénombrable, il existe une bijection bimesurable de C sur A.

Remarque V-32. En particulier, dans la classe des ensembles boréliens des
espaces polonais, il n’existe pas de cardinal intermédiaire : si un ensemble de cette
classe n’est pas dénombrable, alors il a même cardinalité que R, la puissance du
continu. La preuve montrera en fait qu’il contient une réplique de (= un ensemble
homéomorphe à) C.

Corollaire V-33. Soient X et Y deux espaces polonais, et A ⊂ X, B ⊂ Y des
boréliens. Alors A et B sont en bijection mesurable si et seulement si ils ont même
cardinal. En particulier, deux espaces polonais sont isomorphes en tant qu’espaces
mesurables, si et seulement si ils ont même cardinal.

Preuve du Théorème V-31. Si A est dénombrable dans un espace polonais,
toutes ses sous-parties sont dénombrables ; ainsi toute bijection entre espaces dé-
nombrables, continue ou non, sera automatiquement mesurable. Seul le cas non
dénombrable nécessite donc du travail.

Soit donc A un borélien non dénombrable dans X. D’après le Théorème V-28 il
suffit de trouver une injection mesurable de A dans C, et vice-versa.

1. Pour construire une injection de A dans C, l’observation clé est la suivante :
Si A est un borélien non dénombrable, alors on peut le partager en deux boréliens

disjoints non dénombrables.
Pour voir cela, on recouvre alors A par des boules (Bℓ)ℓ∈N de rayon 1/2, et on

en déduit via le procédé habituel une partition de A par des ensembles boréliens
(B′

ℓ)ℓ∈N de diamètre au plus 1. Si deux de ces ensembles sont non dénombrables,
disons B′

m et B′
n, le but recherché est atteint, puisque A est l’union disjointe des

deux boréliens non dénombrables B′
m et A \ B′

m ⊃ B′
n. Sinon, cela veut dire qu’un

seul de ces ensembles, disons B′
m1

est non dénombrable, tous les autres le sont. Alors
on subdivise à nouveau B′

m1
en le recouvrant par des boules fermées (Bm1ℓ)ℓ∈N de

rayon 1/4, et on recommence le raisonnement : si après transformation en partition
on a trouvé deux boréliens non dénombrables disjoints, on a gagné, et sinon on
subdivise encore. Si le processus n’aboutit jamais, c’est que l’on a une suite de
boules fermées emboîtées non vides, Bm1 , Bm1m2 , etc. dont le diamètre tend vers 0,
et tels que tous leurs complémentaires dans A sont dénombrables. Mais l’intersection
de ces boules est réduite à un point ; on conclut que A est dénombrable, ce qui est
une contradiction. Donc le processus aboutit toujours.

À partir de là, il est facile de construire une injection mesurable de A dans C.
Dans un premier temps, on raffine inductivement A en (Ai), i ∈ {0, 1}, puis en
(Aij), (i, j) ∈ {0, 1}2, et ainsi de suite, construisant un système lusinien de boréliens
(As)s∈2<N . Ainsi tout x ∈ A appartient de façon unique à une intersection de parties
Ai1...ik , pour tout k, et on peut lui associer la suite (i1, i2, . . .).

2. Pour construire une injection de C dans A, on commence par invoquer le
Théorème V-4 (b), selon lequel A est image d’un espace polonais Z par une bijection
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continue (a fortiori borélienne) ; il suffit donc de construire une injection de C dans
Z, qui est forcément non dénombrable. L’observation clé est alors la suivante :

Si Z est un espace polonais non dénombrable, on peut trouver dans Z deux fermés
disjoints non dénombrables de diamètre arbitrairement petit

Pour prouver cette assertion, on se donne ε > 0 arbitraire, et on écrit Z comme
union dénombrable de boules fermées de diamètre au plus ε ; puis on transforme ce
recouvrement en partition, dont chaque élément B′

i = Bi\(B1∪Bi−1) est la différence
d’un fermé et d’un autre fermé, donc s’écrit comme une union dénombrable de fermés
(F ℓ

i )ℓ∈N. Si deux des ensembles B′
i, disons B′

i1
et B′

i2
sont non dénombrables, alors

on peut trouver ℓ1 et ℓ2 tels que F ℓ1
i1

et F ℓ2
i2

sont non dénombrables (sinon B′
i1

ou
B′

i2
serait union dénombrable d’ensembles dénombrables, donc dénombrable) et la

conclusion est assurée. Et si on ne peut trouver deux tels ensembles, c’est qu’il existe
i1 ∈ N tel que X \ Fi1 est dénombrable, a fortiori X \ Bi1 . On recommence alors
à décomposer Bi1 en boules fermées (Bi1ℓ)ℓ∈N de diamètre au plus ε/2, à en faire
une partition, et ainsi de suite : si ce procédé itératif n’aboutit pas, c’est qu’on a
une suite de fermés emboîtés Bi1...ik , tous non vides (car non dénombrables), dont
le diamètre tend vers 0, et dont le complémentaire est dénombrable ; mais alors leur
intersection est réduite à un point et c’est X tout entier qui est dénombrable, une
contradiction.

Une fois l’observation établie, on trouve dans X, par induction, deux fermés
disjoints non dénombrables F0 et F1, de diamètre au plus 1 ; puis on trouve dans
chacun d’entre eux deux fermés disjoints non dénombrables Fi0 et Fi1, de diamètre
au plus 1, et ainsi de suite. Il ne reste plus qu’à associer à (i1, i2, . . .) ∈ C l’unique
intersection des fermés emboîtés Fi1i2...ik . □

Preuve du Corollaire V-33. Il suffit d’appliquer deux fois le Théorème V-
31 en prenant l’espace de référence, savoir {1, . . . , k} ou N ou C comme intermédiaire
entre A et B. □

V-5*. Sélection mesurable
On peut vivre sans connaître les ensembles analytiques (voire !), mais on ne peut

pas faire de théorie de la mesure un tant soit peu avancée sans rencontrer le problème
de la sélection mesurable. Voici une situation classique : il se présente une famille
(Cx)x∈X de parties indexées par x et on doit choisir un y dans chacun des Cx, de
façon mesurable. Cela revient à rechercher un graphe de fonction mesurable dans la
réunion des {x} × Cx. La situation est similaire à celle de l’axiome du choix, mais
ce dernier ne dit de toute façon rien sur la mesurabilité de la fonction de choix. En
fait on peut, en supposant seulement l’axiome du choix dépendant, couvrir toutes
les situations d’intérêt que l’on rencontre classiquement.

Bien sûr, il faut des hypothèses sur la façon donc Cx varie avec x ; le plus souvent,
c’est un ensemble de couples admissibles {(x, y)} admissibles qui est fourni. On
supposera donc que C =

⋃
x∈X{x} × Cx est borélien dans X × Y , et les Cx seront

les sections ou coupes de C. Trouver un graphe de fonction mesurable dans une
partie mesurable d’un espace produit, avec pleine projection sur la base : cette
opération s’appelle sélection mesurable dans C (ou section mesurable de C), ou
encore uniformisation de C. Ici “uniforme” désigne la propriété de fonction : l’objet
recherché est une fonction x 7−→ f(x), fournissant une seule valeur pour chaque
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x de la projection de C (au contraire de la “fonction multivaluée” ou “fonction
multiforme” x 7−→ Cx).

Un résultat marquant de la théorie descriptive des ensembles est que dès que X
et Y sont des espaces polonais non dénombrables, il existe un borélien C de X × Y ,
qui n’admet aucune uniformisation borélienne. La sélection borélienne doit donc être
justifée via des hypothèses sur C. Il existe deux grandes familles de théorèmes en la
matière : à sections grandes, à sections petites. L’intuition dans la première catégorie
est que si les sections sont assez grandes, il est d’autant plus facile d’y trouver un
graphe ; et dans la seconde, que si les sections sont petites la mesurabilité est facile
à assurer.

V-5.1. Sélections élémentaires. Voici le plus élémentaire des théorèmes de
sélection à grandes sections ; il semble absolument trivial, mais il est plus difficile
qu’il n’en a l’air :

Proposition V-34 (cylindres mesurables). Soient X et Y deux espaces mesu-
rables, et C ⊂ X ×Y mesurable tel que Cx = Y pour tout x ∈ X. Alors C = A×Y ,
où A est mesurable, et en particulier toute fonction borélienne sur A (par exemple
constante) définit une sélection mesurable dans C.

Preuve de la Proposition V-34. L’ensemble A est analytique comme pro-
jection du borélien C ; et de même pour X \ A comme projection de (X × Y ) \ C.
Par le Théorème V-17 de Souslin, A est borélien. □

Quant au plus élémentaire des théorèmes de sélection à petite section, il a l’air
tout aussi trivial que le précédent et il est encore plus délicat.

Proposition V-35 (un graphe borélien est le graphe d’une borélienne). Soit
C ⊂ X × Y un ensemble mesurable dont chaque section non vide est un point :
Cx = {y}. Alors C est le graphe d’úne fonction borélienne définie sur une partie
borélienne de X.

Preuve de la Proposition V-35. L’application F : C → X définie par
F (x, y) = x est borélienne (toujours) et injective (par l’hypothèse sur les sections).
Par le Théorème V-25, son image est un borélien B. À tout x ∈ B correspond un
unique y tel que (x, y) ∈ C, appelons-le g(x). Alors l’application (x, g(x)), de B dans
C, est l’inverse de F : par le Théorème V-25 à nouveau, (x, g(x)) est borélienne, donc
sa seconde composante g(x) est une fonction borélienne de x. □

En conséquence de ces énoncés on peut adopter la terminologie suivante sans
ambiguïté :

Définition V-36 (cylindre et graphe boréliens). Soient X et Y deux espaces
polonais. Alors

(i) On dit que C ⊂ X × Y est un cylindre borélien si C est de la forme A × Y
avec A borélien de X, ou de façon équivalente avec A× Y borélien de X × Y .

(ii) On dit que C ⊂ X×Y est un graphe borélien si c’est le graphe d’une fonction
borélienne, ou de façon équivalente si c’est un ensemble borélien dont les coupes sont
soit l’ensemble vide, soit un singleton.

Exercice V-37 (Multigraphes). Sur X un espace polonais, soient f et g deux
fonctions boréliennes à valeurs réelles, définies sur des domaines boréliens. Soit C
l’union du graphe de f et du graphe de g. Recouvrir C par des cylindres Bℓ × Fℓ
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(ℓ ∈ N) où Bℓ est borélien et Fℓ fermé, tels que C ∩ (Bℓ × Fℓ) est un graphe. On
pourra commencer par noter que les ensembles {f = g} et {f 6= g} sont des boréliens
disjoints. Généraliser à un nombre fini arbitraire de fonctions et indiquer pourquoi
cela ne s’applique pas à un ensemble dénombrable de fonctions.

V-5.2. Théorèmes classiques de sélection. Dans l’exemple de la Proposi-
tion V-35 chaque section est réduite à un point. Pour élargir en direction d’ensembles
“un peu moins petits”, deux choix naturels se présentent : des sections compactes
(petitesse au sens topologique) ; ou des sections (au plus) dénombrables (petitesse
au sens du cardinal). Les deux théorèmes suivants traitent ces situations, respecti-
vement ; le premier est particulièrement utile.

Théorème V-38 (sélection mesurable de Novikov dans des sections compactes).
Soient X et Y des espaces polonais, et C ⊂ X×Y un ensemble mesurable. On suppose
que pour tout x ∈ X, la section Cx est compacte. Alors la projection B de C sur X
est borélienne, et il existe une application mesurable f : B → Y telle que f(x) ∈ Cx

pour tout x ∈ B.
Théorème V-39 (sélection mesurable de Lusin–Novikov dans des sections dé-

nombrables). Soient X et Y des espaces polonais, et C ⊂ X × Y un ensemble
mesurable. On suppose que pour tout x ∈ X, la section Cx est dénombrable. Alors
il existe des boréliens Bn ⊂ X et des fonctions mesurables fn : Bn → Y telles que
C =

⋃
k∈N{(x, fn(x)); x ∈ Bn}. En d’autres termes, C est une union dénombrable

de graphes boréliens. En particulier, la projection B de C sur X est mesurable et il
existe une fonction borélienne f : B → Y telle que f(x) ∈ Cx pour tout x ∈ B.

Un puissant et difficile théorème généralise à la fois les deux derniers énoncés : il
a d’abord été découvert par les efforts partiellement indépendants de V.Ya. Arsenin,
E.A. Čegolkov (russes), Mitrofan Cioban (moldave) et Kinjirô Kunugui (japonais),
avant la version aboutie de Jean Saint-Raymond (français) :

Théorème V-40 (sélection mesurable dans des sections Kσ). Soient X et Y
des espaces polonais, et C ⊂ X × Y un ensemble borélien dont les coupes Cx sont
des unions dénombrables de compacts, pour tout x ∈ X. Alors C est une union
dénombrable d’ensembles boréliens à coupes compactes ; en particulier, la projection
B de C sur X est un borélien et il existe une fonction borélienne f : B → Y telle
que f(x) ∈ Cx pour tout x ∈ B.

D’autre part, dans la catégorie des théorèmes de sélection à grandes sections, voici
un énoncé simple à sections “moins grandes” que l’énoncé maximal de la Proposition
V-34 :

Théorème V-41 (Théorème de sélection de Kunugui–Novikov à coupes ou-
vertes). Soient X et Y des espaces polonais, et C ⊂ X × Y un ensemble mesurable.
On suppose que pour tout x ∈ X, la section Cx est ouverte, et on se donne (Vn)n∈N
une base dénombrable d’ouverts dans Y . Alors il existe des boréliens Bn ⊂ X tels
que C =

⋃
k∈NBn × Vn. En particulier, la projection B de C sur X est un borélien,

et on peut trouver une fonction mesurable f : B → Y , ne prenant qu’une quantité
dénombrable de valeurs, telle que f(x) ∈ Cx pour tout x ∈ X.

Dans la suite de cette section je vais fournir des preuves des Théorèmes V-39,
V-38 et V-41 ; je laisserai de côté la difficile preuve du Théorème V-40, renvoyant à
[Kechris] pour cela et bien davantage.
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V-5.3. Sélection dans les coupes dénombrables. Le Théorème V-39 est un
résultat célèbre dans la théorie analytique des ensembles, avec de nombreux déve-
loppements [Kechris, Melleray]. On commence par se ramener au cas d’un ensemble
fermé, grâce au Lemme qui suit.

Lemme V-42. Si C ⊂ X × Y est un borélien à coupes dénombrables, il existe
un espace polonais Z, un ensemble fermé C̃ ⊂ X × Z, à coupes dénombrables,
une application continue ψ : Z → Y telle que (Id, ψ)(C̃) = C ; en particulier,
les projections de C et de C̃ sur X coïncident. En outre, il existe θ : Z → X

continue telle que C̃ = {(θ(z), z); z ∈ Z} ; en particulier, pour tout fermé F de Z,
projZ(C̃ ∩ (X × F )) = F et plus généralement la projection sur Z de tout fermé de
C̃ est un fermé.

Remarque V-43. On dit que C̃ est l’antigraphe de la fonction continue θ.

Preuve du Lemme V-42. Par le Théorème V-4 (b), il existe un espace polo-
nais Z (sous-espace fermé de N ) et une bijection continue φ : Z → C. On définit
C̃ ⊂ X × Z par

C̃ =
{(
x, φ−1(x, y)

)
; (x, y) ∈ C

}
.

Il n’est pas évident a priori que C̃ est borélien (l’application φ−1 est mesurable
mais cela ne suffit pas) ; mais nous allons voir dans un instant qu’il est fermé. Pour
commencer, il est évident que (x, z) 7−→ φ(z) est continue de C̃ dans C ; c’est
une surjection par construction ; et c’est aussi une injection car φ(z) = φ(z′) avec
z = φ−1(x, y) et z′ = φ−1(x′, y′) implique x = x′ et y = y′. Donc φ est une bijection
continue de C̃ dans C. Et si (x, z) ∈ C̃, soit y l’unique élément de Z tel que z =
φ−1(x, y) ; alors φ(z) = (x, y), donc y est la seconde composante de φ(z), que l’on
note ψ(z), de sorte que (x, ψ(z)) = (x, y) ; et réciproquement, si (x, y) ∈ C alors
(x, ψ(φ−1(x, y)) = (x, y), de sorte que l’application continue (Id, ψ) est une surjection
de C̃ dans C.

De façon tautologique, la projection de C̃ sur X coïncide avec celle de C sur X.
Pour tout x ∈ X, la coupe C̃x est {φ−1(x, y); (x, y) ∈ C}, en bijection donc avec

Cx, et donc dénombrable.
Appelons maintenant θ la première composante de φ, de sorte que φ(z) =

(θ(z), ψ(z)). Par construction on a bien C̃ = {(θ(z), z), z ∈ Z}. La fin de l’énoncé
en découle facilement. □

Passons maintenant au cœur de la démonstration du Théorème de Lusin–Novikov.
La preuve ci-dessous, évitant le recours à des outils sophistiqués, est due à Forte
Shinko, jeune spécialiste japonais de théorie descriptive des ensembles.

Preuve du Théorème V-39. 1. Le Lemme V-42 fournit un espace polonais
Z et un fermé C̃ ⊂ X ×Z à coupes dénombrables. Supposons démontré l’énoncé du
Théorème V-39 pour C̃. Alors la projection B de C̃ est borélienne ; mais c’est aussi la
projection de C. En outre il existe des fonction boréliennes fn : Dn → Z, Dn borélien
de X, telles que C̃ est l’union des graphes des fn ; alors, avec la fonction ψ fournie
par le Lemme V-42, C est l’union des graphes des fonctions ψ ◦ fn, chacune étant
borélienne comme composition d’une foction borélienne et d’une fonction continue.
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Il suffit donc de prouver le Théorème quand l’ensemble C dans X × Y vérifie
les hypothèses que l’on a conférées à C̃ dans X × Z, c’est à dire quand C est
l’antigraphe d’une fonction continue, avec les bonnes conséquences que cela entraîne,
en particulier que C est fermé et se projette sur Y tout entier.

2. Soit A un fermé de X et soit F = {F1, . . . , Fm} une famille finie de fermés
deux à deux disjoints de Y . Disons que (A,F) vérifie la propriété (P) si il n’existe
aucune famille finie {B1, . . . , Bm} de boréliens de A, dont l’union recouvre A tout
entier, telle que chaque C ∩ (Bj × Fj) (1 ≤ j ≤ m) est une union dénombrable
de graphes de fonctions boréliennes (donc des graphes de fonctions f r

j : Dr
j → Fj

(r ∈ N), où chaque Dr
j est un borélien de Bj).

Quelques remarques sur cette propriété. Le choix Bi = A, Bj = ∅ pour j 6= i,
montre que pour tout i dans {1, . . . ,m}, C∩(A×Fi) n’est pas union dénombrable de
graphes. Mais la liberté laissée au choix du recouvrement borélien rend la condition
a priori bien plus forte que cette condition énoncée sur les Fi séparément. On note
au passage que si (P) est vraie, tous les ensembles C ∩ (A × Fi) doivent bien sûr
être non vides.

Le but est de montrer que C est union dénombrable de graphes boréliens, c’est à
dire que (X, {Y }) ne vérifie pas (P). Supposant par l’absurde que (X, {Y }) vérifie
(P), on va aboutir à une contradiction. Pour cela on va construire par induction
une suite de fermés (Ak)k∈N de Z, et une suite (Fk)k∈N de familles finies de fermés
disjoints dans Y , vérifient, pour tout k ∈ N,

Ak+1 ⊂ Ak et diam (Ak) ≤ 1/k;

Fk est constituée de 2k parties fermées Fs indexées par {0, 1}k

et pour tout s = (s1, . . . , sk), on a Fs1...sk+1
⊂ Fs1...sk ,

et diam (Fs1...sk) ≤ 2−k;

(Ak,Fk) vérifie (P).

Ces propriétés s’étendent à k = 0 si l’on pose A0 = X, F∅ = Y (quitte à remplacer
la distance de Y par une distance équivalente bornée par 1).

Supposons construits Ak et Fk pour k ∈ N0, on va construire Ak+1 et Fk+1.
3. On commence par raffiner chaque ensemble Fs (s ∈ {0, 1}k) à tour de rôle, le

remplaçant par deux fermés disjoints Fs0 et Fs1 inclus dans Fs et de petit diamètre
(les ensembles Fs′ pour s′ ≤ s ayant déjà été remplacés par Fs′0 et Fs′1) tout en
préservant la propriété (P). Cela se fera (quitte à renuméroter) grâce à la propriété
d’héritage que voici :

(H)I Si (A, {F1, F2, . . . , Fm}) vérifie (P) et si ε > 0, alors il existe deux fermés
disjoints F10, F11 ⊂ F1, de diamètre au plus ε, tels que (A, {F10, F11, F2, . . . , Fm})
vérifie (P).

Pour prouver (H)I, on commence par définir ∆(F1) = {(x, x), x ∈ F1} (diagonale
du carré ensembliste F1 × F1) et on recouvre (F1 × F1) \∆(F1) par des produits de
boules fermées de diamètre au plus ε :

(F1 × F1) \∆(F1) =
⋃
n∈N

F n
10 × F n

11,

où chaque fermé F n
1i est donc inclus dans F1 et de diamètre au plus ε ; par construc-

tion F n
10 et F n

11 sont disjoints pour tout n.
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Si la conclusion de (H)I est en défaut, alors pour tout n ∈ N on peut trouver
des boréliens de A, notés Bn

10, B
n
11, B

n
2 , . . . , B

n
m, recouvrant A tout entier, tels que

C∩(Bn
10×F n

10), C∩(Bn
11×F n

11), C∩(Bn
j ×F n

j ), pour toutes valeurs de j ∈ {2, . . . ,m}
et n ∈ N, sont tous des unions de graphes de fonctions boréliennes fn,r

10 : Dn,r
10 → F n

10,
fn,r
11 : D11 → F n,r

11 , fn,r
j : Dn,r

j → F n
j , et Dn,r

s ⊂ Bn
s (j ∈ {2, . . . ,m}, n ∈ N, r ∈ N).

On pose Bj =
⋃

n∈NB
n
j ; ainsi, pour tout j ≥ 2, C ∩ (Bj × Fj) est l’union des

C ∩ (Bn
j × Fj) et c’est donc l’union de tous les graphes des fn,r

j , dont les domaines
sont tous inclus dans Bj.

On pose ensuite B1 = A \ (B2 ∩ . . . ∪Bm). Comme tous les Bn
j sont disjoints de

B1, les boréliens {Bn
10, B

n
11} recouvrent B1 ; quitte à remplacer Bn

10 par Bn
10 ∩ B1 et

Bn
11 par Bn

11 ∩ (B1 \ Bn
10) (et à restreindre les domaines Dn,r

10 , D
n,r
11 en conséquence),

on peut supposer que pour tout n, B1 est l’union disjointe de Bn
10 et Bn

11.
Considérons alors

Γ =
[
C ∩ (B1 × F1)

]
\
[(⋃

n∈N

⋃
r∈N

{(x, fn,r
10 (x)), x ∈ Dn,r

10 }
)

⋃(⋃
n∈N

⋃
r∈N

{(x, fn,r
11 (x)), x ∈ Dn,r

11 }
)]
.

Soient (x, y0) et (x, y1) deux éléments de Γ partageant la première coordonnée. Si
y0 6= y1, soit n ∈ N tel que (y0, y1) ∈ F n

10 × F n
11. Comme x ∈ B1, on a soit x ∈ Bn

10

soit x ∈ Bn
11 ; par exemple x ∈ Bn

10. Mais alors (x, y0) ∈ C ∩ [Bn
10 × F n

10], donc il est
de la forme (x, fn,r

10 (x)) pour un certain r ∈ N ; ce qui est exclu par définition de Γ.
On conclut que y0 = y1 ; autrement dit, Γ est un graphe.

Mais Γ est par ailleurs borélien, comme différence d’un borélien et d’une union
dénombrable de boréliens ; par le Théorème V-35 c’est le graphe d’une fonction
borélienne γ : D1 → F1 où D1 est un borélien de B1.

Ainsi C ∩ [B1 × F1] est à son tour une union dénombrable de graphes boréliens,
en contradiction avec l’hypothèse de (H)I.

On peut donc appliquer la propriété (H)I à 2k reprises, pour passer de la famille
Fk à la famille Fk+1.

4. On va maintenant affiner Ak en Ak+1, tout en préservant la propriété (P).
Cela se fera par une seconde propriété d’héritage :

(H)II Si (A,F) vérifie (P) et si δ > 0, alors il existe un fermé A′ ⊂ A, de
diamètre au plus δ, tels que (A′,F) vérifie (P).

Pour prouver (H)II, on écrit A =
⋃

n∈NA
n, où chaque An est une boule finie

de diamètre au plus δ. Écrivons aussi F = {F1, . . . , Fm}. Si la conclusion de (H)II
est fausse, alors aucun des (An,F) ne vérifie (P) ; donc pour tout n ∈ N on peut
trouver des boréliens Bn

1 , . . . , B
n
m recouvrant An et tels que C ∩ (Bn

j ×Fj) est union
dénombrable de graphes boréliens. On pose alors Bj =

⋃
n∈NB

n
j , ainsi chaque C ∩

(Bj ×Fj) est l’union des C ∩ (Bn
j ×Fj), et donc une union de graphes boréliens. En

outre ⋃
1≤j≤m

Bj =
⋃
n∈N

⋃
1≤j≤m

Bn
j =

⋃
n∈N

An = A.

Donc (A,F) viole (P), en contradiction avec l’hypothèse de (H)II.
5. Une fois la famille (Ak,Fk) construite, pour tout c ∈ {0, 1}N la famille C ∩

(Ak × Fn1...nk
) est faite de fermés emboîtés, non vides (car (Ak,Fk) vérifie (P), Cf.
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la remarque faite en 2), et de diamètre tendant vers 0. Par théorème des fermés
emboîtés, l’intersection est un singleton, de la forme {(x, χ(c))}, où {x} est la limite
décroissante des Ak ; et bien sûr la fonction χ est injective car si c et c′ diffèrent en
position k, alors χ(c) et χ(c′) appartiennent aux fermés disjoints Fc1...ck et Fc′1...c

′
k

respectivement.
En conclusion la section Cx contient une réplique de l’ensemble C de Cantor,

elle n’est donc pas dénombrable, ce qui contredit l’hypothèse et achève la preuve du
Théorème V-39. □

Remarques V-44. (i) La preuve montre en fait que si C ⊂ X × Y est bo-
rélien, alors soit c’est une union dénombrable de graphes boréliens, soit l’une
de ses fibres contient une réplique de l’ensemble C de Cantor. Bien sûr, cet
énoncé contient comme cas très particulier la Remarque V-32 (quand X est
réduit à un point !). Rétrospectivement, on comprend un petit peu mieux
l’esprit de la preuve : s’il n’existait qu’une fibre x×Y contenant une réplique
de C, c’est cette fibre qui ferait obstruction au recouvrement par une famille
dénombrable de graphes boréliens, et toujours elle si l’on restreint les valeurs
pour isoler les points de C.

(ii) En conséquence du Théorème V-39, si C ⊂ X × Y est un borélien à coupes
dénombrables, alors l’ensemble des points d’unicité de C,

U(C) = {x ∈ X; ∃!y ∈ Y ; (x, y) ∈ C}
est borélien (exercice). Un résultat plus général, dû à Lusin, affirme que si C
est borélien alors U est coanalytique : voir Théorème V-56 plus loin. Comme
on le verra alors, on peut en déduire une autre preuve, moins élémentaire
mais plus compacte, de ce qu’un borélien à coupes dénombrables admet une
uniformisation borélienne.

V-5.4. Théorème de séparation de Novikov et conséquences. Le Théo-
rème de séparation de Novikov, qui renforce le Théorème de séparation V-14 de
Lusin, servira à prouver les Théorèmes V-41 et V-38.

Théorème V-45 (Théorème de séparation de Novikov). Dans un espace po-
lonais, soient (Ak)k∈N une famille dénombrable de parties analytiques telles que⋂
Ak = ∅. Alors il existe une famille de boréliens (Bk)k∈N tels que Ak ⊂ Bk pour

tout k, et
⋂
Bk = ∅.

Preuve du Théorème V-45. L’argument qui suit est dû à Gabriel Moko-
bodzki (spécialiste français de théorie des ensembles, fils de juif polonais déporté,
élève de Gustave Choquet).

Pour chaque Ak on introduit un système de Souslin (P
(k)
n )n∈N<N , en imposant

que pour tout n ∈ N<N, P (k)
n1...nr = ∪ℓ∈NP

(k)
n1...nrℓ

, que pour tout k ∈ N et n ∈ N ,
diam (P

(k)
n1...nr) → 0 quand r → ∞, et que pour toute suite (nℓ)ℓ∈N l’intersection⋂

ℓ∈N P
(k)
n1...nℓ soit constituée d’un point unique. On pose P

(k)
∅ =

⋃
ℓ∈N P

(k)
ℓ = Ak.

Comme les Ak sont globalement disjoints, il en va de même de leurs sous-parties
P

(k)
sk , pour tout choix d’indices sk ∈ N<N.

Disons qu’une suite de multi-indices (s1, s2, . . .), avec si ∈ N<N pour tout i, vérifie
la propriété (N) si les parties P (1)

s1 , P
(2)
s2 , etc. peuvent s’inclure dans des boréliens

Bs1
(1), B

(2)
s2 , . . . globalement disjoints.
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Le but est donc de montrer que (∅, ∅, ∅, . . .) vérifie la propriété (N).
Supposons par l’absurde que tel n’est pas le cas. Si les suites (ℓ, ∅, ∅, . . .), pour

ℓ ∈ N, vérifiaient toutes la propriété (N), on aurait des boréliens B(1)
ℓ , B

(2)
∅ , B

(3)
∅ , . . .

contenant P (1)
ℓ , P

(2)
∅ , P

(3)
∅ , . . .. globalement disjoints ; alors en posantB(1) =

⋃
B

(1)
ℓ on

aurait des boréliens B(1)
∅ , B

(2)
∅ , . . . assurant la propriété (N) pour (∅, ∅, . . .), contrai-

rement à notre hypothèse. Il existe donc ℓ ∈ N tel que (ℓ, ∅, ∅, . . .) ne vérifie pas
(N).

Et on peut continuer ainsi par induction : chaque fois que (s1, s2, . . .) ne vérifie pas
(N), pour tout r on peut trouver ℓ tel que (s1, s2, . . . , sr−1, s

′
r, sr+1, . . .) ne vérifie pas

(N), avec sr = (a1, . . . , ak) et s′r = (a1, . . . , ak, ℓ). On peut ainsi accroître à volonté
la longueur de n’importe quel indice dans la suite mettant (N) en défaut.

On définit ainsi par récurrence une suite (n1, n2, . . .) délélements de N (chaque
nk est une suite d’entiers) tels que pour tout ℓ ∈ N, (n1|ℓ, n2|ℓ, . . . , nℓ|ℓ, ∅, ∅, . . .) met
(N) en défaut, où nk|ℓ est la sous-suite finie constituée des ℓ premiers éléments de
nk.

Pour chaque k ∈ N, l’intersection des P (i)
nk|ℓ est réduite à un élément, appelons le

pk ; il appartient à Ak. Ces parties étant globalement disjointes, il existe au moins
deux indices i et j dans N tels que pi 6= pj. Soient Bi et Bj des boules disjointes conte-
nant pi et pj respectivement : pour ℓ assez grand, on a P (i)

ni|ℓ ⊂ Bi, P (j)
nj |ℓ ⊂ Bj ; sans

perte de généralité ℓ > max(i, j). Mais alors (X, . . . , X,Bi, X . . . , X,Bj, X,X, . . .)

est une suite de boréliens globalement disjoints et séoarant P (1)
n1|ℓ, . . . , P

(ℓ)
nℓ|ℓ, Aℓ+1, Aℓ+2, . . .,

donc (n1|ℓ, n2|ℓ, . . . , nℓ|ℓ, ∅, ∅, . . .) vérifie la propriété (N), en contradiction avec
notre construction. □

En supposant l’un des éléments borélien et disjoint de tous les autres, en passant
aux complémentaires, on obtient le

Corollaire V-46 (Recouvrement de borélien par des coanalytiques). Soit A
une partie borélienne d’un espace polonais (X, d), et soit (Zk)k∈N une famille dénom-
brable d’ensembles coanalytiques dont l’union est égale à A ; alors on peut trouver
une suite de boréliens (Bk)k∈N tels que Bk ⊂ Zk pour tout k, dont l’union est toujours
égale à A.

Ces résultats de séparation et recouvrement sont des ingrédients efficaces pour
prouver les Théorèmes V-38 et V-41, comme on va le voir maintenant.

Preuve du Théorème V-41. On note projX la projection sur X. On fixe
(Vn)n∈N une base dénombrable de voisinages de Y , de sorte que tout Cx est une
union de certains des Vn. Pour tout n,

Xn = {x ∈ X; Vn ⊂ Cx} = X \ projX
[
C ∩ (X × (Y \ Vn))

]
est un ensemble coanalytique (car complémentaire de la projection d’un borélien).
Donc

⋃
Zn = Xn × Vn est également coanalytique. Comme l’union des Zn recouvre

C, par le Corollaire V-46 on peut trouver des boréliens (Qn)n∈N de X×Y recouvrant
C, avec Qn ⊂ Zn. Si An est la projection de Qn sur X, An est analytique et An ⊂ Xn.
Par le Théorème V-14 de séparation de Lusin (appliqué aux ensembles analytiques
disjoints An et X \Xn) on peut trouver un borélien Bn tel que An ⊂ Bn ⊂ Xn. Alors
projXQn ⊂ Bn et projYQn ⊂ Vn, d’où Qn ⊂ Bn × Vn ; a fortiori C ⊂

⋃
Bn × Vn.
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Mais par définition de Xn, Bn × Vn ⊂ Xn × Vn ⊂ C, donc l’inclusion réciproque⋃
Bn × Vn ⊂ C est vraie aussi. □

Passons maintenant au Théorème V-38. C’est en fait un résultat intermédiaire
plus précis qui sera démontré, mais il faudra au préalable quelques notions topolo-
giques plus avancées sur les compacts.

Si X est un espace polonais, on note K(X) l’espace des compacts de X ; on le
munit de la distance de Hausdorff :

dH(K,L) = max
(
sup
x∈K

d(x, L), sup
y∈L

d(y,K)
)
,

où d(a,B) = infb∈B d(a, b). Cette distance fait de K(X) un espace métrique polonais
(c’est un excellent exercice, pas si simple). Si D = {xn, n ∈ N} est une partie
dense, alors l’ensemble des sous-ensembles finis de D est une famille dénombrable
dense dans K(X). La topologie induite sur K(X) par la distance de Hausdorff est
la topologie de Vietoris (du nom du topologiste autrichien Leopold Vietoris,
célèbre aussi pour sa longévité puisqu’il publiait encore à 100 ans passés...) : c’est la
topologie qui est engendrée par les ouverts de la forme {K; K ⊂ U}, où U est un
ouvert donné, et ceux de la forme {K; K ∩ U 6= ∅}. Cette topologie est l’analogue
pour les compacts de la convergence uniforme pour les fonctions.

Si X est un espace polonais, on peut le compactifier, c’est à dire l’injecter
continûment dans un espace compact dont il sera une partie dense. Il existe de nom-
breuses façons de compactifier, la plus simple étant la compactification d’Alexan-
drov (on ajoute un point à l’infini, dont les voisinages sont les complémentaires des
compacts) ; mais ce qui est important dans ce contexte est de préserver la nature
polonaise, et ce ne sera pas le cas du compactifié d’Alexandrov (sauf si X est loca-
lement compact : exercice). Voici une compactification qui s’applique à tout espace
polonais et préserve la nature polonaise de la topologie : on commence par rempla-
cer la distance d par une distance topologiquement équivalente à valeurs dans [0, 1],
comme d/(1 + d) ; on choisit une suite (xn)n∈N dense dans X ; alors l’application
F : x 7−→ (d(x, xn))n∈N est une injection continue de X dans l’espace métrique
compact [0, 1]N ; on vérifie que F−1 est continue de F (X) (muni de la topologie in-
duite par [0, 1]N) dans X, de sorte que X est homéomorphe à F (X). L’adhérence
Y = F (X) (adhérence de F (X) dans [0, 1]N) est un espace métrique compact dans
lequel F (X) est dense. En outre, Y \ F (X) est l’ensemble des y ∈ Y tels que
limr→0 diam (F−1(Br(y))) > 0 (sinon la famille des F−1(z), z → y, convergerait vers
un certain x et on aurait y = F (x)) ; donc F (X) coïncide avec l’ensemble des y
vérifiant limr→0 diam (F−1(Br(y))) = 0 (cette dernière quantité est en fait l’oscilla-
tion de la fonction F de X dans Y ) ; c’est l’intersection des ouverts Ok définis par
limr→0 diam (F−1(Br(y))) < 1/k. Tout cela nous dit que modulo l’homéomorphisme
F , X est une intersection dénombrable d’ouverts de Y , c’est à dire ce qu’on appelle
un Gδ ; et en particulier c’est un borélien de Y .

Maintenant, modulo l’isomorphisme F , K(X) est l’ensemble des compacts de Y
qui sont inclus dans X, c’est à dire dans l’intersection des Ok. Mais pour chaque k,
l’ensemble des compacts de Y inclus dansOk est un ouvert deK(Y ) ; leur intersection
K(X) est donc un Gδ de K(Y ), et en particulier un borélien.

Avec ces notions, le Théorème V-38 est une conséquence immédiate des deux
énoncés qui suivent :
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Théorème V-47 (structure des boréliens à coupes compactes). Si X et Y sont
des espaces polonais et C est un borélien de X × Y à coupes Cx compactes, alors
x 7−→ Cx est une application borélienne à valeurs dans K(Y ).

Proposition V-48 (représentant continu d’un compact). Si Y est un espace
polonais, il existe une application continue I : K(Y ) → Y .

Preuve du Théorème V-47. 1. Soit Y une compactification polonaise de Y ;
ainsi Y est homéomorphe à un Gδ dense de Y ; par abus de langage on fera comme si
Y ⊂ Y . Fixons une base dénombrable (Vn)n∈N de voisinages de Y . Les coupes de C
sont compactes dans Y , et donc dans Y aussi. Le complémentaire de C dans X × Y
est à coupes ouvertes, et donc (par le Théorème V-41) de la forme ∪Bn × Vn où les
Bn sont boréliens dans X. Soit Kn = Y \ Vn, et soit b la fonction de X dans P(N)
(l’ensemble des parties de N) définie par

b(x) =
{
n ∈ N; x ∈ Bn

}
.

Ainsi
Y \ Cx =

⋃
n∈b(x)

Vn,

soit
Cx =

⋂
n∈b(x)

Kn,

ou encore Cx = Φ ◦ b(x), où
Φ(B) =

⋂
n∈B

Kn.

On munit P(N) ' {0, 1}N de la topologie produit, c’est à dire la convergence suc-
cessive des termes de la suite. La fonction b est mesurable comme supremum d’une
infinité dénombrable de fonctions mesurables (la k-ème est la fonction qui sur Bk

vaut (0, . . . , 0, 1, 0, . . . , 0) avec un 1 en k-ème position, et hors de Bk vaut 0). Véri-
fions maintenant que Φ est mesurable.

2. Soit U un ouvert de Y , par abus de notation on écrira K(U) pour l’ensemble
des compacts de Y qui sont inclus dans U ; on sait que c’est un ouvert de K(Y ).
Si Φ(B) ∈ K(U), c’est à dire si Φ(B) ⊂ U , alors il existe N tel que pour n ≥ N ,⋂

n∈B,n≤N Kn ⊂ U (ici on utilise que l’intersection des compacts Kn avec le compact
Y \U est vide, donc il existe une sous-famille finie de ces compacts dont l’intersection
est vide). Ainsi pour tout B′ tel que B ∩ {1, . . . , N} = B′ ∩ {1, . . . , N} on aura
Φ(B′) ⊂

⋂
n≤N

⋂
n∈B,n≤N Kn ⊂ U . Cela montre que l’image réciproque par Φ de

l’ouvert K(U) est un ouvert. (Cela suggère la continuité de Φ, mais il y a une
deuxième sorte d’ouverts à considérer pour couvrir la topologie de K(Y ).)

3. Soit à nouveau U un ouvert de Y ; on considére KU l’ensemble des compacts
K tels que K ∩ U 6= ∅. C’est le complémentaire dans K(Y ) de l’ensemble K(L)
des compacts inclus dans le compact L = Y \ U . Soit Qℓ = {y; d(y, L) < 1/ℓ}, où
d désigne la distance dans Y ; alors avec des notations évidentes K(L) est l’inter-
section des K(Qℓ), qui sont des ouverts. Donc K(L) est le complémentaire d’une
intersection dénombrable d’ouverts de la forme K(Qℓ). Ainsi les ouverts de la forme
K(U) suffisent à engendrer tous les boréliens de K(Y ), et l’étape 2 montre que
l’image réciproque que Φ de tous ces ouverts est un borélien. Finalement Φ est bien
borélienne.
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4. À ce stade on a montré que x 7−→ Cx est borélienne de X dans K(Y ). Mais
par hypothèse elle est à valeurs dans le borélien K(Y ) ; elle est donc borélienne de
X dans K(Y ). □

Passons maintenant à la Proposition V-48. Pour se faire une intuition de la
construction, on peut commencer par considérer le cas particulier représentatif Y =
R : il suffit alors de choisir I(K) = infK (exercice).

Preuve de la Proposition V-48. On écrit Y comme une union dénombrable
de boules ouvertes B1, B2, . . . de diamètre au plus 1/2, non nécessairement dis-
jointes. Puis on subdivise chaque boule Bk en ouverts Bk1, Bk2, . . . de diamètre au
plus 1/4 et de sorte que Bki ⊂ Bk ; on continue de façon inductive, définissant un
schéma de Souslin régulier d’ouverts, recouvrant Y tout entier à chaque étape k,
avec des ouverts de diamètre au plus 2−k, que l’on note Bi1...ik , k ∈ N, et tels que
Bi1...ik+1

⊂ Bi1...ik .
Si K est un compact de Y on définit une suite d’indices i1, i2, . . . en choisissant

pour i1 le plus petit indice i tel que Bi ∩K 6= ∅, puis pour i2 le plus petit indice i
tel que Bi1i ∩K 6= ∅, etc. La construction assure que la suite est bien définie, et

K
⋂ ⋂

ℓ∈N

Bi1...iℓ = K
⋂ ⋂

ℓ∈N

Bi1...iℓ

est réduit à un point par le théorème des fermés emboîtés. C’est celui-ci que l’on
note I(K). On vérifie (exercice) que l’application I est alors continue de K(Y ) dans
Y . □

Remarque V-49. On peut également donner du Théorème V-40 une version
précisée sous la forme suivante, due à Jean Saint Raymond : Tout borélien de X×Y ,
à coupes Kσ, s’écrit comme une union dénombrable de boréliens à coupes compactes
– et donc comme une union dénombrable de graphes boréliens à valeurs dans K(Y ).

V-5.5. Deuxième théorème de séparation. Les théorèmes de séparation de
Lusin et Novikov admettent des généralisations importantes et délicates, regroupées
sous le nom de “deuxième théorème de séparation”. En voici la version la plus simple,
historiquement la première :

Théorème V-50 (Deuxième théorème de séparation de Lusin). Soient A1 et A2

des ensembles analytiques d’un espace polonais X. Alors il existe deux ensembles
coanalytiques C1 et C2 disjoints tels que A1 \ A2 ⊂ C1 et A2 \ A1 ⊂ C2.

En posant A′
1 = (X \ C2) ∪ (A1 ∩ A2) et A′

2 = (X \ C1) ∪ (A1 ∩ A2), on obtient
une autre forme qui ressemble beaucoup au premier théorème de séparation :

Corollaire V-51 (Deuxième théorème de séparation de Lusin reformulé).
Soient A1 et A2 des ensembles analytiques d’un espace polonais X. Alors il existe
deux ensembles analytiques A′

1 et A′
2 tels que A1 ⊂ A′

1, A2 ⊂ A′
2, A′

1∩A′
2 = A1∩A2.

C’est donc le même énoncé que le premier théorème (Théorème V-14)... sauf que
l’intersection A1 ∩ A2 n’est plus forcément supposée vide.

À première vue, pour obtenir le Théorème V-51, il suffit d’appliquer le premier
théorème de séparation dans l’espace X \ (A1 ∩ A2), obtenant ainsi deux boréliens
disjoints B1 ⊃ A1 et B2 ⊃ A2, puis d’ajouter l’analytique A1 ∩ A2 à l’un et l’autre.
Mais ce raisonnement ne fonctionne pas du tout, car X \ (A1∩A2) est coanalytique,
ce n’est donc a priori ni un espace polonais, ni même un espace souslinien.
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Il s’agit donc en pratique de travailler dans un espace métrique séparable non
souslinien ; cela rend la preuve du Théorème V-50 beaucoup plus sophistiquée que
celle du Théorème V-14. En plus des schémas de Souslin, elle fait intervenir la
structure des arbres qui les représentent, et des indices à valeur dans les ordinaux,
pour représenter la complexité des parties prenantes [Dellacherie,Kechris]. Ensuite,
comme dans le passage du Théorème de séparation de Lusin à celui de Novikov, on
peut aussi considérer une infinité dénombrable d’ensembles. Après Lusin et Novi-
kov, des auteurs comme Gabriel Mokobodzki, Claude Ambrose Rogers, Alexander
(Alekos) Kechris, Benjamin Miller et d’autres ont contribué à réécrire, améliorer et
augmenter ces résultats. Voici deux énoncés représentatifs :

Théorème V-52 (réduction coanalytique, version à deux ensembles). Dans un
espace X polonais ou souslinien,
(a) Soient A1 et A2 deux ensembles analytiques. Alors il existe deux ensembles
analytiques A′

1 et A′
2 tels que A1 ⊂ A′

1, A2 ⊂ A′
2, A′

1 ∩A′
2 = A1 ∩A2, A′

1 ∪A′
2 = X ;

(b) Soient C1 et C2 deux parties coanalytiques, alors il existe deux ensembles coana-
lytiques C ′

1 et C ′
2 tels que C ′

1 ⊂ C1, C ′
2 ⊂ C2, C ′

1 ∩ C ′
2 = ∅, C ′

1 ∪ C ′
2 = C1 ∪ C2.

Théorème V-53 (réduction coanalytique, version générale). Dans un espace X
polonais ou souslinien,
(a) Si (An)n∈N est une suite de parties analytiques, alors il existe une suite (A′

n)n∈N
de parties analytiques telles que A′

n ⊃ An pour tout n, A′
n ∪ A′

m = X pour tous
entiers n,m distincts, et

⋂
n∈NA

′
n =

⋂
n∈NAn ;

(b) Si (Cn)n∈N est une suite de parties coanalytiques, alors il existe une suite (C ′
n)n∈N

de parties coanalytiques telles que C ′
n ⊂ Cn pour tout n, les C ′

n sont deux à deux
disjoints, et

⋃
n∈NC

′
n =

⋃
n∈NCn.

Remarques V-54. (i) Dans l’un et l’autre théorème, les énoncés (b) et (a)
sont identiques, modulo passage au complémentaire.

(ii) L’énoncé du Théorème V-52 est précisé par rapport au Théorème V-50, seule-
ment par la condition supplémentaire A′

1 ∪ A′
2 = X.

(iii) La preuve du Théorème V-52 n’est guère plus simple que celle du Théo-
rème V-53 ; dans un cas comme dans l’autre, on a besoin d’outils conceptuels
nettement plus sophistiqués que pour les Théorèmes de séparation V-14 ou
V-45.

(iv) L’énoncé du Théorème V-53(b) permet de comprendre la terminologie de
réduction coanalytique : partant d’une famille (Cn)n∈N dont l’union est
un certain ensemble C, on a trouvé une nouvelle famille (C ′

n)n∈N d’ensembles
inclus dans les Cn, et qui forme une partition de C. Ce processus de réduction
des ensembles Cn en C ′

n est donc un analogue sophistiqué, dans la classe des
coanalytiques, du procédé familier de réduction des boréliens où à partir de
(Bn)n∈N on pose B′

n = Bn \ (B1 ∪ . . .∪Bn−1). On dit que la classe des coana-
lytiques, comme la classe des boréliens, possède la propriété de réduction ;
ce n’est pas le cas en revanche de la classe des analytiques. [Kechris]

V-5.6. Ensemble d’unicité. Le Théorème V-52 était originellement motivé
par l’étude d’un ensemble que l’on a déjà rencontré en passant.

Définition V-55 (ensemble d’unicité). Soit C ⊂ X × Y un borélien dans le
produit de deux espaces X et Y . On appelle ensemble d’unicité de C

U(C) = {x ∈ X; ∃!y ∈ Y, (x, y) ∈ C}.
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Autrement dit, U(C) est l’ensemble des x dont la section Cx est un singleton. Il
est naturel de s’intéresser à cet ensemble sur lequel C devient un graphe. Le principe
de réduction coanalytique permet de démontrer un résultat de structure simple et
frappant :

Théorème V-56 (coanalyticité de l’ensemble d’unicité). Soient X et Y deux
espaces polonais, et C ⊂ X × Y un borélien ; alors U(C) est coanalytique.

Remarque V-57. Il est faux en général que U(C) soit borélien. En effet, soient
A un ensemble analytique non borélien dans X (j’ai admis son existence dans le
Théorème V-10(d)) et f une application continue N → X telle que f(N ) = A.
Soit z0 un point extérieur à N et isolé ; de sorte que Z = N ∪ {z0} est encore
un espace polonais (pour construire cela rigoureusement, par exemple on considère
N × {0} ∪ {(0, 1)}. Soit maintenant C ⊂ X × Z défini par {(f(z), z); z ∈ Z} ∪
{(x, z0); x ∈ X} (on a simplement ajouté un point sur chaque section de l’antigraphe
de f). L’ensemble d’unicité U(C) est alors le complémentaire de l’image de f , c’est
donc bien un coanalytique, mais pas un borélien !

Preuve du Théorème V-56. L’argument qui suit est dû au jeune logicien
canadien Ronnie Chen (élève d’Alekos Kechris).

1. Par le Lemme V-42, il suffit de traiter le cas où C = {(f(z), z); z ∈ Z} pour un
certain espace polonais Z. Par le Théorème V-31 il existe une bijection mesurable
φ de C dans Z, de sorte que C = {(f(φ(c)), φ(c)), c ∈ C}, et l’enemble d’unicité de
C est le même que celui de C̃ = {(f ◦ φ(c), c)} ⊂ X × C, l’antigraphe de la fonction
f̃ = f ◦ φ. Tout cela pour dire qu’il suffit de prouver la coanalyticité de l’ensemble
d’unicité de l’antigraphe d’une fonction borélienne définie sur C. Dans la suite on
notera C cet antigraphe et f cette fonction ; l’ensemble d’unicité U(C), c’est alors
l’ensemble des valeurs qui sont atteintes une fois et une seule par f .

2. Soit X2 l’ensemble des x ∈ X qui sont images par f d’au moins deux points
distincts. On note ∆(C) = {(z, z); z ∈ C} la diagonale de C, et similairement ∆(X)
la diagonale de X ; on pose aussi F (z, z′) = (f(z), f(z′)). Alors X2 = f(F−1(∆(X))∩
(C\∆(C)) (vérifier !) ; c’est donc l’image d’un borélien par une application borélienne
(vérifier !), et donc un ensemble analytique par le Théorème V-10(b). Par passage
au complémentaire, l’ensemble des valeurs qui sont atteintes au plus une fois est un
coanalytique.

3. Pour z ∈ C on note z = (zn)n∈N. Pour tout n ∈ N fixé, les ensembles A0
n =

f({zn = 0}) et A1
n = f({zn = 1}) sont analytiques ; par le Théorème de réduction

coanalytique V-50 il existe des ensembles analytiques A′
n
0 et A′

n
1, contenant A0

n et
A1

n respectivement, tels que A′
n
0 ∪ A′

n
1 = X et A′

n
0 ∩ A′

n
1 = A0

n ∩ A1
n.

4. Soit
Q =

{
x ∈ X; ∀z ∈ C,

[
(∀n ∈ N x ∈ A′

n
zn) ⇒ f(z) = x

]}
.

Alors le complémentaire de Q est la projection sur X de l’ensemble R(x, z) défini
par[
∀n ∈ N, (zn = 0) ou (x ∈ A′

n
0
)
]

et
[
∀n ∈ N, (zn = 1) ou (x ∈ A′

n
1
)
]

et [f(z) 6= x].

Ainsi l’ensemble R est l’intersection de trois ensembles, chacun des deux premiers
est une intersection dénombrable d’unions d’un borélien avec un analytique, et le
troisième est un borélien ; finalement R est analytique et sa projection aussi (on
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a enchaîné les propriétés énumérées au Théorème V-10). L’ensemble Q est donc
coanalytique aussi.

5. Maintenant pour tout x ∈ X et pour tout n ∈ N, il existe in ∈ {0, 1} tel que
x ∈ A′

n
in ; en posant z = (i1, i2, . . .) on voit que la relation définissant Q est vérifiée

pour (x, z), de sorte que x = f(z). En particulier, Q est inclus dans f(Z).
6. Pour tout x ∈ X2 on a |f−1(x)| ≤ 1 et pour tout x ∈ Q o a |f−1(x)| ≥ 1 ; donc

l’ensemble d’unicité de C est exactement X2∩Q, intersection de deux coanalytiques,
et donc lui-même coanalytique. □

Remarque V-58. Pour manier les analytiques et coanalytiques, les experts en
théorie descriptive des ensembles sont souvent guidés par une intuition appuyée sur
les prédicats logiques apparaissant dans les formules. Par exemple, pour l’ensemble
X2 on dira en considérant la formule X2 = {x; ∀z, z′ ∈ X, [f(z) = f(z′) = x =⇒
z = z′]} que le prédicat [f(z) = f(z′) = x =⇒ z = z′] est borélien en (x, z, z′)
et que le quantificateur universel ∀ appliqué aux variables (z, z′) fait du résultat un
ensemble coanalytique.

En guise d’application du Théorème V-56, voici une nouvelle preuve de l’unifor-
misation pour un borélien C à coupes dénombrables. Pour rappel, on a démontré au
Théorème V-39 qu’un tel borélien est union dénombrable de graphes ; par la nou-
velle approche on va seulement retrouver le corollaire utile de sélection mesurable,
à savoir : Soit C ⊂ X × Y un borélien à sections dénombrables, alors la projection
B de C sur X est mesurable et il existe une fonction borélienne f : B → Y telle que
f(x) ∈ Cx pour tout x ∈ B.

Preuve alternative de la sélection mesurable de Lusin–Novikov. Par
le Lemme V-42 il suffit de traiter le cas où C est fermé, donc chaque Cx aussi. Dans
ce cas, pour tout x ∈ B l’ensemble Cx est fermé, non vide, dénombrable, il admet
donc un point isolé w, c’est à dire que Br(w) ∩ Cx = {w} ; soit alors (Vn)n∈N une
base de voisinages fermés de Y : pour tout x il existera donc n tel que Vn∩Cx est un
singleton, de sorte que B est égal à l’union des U(C∩(X×Vn)), qui est coanalytique
par le Théorème V-56. Mais B est aussi analytique comme projection d’un borélien ;
il est donc borélien par le Théorème V-17 de Souslin. En outre, pour tout n, la
restriction de C ∩ (X×Vn) à son ensemble d’unicité est un graphe (par définition de
l’ensemble d’unicité) borélien (car intersection de C avec les deux boréliens X×Vn et
U(C)×Y ). Ainsi l’on trouve une suite de graphes boréliens fn : Dn → Y , où chaque
Dn est borélien, avec

⋃
Dn = B et le graphe de fn est inclus dans C. Pour conclure

il suffit de transformer (Dn)n∈N en partition de B par le procédé habituel. □





CHAPITRE VI

La mesure de Lebesgue

Jusqu’à présent, on a étudié la théorie de Lebesgue dans le cadre abstrait déve-
loppé par Radon et ses successeurs. Dans ce chapitre et le suivant, l’accent portera
sur des mesures particulières dans l’espace euclidien Rn, muni de sa topologie ha-
bituelle : ce sont la mesure de Lebesgue (volume n-dimensionnel en dimension n) ;
et ses généralisations appelées mesures de Hausdorff d’autre part, qui concernent
toutes les dimensions (y compris fractionnaires) entre 0 et n.

La mesure de Lebesgue est celle que l’on utilise couramment, “par défaut”, dans
Rn, le plus souvent sans le préciser. Elle correspond à la notion intuitive de volume
n-dimensionnel et elle est invariante aussi bien pour la structure euclidienne de Rn,
que pour sa structure de groupe ; l’intégrale qui lui est associée prolonge le concept
d’intégrale de Riemann. Il est vital, en analyse réelle, d’être bien au fait de ses
principales propriétés.

Après avoir expliqué comment on peut construire la mesure de Lebesgue (c’est
à dire prouver son existence, ce qui est délicat, et son unicité, ce qui est très facile),
je passerai en revue quelques-unes des propriétés d’invariance qui la rendent si na-
turelle. Puis je montrerai que l’intégrale associée à la mesure de Lebesgue généralise
le concept d’intégrale de Riemann, et enchaînerai avec ses propriétés les plus remar-
quables, en particulier la formule de changement de variables. Enfin je reviendrai sur
la mesurabilité des parties de Rn au sens de Lebesgue, en lien avec l’axiomatique.

VI-1. Construction de la mesure de Lebesgue, encore
On a déjà rencontré la mesure de Lebesgue dans R (section II-8). On va la passer

à nouveau en revue (un peu de répétition ne fera pas de mal) et la généraliser à Rn.

Définition VI-1 (mesure de Lebesgue). Soit n ≥ 1 un entier, et B(Rn) la tribu
borélienne sur Rn.

(i) Il existe sur B(Rn) une unique mesure λn telle que pour tout pavé P =
[a1, b1]× . . .× [an, bn] ⊂ Rn (−∞ < ai ≤ bi < +∞) on ait

(56) λn[P ] =
n∏

j=1

(bj − aj).

Cette mesure est appelée mesure de Lebesgue n-dimensionnelle et notée λn (ou
Ln, ou Ln, ou λ, ou L). On note également

λn[A] = |A|n = |A|.

(ii) Si f : Rn → R est une fonction borélienne λn-sommable, on note∫
Rn

f(x) dλn(x) =

∫
Rn

f(x) dnx =

∫
Rn

f(x) dx



206 CHAPITRE VI (1er janvier 2026)

et on dit que f est Lebesgue-intégrable. Si n = 1, on note également∫
[a,b]

f dλ1 =

∫ b

a

f(x) dx =

∫ b

a

f.

(iii) La complétion de λn est la mesure de Lebesgue complétée, ou tout simple-
ment mesure de Lebesgue ; elle est définie sur la tribu des ensembles Lebesgue-
mesurables, constituée de toutes les parties E de Rn telles qu’il existe des ensembles
boréliens A et B tels que

A ⊂ E ⊂ B; λn[B \ A] = 0.

Une fonction f : Rn → R, mesurable pour cette tribu, est dite Lebesgue-mesurable.

La définition de la tribu complétée en (iii) suit celle du Théorème II-93 ; on
reparlera dans la section VI-4.3 de la structure des ensembles Lebesgue-mesurables.

Pour l’instant, commençons par vérifier que la Définition VI-1 est licite, au sens
où elle définit bien la mesure de Lebesgue sans équivoque. La famille des pavés
est stable par intersection finie (l’intersection de deux pavés est un pavé), et Rn

est l’union des pavés [−k, k]n pour k ∈ N ; l’unicité de la mesure de Lebesgue est
donc une conséquence directe du Théorème II-82(i). En revanche, établir l’existence
de la mesure de Lebesgue nécessite un peu plus de travail. On peut le faire de
plusieurs façons légèrement différentes ; le résultat d’unicité assure que toutes sont
équivalentes. Toutes les méthodes présentées ci-après reposent in fine sur le théorème
de prolongement de Carathéodory.

VI-1.1. De la dimension 1 à la dimension n. Supposons construite la me-
sure de Lebesgue λ = λ1 sur B(R). On peut alors définir la mesure produit λ⊗n

sur B(R)⊗n, qui d’après la Proposition IV-39 n’est autre que B(Rn). Par définition
de la mesure produit, cette mesure vérifie (56), c’est donc la mesure de Lebesgue.
En conclusion, il est équivalent de construire directement la mesure de Lebesgue en
dimension n, ou de l’obtenir par tensorisation successive de la mesure de Lebesgue
en dimension 1.

Une autre conséquence est l’identité
(57) λm ⊗ λn = λm+n,

vue comme une égalité entre mesures définies sur B(Rm+n).
Dans la suite, on se bornera donc à construire λ1, et cela impliquera la construc-

tion de λn. Je passerai en revue trois arguments différents. En exercice, on pourra
adapter les preuves pour obtenir des constructions directes de λn.

VI-1.2. Via le théorème de prolongement de Carathéodory. C’est la
démonstration qui a déjà été présentée dans la section II-8 ; elle repose sur la σ-
additivité de la fonction longueur sur la famille des intervalles.

VI-1.3. Via le théorème d’existence de produit infini. Cette construc-
tion va utiliser un “changement de variables” mesurable. Il est bien connu que tout
nombre réel dans [0, 1] admet une écriture binaire,

x =
∑
k≥1

xk 2
−k, xk ∈ {0, 1}.
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Cette écriture est unique si l’on exclut les nombres dyadiques, i.e. de la forme x =
p/2k, p, k ∈ N (on peut conserver 0 et 1). L’application “écriture binaire” nous
permet de changer la variable x ∈ [0, 1] en une variable x ∈ {0, 1}N. Par exemple,
5/8 s’écrira (1, 0, 1, 0, 0, 0....).

Munissons l’ensemble {0, 1} de la mesure de Bernoulli, i.e. la mesure β définie
par

β[{0}] = 1

2
, β[{1}] = 1

2
.

Comme c’est une mesure de probabilité, on peut considérer son produit tensoriel
infini, β⊗N, bien défini par le Théorème II-87. On peut alors transporter la mesure
β⊗N sur l’intervalle [0, 1], via l’application

φ : (xk)k∈N 7−→
∑
k≥1

xk2
−k.

L’ensemble des nombres de [0, 1] dont le développement en base 2 commence par une
suite donnée (x1, . . . , xk) est un intervalle de [0, 1] appelé “intervalle dyadique” (de
la forme [p2−k, (p + 1)2−k]) ; l’image réciproque par φ d’un intervalle dyadique est
donc l’union d’un cylindre et d’un ou deux points (correspondant aux “écritures im-
propres” : les nombres dyadiques admettent deux écritures différentes). Un point de
{0, 1}N est mesurable car intersection de cylindres, on conclut que l’image réciproque
d’un intervalle dyadique est mesurable. On vérifie aisément que tout intervalle ouvert
peut s’écrire comme réunion d’intervalles dyadiques ; la tribu engendrée par les in-
tervalles dyadiques est donc la tribu borélienne tout entière, et φ est bien mesurable
pour la tribu borélienne.

La mesure image
λ := φ#β

⊗N

est donc bien définie sur la tribu borélienne. Et c’est la mesure de Lebesgue sur
[0, 1] ! Pour s’en convaincre, il suffit de remarquer que tous les intervalles dyadiques
de la forme [p2−k, (p+ 1)2−k], ont mesure 2−k : en effet, l’image réciproque d’un tel
intervalle est l’union disjointe d’un cylindre de mesure 2−k et d’un ou deux points,
de mesure nulle. Par exemple, l’image réciproque de [1/4, 3/8] est constituée du
cylindre (0, 1, 0)× {0, 1}N (écritures propres des nombres dans [1/4, 3/8[ et écriture
impropre de 3/8), du point (0, 0, 1, 1, 1, 1, 1, . . .) (écriture impropre de 1/4) et du
point (0, 1, 1, 0, 0, 0, 0, 0, . . .) (écriture propre de 3/8).

Comme la mesure ainsi définie coïncide avec la mesure de Lebesgue sur les in-
tervalles dyadiques, et que les intervalles dyadiques engendrent tous les boréliens de
[0, 1], on conclut que λ est bien la mesure de Lebesgue.

VI-1.4. Via le théorème de représentation de Riesz. Une troisième façon
de construire la mesure de Lebesgue consiste à faire appel au Théorème de Riesz III-
63, ou même à sa version simplifiée III-67. Dans ce cas, la forme linéaire positive à
considérer est tout simplement l’intégrale de Riemann des fonctions continues à
support compact dans R. Le Théorème de Riesz assure qu’il existe une mesure λ sur
la tribu borélienne, telle que

∫
f dλ =

∫
f(x) dx, pour toute fonction f continue à

support compact.
Pour vérifier que λ est la mesure de Lebesgue, il suffit de montrer que λ attribue

à un intervalle I = [a, b] la mesure b−a. Pour cela on se donne ε > 0 et on construit
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deux fonctions continues f et g, à support compact et à valeurs dans [0, 1], telles
que

f ≤ 1I ≤ g,

∫
f dλ =

∫
Riem

f = (b− a)− ε,

∫
g dλ =

∫
Riem

g = (b− a) + ε,

où
∫
Riem

désigne bien sûr l’intégrale au sens de Riemann. On en déduit que λ[I]
est compris entre b − a − ε et b − a + ε ; en faisant tendre ε vers 0 on conclut que
λ[I] = b− a. La mesure λ est donc bien la mesure de Lebesgue.

graphe de f

graphe de g

a b b+ εa− ε

Figure 1. Fonctions continues approchant 1[a,b]

Remarque VI-2. L’espace euclidien Rn est non seulement localement compact,
mais muni d’une structure différentiable : on a une notion de fonctions différentiables,
et même indéfiniment différentiables, sur Rn. Les mesures boréliennes finies sur les
compacts font partie de la grande famille des distributions, qui sont des formes
linéaires sur l’espace vectoriel des fonctions indéfiniment différentiables et à support
compact, satisfaisant certaines propriétés de continuité. Un résultat remarquable
stipule que les distributions positives sont exactement les mesures de Borel finies sur
les compacts.

VI-2. Propriétés fondamentales de la mesure de Lebesgue
Cette section est consacrée à diverses propriétés importantes et intuitives de la

mesure de Lebesgue, que l’on est en droit d’exiger de toute notion raisonnable de
volume dans l’espace euclidien :

a) le volume est diffus et “bien réparti” dans l’espace ;
b) le volume est invariant par translation, et plus généralement par isométrie

euclidienne ;
c) multiplier les distances par un facteur λ > 0 entraîne une multiplication du

volume par un facteur λn ;
d) contracter les distances diminue le volume ;
e) le volume d’un parallélépipède coïncide avec son volume algébrique, défini

grâce au déterminant des vecteurs qui l’engendrent.
Pour traduire la propriété a), j’utiliserai la notion de “mesure doublante” (Défi-

nition II-71) ; la propriété souhaitée découlera alors de c). En chemin, on reviendra
sur la notion de Lebesgue-négligeabilité.

VI-2.1. Invariance par translation. Si P est un pavé de Rn et τ : x→ x+h
est une translation de vecteur h ∈ Rn fixé, il est évident que le produit des longueurs
de P est identique au produit des longueurs de τ(P ). Cela, et la construction de la
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mesure de Lebesgue, implique immédiatement que λn est invariante par translation :
τ#λn = λn pour toute translation τ .

Il est intéressant de noter que cette propriété caractérise la mesure de Lebesgue.
Du fait de la structure d’espace affine de Rn, l’invariance par translation est une autre
justification du caractère naturel (voire incontournable) de la mesure de Lebesgue.

Théorème VI-3 (caractérisation via l’invariance par translation). La mesure de
Lebesgue est, à multiplication scalaire près, l’unique mesure de Borel sur Rn, finie
sur les compacts, qui soit invariante par translation.

Démonstration. Soit µ une mesure vérifiant le cahier des charges ci-dessus.
Puisque µ est finie sur les compacts, µ[C] < +∞. Soit Ck := [0, 1/k[n ; on peut
recouvrir C par une union disjointe de kn cubes semi-ouverts de rayon 1/k, obtenus
par translation de Ck. Il s’ensuit que µ[C] = knµ[Ck]. Les mesures µ et µ[C]λn
attribuent donc la même mesure à tous les cubes semi-ouverts de côté 1/k, et cette
famille suffit à engendrer la tribu borélienne (Exemple II-16 (ii)). Il s’ensuit que
µ = µ[C]λn. □

Remarques VI-4. (i) On pourrait dans le Théorème VI-3 remplacer l’hy-
pothèse “finie sur les compacts” par “finie sur l’intervalle [0, 1]” (exercice).

(ii) Le résultat n’est plus vrai sans une hypothèse de finitude. Par exemple, la
mesure de comptage est une mesure de Borel invariante par translation. On
verra d’autres exemples dans le Chapitre VII.

VI-2.2. Passage au quotient. Une conséquence presque immédiate de l’inva-
riance par translation est la possibilité de passer au quotient par un réseau régulier,
par exemple Zn. On définit le tore de dimension n, Tn, comme le quotient de Rn

par Zn, autrement dit par la relation déquivalence : xRy ⇔ x − y ∈ Zn. Le tore
Tn est aussi le produit de n copies du tore T1. C’est un espace métrique compact,
en bijection naturelle avec C = [0, 1[n, puisque toute classe d’équivalence dans Tn

admet un unique représentant dans C. En particulier, Rn = C + Zn : tout élément
de Rn est obtenu en ajoutant des coordonnées entières à un élément de C.

On utilise cette bijection f pour “identifier” Tn et C en tant qu’espaces mesurés :
si µ est une mesure sur C, on en déduit une mesure f#µ sur Tn, et réciproquement.

Proposition VI-5 (quotient de la mesure de Lebesgue). La mesure de Lebesgue
λn induit par restriction à C = [0, 1[n une mesure de probabilité sur Tn, invariante
par addition modulo Zn.

Démonstration. On peut écrire Rn comme l’union disjointe des Ck, où Ck =
C + k, et k ∈ Zn. Pour tout A ⊂ C, pour tout x ∈ Rn, on peut décomposer A + x
en l’union dénombrable disjointe des Bk = Ck ∩ (A+ x) (seul un nombre fini de ces
ensembles sont non vides). Les ensembles Bk − x sont effectivement disjoints : si y
était un élément commun à deux tels ensembles, par différence on trouverait deux
indices distincts k et ℓ tels que ℓ − k soit différence de deux éléments de A, ce qui
est impossible puisque A ⊂ C.

On en déduit que A est l’union disjointe des Bk − x. Comme A+ x(modZn) est
l’union disjointe des Bk, et que Bk − x a même mesure que Bk, on conclut que A et
A+ x(mod Zn) ont même mesure. □
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2
3 4
1

Figure 2. Invariance de la mesure de Lebesgue par translation dans
le tore. La somme des aires des quatre morceaux du chat translaté
coïncide avec l’aire totale du chat initial.

VI-2.3. Action des homothéties. Soit f : x→ αx, avec α > 0. L’application
f est bijective, et l’image d’un pavé P est un pavé f(P ) dont toutes les longueurs
ont été multipliées par α ; il s’ensuit que le volume de f(P ) est égal à αn fois le
volume de P . Bien sûr f établit une bijection entre pavés, donc la mesure image de
λn par f est exactement la mesure de Lebesgue, à un facteur α−n près. (Pourquoi
α−n et pas αn ?) On en déduit que pour tout borélien A de Rn,

λn[αA] = αnλn[A].

Plus généralement, pour tout α ∈ R et tout A ∈ B(Rn),
λn[αA] = |α|nλn[A].

VI-2.4. Régularité et diffusivité.

Proposition VI-6. La mesure de Lebesgue sur Rn est régulière, sans atomes et
2n-doublante.

Démonstration. La mesure de Lebesgue est (bien sûr) finie sur les compacts
de Rn ; sa régularité découle donc du Corollaire II-64. Par construction, elle attribue
bien sûr aux singletons la mesure nulle. Par ailleurs, si on se donne x ∈ Rn et r > 0,
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la boule B2r(x) est obtenue à partir de Br(x) par homothétie de rapport 2, donc
d’après le paragraphe précédent,

λn[B[x, 2r]] ≤ 2nλn[B[x, r]].

□
VI-2.5. Diffusivité de la restriction. Voici maintenant une question plus

subtile : que dire de la restriction de la mesure de Lebesgue à un ensemble mesurable ?
Est-elle bien répartie, diffuse, doublante ? Cela dépend de la forme de l’ensemble.

Proposition VI-7 (restriction à un domaine convexe). Soit C un domaine
convexe de Rn ; alors la restriction λnbC de la mesure de Lebesgue à C est 2n-
doublante.

Démonstration. Soit x ∈ C. La boule Br(x) dans l’espace métrique C n’est
autre que Br(x)∩C. Comme C est convexe, il est étoilé par rapport à x ; en utilisant
l’invariance par translation on peut supposer que x = 0, de sorte que C ⊂ λC pour
tout λ ≥ 1. Alors B2r(0) ∩ C ⊂ B2r(0) ∩ (2C) = 2(Br(0) ∩ C), et λn[B2r(0) ∩ C] ≤
2nλn[Br(0) ∩ C]. □

Corollaire VI-8. La restriction de la mesure de Lebesgue λn à une boule, à
un cube, à un cône sont 2n-doublantes.

Voici maintenant en exercice deux situations typiques.
Exercice VI-9. (i) Soit D un domaine constitué d’une boule et d’une union

finie de cônes pleins (une sorte de “hérisson” mathématique). Montrer que la
mesure de Lebesgue restreinte à D est doublante.

(ii) Soit D le domaine du plan (x, y) délimité par les conditions 0 ≤ x ≤ 1,
0 ≤ y ≤ x2. Montrer que la restriction de λ2 à D n’est pas doublante. On
pourra considérer x = (0, 0).

L’intuition qui se dégage de ces exemples est la suivante : pour qu’un ensemble,
disons ouvert, induise une mesure de Lebesgue doublante, il ne doit pas présenter
de pointes trop effilées. Voici le concept naturel :

Définition VI-10 (domaine lipschitzien). On dit que O, ouvert de Rn, est un
domaine lipschitzien si son bord peut s’écrire comme une union finie de graphes
d’applications lipschitziennes Rn−1 → R.

La reformulation suivante sera admise ici, Cf par exemple [Grisvard].
Proposition VI-11 (domaine lipschitzien, reformulation). Un ouvert O de Rn

est lipschitzien si et seulement si il satisfait une condition de cône intérieur uni-
forme : près de tout point x de ∂O on peut faire bouger un cône fini, d’ouverture
uniformément minorée, à l’intérieur de O jusqu’à toucher x.

FIGURES

Le théorème qui suit, également admis, est une première réponse à la question
qui a motivé cette incursion dans les mesures restreintes.

Théorème VI-12 (doublement sur les domaines lipschitziens). Soit O un ouvert
lipschitzien de Rn ; alors la restriction de la mesure λn à O est doublante.
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VI-2.6. Lebesgue-négligeabilité. De la définition de la mesure extérieure on
déduit qu’un ensemble est Lebesgue-négligeable si et seulement si on peut l’inclure
dans une famille dénombrable de pavés (ou de cubes) dont la somme des volumes est
arbitrairement petite.

En particulier, en dimension 1, un ensemble est Lebesgue-négligeable si et seule-
ment si on peut l’inclure dans une famille de segments dont la somme des longueurs
est arbitrairement petite : c’est la définition qu’utilisait déjà Lebesgue.

Exemple VI-13. Tout ensemble dénombrable est de mesure nulle (ce que l’on
peut déduire d’ailleurs directement de la σ-additivité et de l’absence d’atomes). Tout
sous-espace affine strict de Rn est de mesure de Lebesgue (n-dimensionnelle) nulle.
De même pour un ensemble inclus dans une union dénombrable d’hyperplans.

Remarque VI-14. Même en dimension 1, il existe des ensembles non dénom-
brables de mesure nulle ; par exemple l’ensemble triadique de Cantor.

Voici maintenant deux critères un peu plus sophistiqués de négligeabilité :

Proposition VI-15 (les graphes mesurables sont négligeables). Soient D ⊂ Rn,
et f : D → Rm une application mesurable, avec m ≥ 1. Alors le graphe de f est de
mesure de Lebesgue nulle dans Rn+m.

Proposition VI-16 (l’image lipschitzienne d’un ensemble négligeable est négli-
geable). Soient A un borélien de mesure de Lebesgue nulle dans Rn et f : Ω → Rm

une application lipschitzienne, où Ω est un ouvert de Rn contenant A. Alors f(A)
est Lebesgue-négligeable, au sens où il est inclus dans un borélien de mesure nulle.

Preuve de la Proposition VI-15. Pour l’instant je vais me limiter au cas
où f est continue ; le cas général viendra plus tard, comme conséquence du théorème
de Fubini.

Comme Rn est union dénombrable de cubes, on peut supposer que D est inclus
dans le cube unité, auquel cas f est uniformément continue. On recouvre ce cube
par Nn cubes Ck de côté δ = 1/N ; on en déduit un recouvrement du graphe de
f par Nn pavés de la forme Ck × Qk, où Qk est un cube de Rm, de côté 2ω(δ), ω
étant le module de continuité de f . La mesure totale de ces pavés est exactement
2m ω(δ)m, qui tend vers 0 quand δ → 0. □

Preuve de la Proposition VI-16. Soit ε > 0. Recouvrons A par une famille
dénombrable de cubes Cj dont la somme des volumes est au plus ε. Chaque cube Cj,
disons de côté cj, est inclus dans une boule Bj de rayon

√
ncj ; f(Cj) est alors inclus

dans une boule de rayon k
√
ncj, où k est la constante de Lipschitz de f , et donc

dans un cube C ′
j de côté kncj. Le volume de C ′

j est au plus (kn)n fois le volume de
Cj, donc f(A) est inclus dans une union de cubes dont le volume est au plus (kn)nε.
Il s’ensuit que f(A) est Lebesgue-négligeable. (Noter que rien ne garantit que f(A)
soit un borélien.) □

La Proposition VI-16 admet un corollaire intéressant :

Corollaire VI-17 (Les applications lipschitziennes préservent la Lebesgue--
mesurabilité). Soit Ω un ouvert de Rn, et f : Ω → Rm une application lipschit-
zienne. Soit A ⊂ Ω un ensemble Lebesgue-mesurable de Rn ; alors f(A) est Lebesgue-
mesurable.
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Pour apprécier cet énoncé, on notera que l’image d’un ensemble Lebesgue-mesurable
par une application continue n’a aucune raison d’être Lebesgue-mesurable. On se
rappelle aussi que les images par les applications continues des ensembles boréliens
sont Lebesgue-mesurables (Théorème V-26).

Démonstration du Corollaire VI-17. Par régularité de la mesure de Le-
besgue, on peut écrire A = (∪Ki) ∪ N , où les Ki forment une famille dénombrable
de compacts, et N est Lebesgue-négligeable. Puisque f est continue, les ensembles
f(Ki) sont tous compacts, donc leur union forme un ensemble borélien. Alors

∪f(Ki) ⊂ f(A) ⊂ (∪f(Ki)) ∪ f(N);

la Proposition VI-16 implique que f(N) est Lebesgue-négligeable, et il s’ensuit que
f(A) est Lebesgue-mesurable. □

Terminons cette sous-section avec quelques remarques sur la négligeabilité. Les
ensembles Lebesgue-négligeables peuvent être beaucoup plus complexes que ceux
que nous avons vus jusqu’à présent ; un ensemble négligeable peut même etre gras
au sens de la topologie, c’est-à-dire intersection dénombrable d’ouverts denses.

Exemple VI-18. Soit I = [0, 1] muni de la mesure de Lebesgue, on énumère
tous les rationnels de [0, 1] en une suite (qn)n∈N. Pour tout ε > 0 on pose

Oε =
⋃
n∈N

Bε/n2(qn).

(Oε est constitué de l’union de tous les intervalles ouverts de longueur 2ε/n2 centrés
en qn.) Bien sûr Oε est ouvert dans I et dense. En outre

λ[Oε] ≤ 2ε
∑
n∈N

1

n2
=

(
π2

3

)
ε.

Soit alors
A =

⋂
k∈N

O1/k;

par σ-additivité on a bien λ[A] = 0, bien que A soit gras. Le complémentaire de A
dans [0, 1] est alors de mesure pleine bien que maigre, c’est-à-dire union dénom-
brable de fermés d’intérieur vide.

Remarque VI-19. Cette construction se généralise facilement en remplaçant I
par R tout entier, ou Rn, ou n’importe quel ouvert de Rn.

Remarque VI-20. C’est un débat classique de savoir si la “bonne” notion de
négligeabilité est celle que fournit la théorie de la mesure, ou celle que fournit la
topologie, et la plupart des mathématiciens se rangent dans un camp ou dans l’autre
en fonction de leur sensibilité, de leur expérience personnelle, ou des problèmes qu’ils
ont l’habitude de considérer. Le Théorème KAM en mécanique classique est un
exemple non académique pour lequel ce débat devient important.

Et par ailleurs, comme je l’ai déjà mentionné, les ensembles Lebesgue-négligeables
sont bien plus nombreux que les ensembles boréliens. En fait on peut se permettre
de modifier arbitrairement ces ensembles sans remettre en cause leur Lebesgue-
mesurabilité.



214 CHAPITRE VI (1er janvier 2026)

Exercice VI-21. (i) Soit C l’ensemble triadique de Cantor. Montrer que
toute partie de C est Lebesgue-mesurable : cela fournit une famille de parties
mesurables, de cardinalité 2c.

(ii) Soit C ′ l’ensemble des
∑

k∈N αk3
−k, où αk ∈ {0, 1}. (C’est semblable à l’en-

semble triadique de Cantor, mais les chiffres sont dans {0, 1} plutôt que
dans {0, 2}.) Montrer que C ′ est de mesure nulle, et montrer que pourtant
C ′ + C ′ = [0, 1]. (Attention, c’est une addition ensembliste, pas une union !)

(iii) Pour tout k, soit Dk un sous ensemble à deux éléments de {0, ..., 9}. On
appelle X l’ensemble de tous les nombres de [0, 1] dont la décimale de rang k
appartient à Dk. Quelle est la mesure de X ? Le cardinal de X ? (On rappelle
le théorème de Cantor–Bernstein : S’il existe une injection de E dans F et
une autre de F dans E alors E et F sont en bijection.) On note maintenant
D = (Dk)k∈N ; à chaque D est associé un X = XD. Construire une famille
non dénombrable de suites D telle que les XD sont deux à deux disjoints,
chacun de mesure nulle, et leur union est égale à [0, 1].

VI-2.7. Action des contractions. Il est intuitif que la contraction des lon-
gueurs induit une contraction du volume. Le théorème suivant précise cette idée.

Théorème VI-22 (Réduire les distances réduit les volumes). Soit Ω un ouvert
de Rn, et f : Ω → Rn une application 1-lipschitzienne :

∀x, y ∈ Rn, |f(x)− f(y)| ≤ |x− y|.

Alors f(Ω) est Lebesgue-mesurable, et

(58) λn[f(Ω)] ≤ λn[Ω].

Remarques VI-23. (i) On peut énoncer ainsi ce théorème en termes boré-
liens : f(Ω) est l’union d’un ensemble borélien B et d’un ensemble néligeable,
tel que λn[B] ≤ λn[Ω].

(ii) Ce qui rend ce théorème non trivial est le fait que la mesure de Lebesgue
est définie en termes de mesures de pavés, et que l’on ne peut pas dire grand
chose de l’image d’un pavé par une application 1-lipschitzienne. Ce sont les
boules qui se comportent bien vis-à-vis de l’hypothèse de lipschitzianité.

(iii) Le Théorème VI-22 admet une généralisation immédiate au cas où f est
seulement supposée L-lipschitzienne, avec L éventuellement différent de 1 : il
suffit de remplacer (58) par

λn[f(Ω)] ≤ Ln λn[Ω].

Le concept de mesure de Hausdorff permettra de démontrer un énoncé encore
bien plus général : voir la Proposition VII-6.

Preuve du Théorème VI-22. Notons pour commencer que f(Ω) est Lebesgue-
mesurable en vertu de la Proposition VI-17 ; de toute façon l’argument qui suit
redémontrera ce résultat.

Si A est une boule fermée B[x, r], alors f(A) est inclus dans la boule B[f(x), r],
qui a même volume que B[x, r] ; donc

λn[f(A)] ≤ λn[A].
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La mesure de Lebesgue étant 2n-doublante, on peut appliquer le Corollaire II-103
pour épuiser Ω par une union dénombrable de boules fermées disjointes Bj :

Ω =

(⋃
j∈N

Bj

)
∪N,

où N est un borélien de mesure nulle.
Par la Proposition VI-16, f(N) est négligeable. Donc

λn[f(Ω)] = λn

[
f

(⋃
j∈N

Bj

)]
= λn

[⋃
j∈N

f(Bj)

]
≤
∑
j∈N

λn[f(Bj)] ≤
∑
j∈N

λn[Bj]

= λn

[⋃
j∈N

Bj

]
= λn[Ω],

où l’on a utilisé le fait que les boules Bj sont disjointes. □
Corollaire VI-24 (les isométries préservent le volume). Soit f : Rn → Rn une

isométrie ; alors pour tout ensemble mesurable A de Rn on a λn[f(A)] = λn[A].
Démonstration. Il suffit d’appliquer le Théorème VI-22 à f et à f−1. □
Remarque VI-25. Une isométrie de Rn est forcément une application affine ;

on peut donc aussi voir le corollaire précédent comme un cas particulier de l’action
des applications affines sur la mesure de Lebesgue, que nous allons étudier dans la
suite de ce chapitre.

Remarque VI-26. La classe des transformations (ou changements de variables)
qui préservent la mesure de Lebesgue est infiniment plus vaste que celle des isomé-
tries. Par exemple, sur le segment [0, 1], on peut permuter des sous-intervalles... La
figure VI-26 représente les graphes de quelques applications simples préservant la
mesure de Lebesgue sur [0, 1] (les deux premières sont des bijections, la troisième
non ; la première et la troisième sont continues, la deuxième non).

Figure 3. Quelques graphes de transformations préservant la mesure
de Lebesgue

En plusieurs dimensions, la classe des applications préservant la mesure de Le-
besgue est d’une très grande importance dans de nombreux domaines de la mathé-
matique. Par exemple, en mécanique des fluides, on utilise les bijections préservant la
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mesure de Lebesgue (restreinte à un ouvert de Rn) pour représenter la collection des
trajectoires d’un fluide incompressible ; l’ensemble de ces bijections est un espace
de dimension infinie (ce n’est pas un espace vectoriel, mais c’est un sous-ensemble
d’une sphère dans un espace vectoriel normé) qui a fait l’objet de nombreuses études.

VI-2.8. Action des transformations affines. Le théorème suivant fait le lien
entre deux notions naturelles de volume (l’une analytique, l’autre algébrique) pour
un parallélépipède :

Théorème VI-27 (mesure de Lebesgue et déterminant). Soient A ∈ Mn(R) et
b ∈ Rn ; on note T l’application affine définie par T (x) = Ax + b, C = [0, 1]n le
cube unité de Rn, et P = T (C) le parallélépipède formé des vecteurs colonnes de A.
Alors,
(59) λn[P ] = | detA|.

Remarque VI-28. Il s’agit ici de volume non orienté.
D’abord, pourquoi ce résultat est-il naturel ? Considérons une application linéaire

de la forme T (x1, . . . , xn) = (α1x1, . . . , αnxn), où les αi sont des nombres réels. Si P =∏
[ai, bi] est un pavé de Rn, le pavé T (P ) a pour côtés les nombres positifs |αi| |bi−ai|,

son volume est donc égal à (
∏

|αi|)
∏

|bi − ai|, ce qui est le volume initial de P
multiplié par le coefficient

∏
|αi| = | detT |. Il se peut que certaines longueurs soient

allongées, d’autres raccourcies, ce qui compte pour évaluer la variation de volume
c’est le produit des valeurs propres αi. Comme le volume est invariant par changement
de base orthonormée (Corollaire VI-24), le même résultat devrait être vrai pour
toute application linéaire symétrique (diagonalisable dans une base orthonormée).
L’examen de ce cas particulier suggère bien que le facteur multiplicatif du volume
est la valeur absolue du déterminant.

Preuve du Théorème VI-27. Commençons par le cas où A est non inver-
sible. D’une part, detA = 0 ; d’autre part, T (Rn) est inclus dans un hyperplan
affine, donc de mesure nulle. Les deux membres de (59) sont donc nuls.

Dans le cas où A est inversible (et donc T est bijective Rn → Rn), on va établir
l’énoncé plus général
(60) T#λn = | detA|−1λn.

Montrons que (59) et (60) sont équivalents. L’équation (60) s’écrit λn[T−1(B)] =
| detA|−1λn[B] pour tout borélien B ⊂ Rn ; comme T est bijective cela équivaut
à λn[B] = | detA|−1λn[T (B)], d’où (59) par le choix B = C. Réciproquement,
si (59) est vrai, alors la mesure µ = | detA|−1 (T−1)#λn satisfait à µ[C] = 1 ;
et µ est invariante par translation puisque µ[B + h] = | detA|−1 λn[T (B + h)] =
| detA|−1 λn[T (B) + Ah] = | detA|−1 λn[T (B)] pour tout borélien B ⊂ Rn et tout
vecteur h ∈ Rn. Grâce au Théorème VI-3, on conclut que µ = λn, ce qui revient
à (60).

Toujours grâce à l’invariance par translation, il suffit de se restreindre au cas où
b = 0, c’est-à-dire T (x) = Ax. Le résultat voulu, soit sous la forme (60), soit sous
la forme (59), peut se démontrer facilement dans un certain nombre de cas simples.
Par exemple,

(I) si A est une matrice de permutation, c’est évident puisque AC = C.
(II) si A se contente de multiplier une coordonnée :

Ax = (αx1, x2, . . . , xn),
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alors l’image de C est un pavé de côtés |α|, 1, . . . , 1 ; donc de volume |α| = | detA|.
(III) si A est de la forme

Ax = (x1 + x2, x2, . . . , xn),

alors AC = P × [0, 1]n−2, où P est le parallélogramme (2-dimensionnel) de sommets
(0, 0), (0, 1), (1, 1) et (1, 0). Or on peut découper ce parallélogramme en deux tri-
angles (plus un reste de mesure nulle) que l’on peut recoller en le carré [0, 1]2 ; ce
qui revient à découper AC en deux morceaux et à les recoller en le cube [0, 1]n (voir
la figure). Le volume de AC est donc égal à 1, ce qui est aussi le déterminant de A.

Figure 4. Le parallélogramme a même aire que le carré

On note ensuite que la formule (60) est invariante par composition : si elle est
vraie pour deux applications A1 et A2, elle est aussi vraie pour A = A1A2 puisque
| detA1A2| = | detA1| | detA2|. Or un argument d’algèbre linéaire montre que toute
matrice inversible est produit d’un nombre fini de matrices du type (I), (II) ou (III).
On conclut à la validité de (60) pour n’importe quel A inversible. □

VI-3. L’intégrale de Lebesgue généralise l’intégrale de Riemann
J’ai déjà mentionné sans preuve que l’intégrale de Lebesgue généralise l’inté-

grale de Riemann. Ce fait est majeur à plusieurs titres : non seulement il assure la
cohérence entre les deux plus importantes théories d’intégration ; mais en outre, l’in-
tégrale de Riemann est une notion simple, avec laquelle la lectrice est sans doute fa-
milière ; et tous les procédés habituels d’intégration numérique de fonctions (et donc
de calcul numérique d’aires ou de volumes de formes délimitées par des graphes)
se ramènent en pratique à des variantes de l’intégrale de Riemann : méthode des
rectangles, des trapèzes, etc. Même quand on utilise toute la force de la théorie
de Lebesgue, le plus souvent on réalise les calculs numériques ou pratiques par la
méthode de Riemann.

Je me limiterai ici à la dimension 1, même si les démonstrations se généralisent
sans autre problème que la lourdeur des notations. Et pour simplifier, je me limiterai
à des fonctions positives, le cas général étant conçu pour s’y ramener. Pour commen-
cer, rappelons précisément le concept de Riemann-intégrabilité, en ne considérant
que des fonctions localement bornées sur un intervalle J de R, c’est-à-dire les
fonctions f qui sont bornées sur tout intervalle compact [a, b] ⊂ J (par exemple,
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les fonctions x 7−→ x ou x 7−→ 1/
√
x sont localement bornées sur ]0,+∞[). On

appellera subdivision d’un intervalle [a, b] une famille de sous-intervalles I0, . . . , IK
de [a, b] vérifiant Ik = [ak−1, ak], avec a = a0 < a1 < . . . < aK = b.

Définition VI-29 (Riemann-intégrabilité). Soit J un intervalle de R, et f :
J → R+ une fonction localement bornée sur J . Une subdivision σ de l’intervalle
[a, b] ⊂ J en sous-intervalles I1, . . . , IK étant donnée, on définit mk(f) := infIk f ,
Mk(f) := supIk

f , et

I−(f, σ) :=
∑
k

|Ik|mk(f), I+(f, σ) :=
∑
k

|Ik|Mk(f).

On pose alors
R−

[a,b](f) := sup
σ∈Σ

I−(f, σ), R+
[a,b](f) := inf

σ∈Σ
I+(f, σ),

où Σ est l’ensemble de toutes les subdivisions de [a, b]. On dit que f est Riemann-
intégrable sur [a, b] si R+

[a,b](f) = R−
[a,b](f), et dans ce cas on appelle intégrale de

f sur [a, b] la valeur commune de ces deux nombres. On définit enfin l’intégrale de
Riemann de f sur J comme la limite de l’intégrale de f sur [a, b] quand a et b tendent
respectivement vers les extrémités gauche et droite de J .

Figure 5. L’intégrale de Riemann définie par encadrements :
I−(f, σ) est la somme des aires des rectangles inférieurs, I+(f, σ) l’aire
totale hachurée.

Voici maintenant le principal résultat de cette section.
Théorème VI-30 (L’intégrale de Lebesgue généralise celle de Riemann). Soient

J un intervalle de R et f : J → R+ une fonction bornée sur les compacts de J . Alors
f est Riemann-intégrable si et seulement si

(i) elle est Lebesgue-mesurable ;
(ii) l’ensemble de ses points de discontinuité est négligeable.

Dans ce cas, l’intégrale de Riemann de f est égale à l’intégrale de Lebesgue de f .
Remarque VI-31. Dans la Définition VI-29, la fonction f n’est pas a priori

supposée mesurable. Si elle l’est, alors l’ensemble D de ses points de discontinuité
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est automatiquement mesurable (exercice), et donc de mesure nulle. Dans le cas
contraire, la négligeabilité a le sens habituel : on peut inclure D dans un ensemble
négligeable de R, ou encore, on peut inclure D dans une union finie d’intervalles de
longueur totale arbitrairement petite.

Remarque VI-32. La fonction 1[0,1]∩Q est un exemple de fonction Lebesgue-
mesurable bornée qui n’est pas Riemann-intégrable. (Que valent R+

[0,1]f et R−
[0,1]f ?)

Preuve du Théorème VI-30. 1. On peut trouver des suites (ak)k≥1 et (bk)k≥1,
respectivement croissante et décroissante, telles que J = ∪[ak, bk]. Alors on a

∫
J
f =

limk→∞
∫
[ak,bk]

f , au sens de Lebesgue, par convergence monotone. En outre, une
réunion dénombrable d’ensembles négligeables est négligeable. Pour prouver le théo-
rème dans le cas général, il suffit donc de se limiter au cas particulier où J = [a, b]
et f est bornée.

2. Supposons que f est Riemann-intégrable sur [a, b] ; on note R(f) son intégrale
au sens de Riemann. Soit ε > 0 et soient σ, σ′ deux subdivisions de [a, b] en sous-
intervalles (Ik)1≤k≤K et (I ′ℓ)1≤ℓ≤L respectivement, telles que∑

k

|Ik|mk(f) ≥ R(f)− ε,
∑
ℓ

|I ′ℓ|Mℓ(f) ≤ R(f) + ε.

Quitte à remplacer σ et σ′ par une subdivision plus fine, on peut supposer que
σ = σ′. Pour chaque valeur de m on peut donc construire une subdivision σ = σm
de [a, b] en sous-intervalles Ik, telle que∑

k

|Ik|mk(f) ≥ R(f)− 1

m
,

∑
k

|Ik|Mk(f) ≤ R(f)− 1

m
.

On définit alors les fonctions f−
m et f+

m par
x ∈ Int(Ik) =⇒ f−

m(x) = mk(f), f+
m(x) =Mk(f),

en convenant que ces deux fonctions coïncident avec f aux extrémités des sous-
intervalles.

Quitte à remplacer σm par une subdivision plus fine que σ1, . . . , σm, on peut
supposer que les subdivisions σm sont de plus en plus fines quandm augmente, auquel
cas les fonctions f+

m forment une suite décroissante, et les fonctions f−
m forment une

suite croissante. Appelons f+ et f− les limites respectives de ces suites : les fonctions
f+ et f− sont mesurables puisque limites de fonctions constantes par morceaux, et
clairement f+ ≥ f−.

Par convergence monotone,∫
f+ = lim

∫
f+
m,

∫
f− = lim

∫
f−
m,

et par hypothèse ces deux limites sont égales à R(f). On en déduit que∫
(f+ − f−) = 0,

et il s’ensuit que f− = f+ presque partout sur [a, b] ; en conséquence, ces fonctions
coïncident presque partout avec f . En particulier,

∫
f = R(f).

Soit E l’ensemble de toutes les extrémités des sous-intervalles Ik des subdivisions
σm ; comme E est dénombrable, il est mesurable et de mesure nulle. Pour presque
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tout x ∈ [a, b] \ E, on a f+(x) = f−(x), ce qui veut dire que x est point intérieur
d’une famille d’intervalles Jm, décroissante, vérifiant

lim
m→∞

(
inf
Jm
f
)
= lim

m→∞

(
sup
Jm

f
)
= f(x).

Il s’ensuit que f est continue en x. Cela prouve que l’ensemble des points de discon-
tinuité de f est négligeable.

3. Réciproquement, soit f une fonction bornée, Lebesgue-intégrable sur [a, b],
positive, dont l’ensemble des points de discontinuité est de mesure nulle ; si l’on
montre que f est Riemann-intégrable, alors on saura par l’étape 2 que la valeur
de l’intégrale de Riemann de f coïncide avec celle de l’intégrale de Lebesgue. Pour
tout m ≥ 1, on définit une subdivision σm en subdivisant l’intervalle [a, b] en 2m

intervalles ouverts Imk , de longueur égale, et on définit les fonctions f+
m et f−

m comme
ci-dessus. Soit E l’ensemble de toutes les extrémités de ces intervalles, et soit x un
point de continuité de f n’appartenant pas à E. Pour tout m ≥ 1, il existe un k tel
que x ∈ Imk , et l’intervalle Imk est de longueur (b− a)/2m. Comme f est continue en
x, l’oscillation de f sur Imk tend vers 0 quand m→ ∞, autrement dit

sup
Imk

f − inf
Imk

f −−−→
m→∞

0,

soit encore f+
m(x) − f−

m(x) −→ 0. La famille (f+
m − f−

m) est une suite de fonctions
positives, bornées sur [a, b], convergeant vers 0 presque partout, par convergence
dominée on a

∫
f+
m −

∫
f−
m −→ 0, ce qui signifie exactement que f est Riemann-

intégrable. □

VI-4. Règles de calcul associées à l’intégrale de Lebesgue
VI-4.1. Dérivation et intégration dans R. J’ai déjà mentionné au Chapitre

I que l’une des motivations de Lebesgue était de construire une théorie dans laquelle
intégration et dérivation seraient toujours des opérations inverses l’une de l’autre,
offrant une solution abstraite générale au problèmes des primitives. Le cadre na-
turel de son principal résultat en la matière est celui des applications absolument
continues.

Définition VI-33 (absolue continuité). Soient I un intervalle de R, et f : I → R
une application mesurable. On dit que f est absolument continue sur I si pour tout
ε > 0 il existe δ > 0 tel que pour toute famille finie [ak, bk] d’intervalles disjoints
inclus dans I (1 ≤ k ≤ N),∑

1≤k≤N

|bk − ak| ≤ δ =⇒
∑

1≤k≤N

|f(bk)− f(ak)| ≤ ε.

Il est clair qu’une fonction lipschitzienne est absolument continue : dans la Dé-
finition VI-33 on peut choisir δ = ε/L, où L est la constante de Lipschitz de f . En
particulier, par la formule des accroissements finis, toute application dérivable, de
dérivée bornée, est lipschitzienne, et donc absolument continue.

Il est clair par ailleurs que l’absolue continuité implique l’uniforme continuité
(pourquoi ?) ; le concept d’absolue continuité est donc intermédiaire entre celui d’uni-
forme continuité et celui de lipschitzianité.

Remarque VI-34. Formellement, les applications absolument continues sur un
intervalle borné sont celles dont la dérivée est sommable ; plus rigoureusement
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ce sont celles dont la dérivée (au sens des distributions) est une mesure absolument
continue par rapport à la mesure de Lebesgue.

Théorème VI-35 (dérivation et intégration). Soit f une fonction absolument
continue sur un intervalle I = [a, b] de R. Alors f est dérivable presque partout dans
I, et sa dérivée f ′ est une application sommable sur I. En outre, pour tout x ∈ [a, b],
on a l’identité

(61) f(x)− f(a) =

∫ x

a

f ′(t) dt.

En conséquence de quoi, pour retrouver la primitive d’une fonction dérivée, il
suffit de l’intégrer. Je démontrerai ce résultat plus tard, dans le Chapitre ??.

Remarque VI-36. La formule (61) reste vraie si f est continue sur [a, b] et
dérivable partout, sauf en au plus un ensemble dénombrable (en particulier si f est
différentiable au sens classique du terme). La théorie de Lebesgue n’est pas assez fine
pour démontrer ce résultat, qui s’inscrit dans l’intégrale de Denjoy : voir [Gordon,
Théorème 6.27] (The Integrals of Lebesgue, Denjoy, Perron and Henstock). (On peut
consulter aussi Bruckner, Differentiation of real functions.)

VI-4.2. Théorème de Fubini. L’espace (Rn, λn) est bien sûr σ-fini ; on peut
donc appliquer le théorème de Fubini–Tonelli–Lebesgue dans ces espaces. En outre,
comme on l’a déjà rappelé dans la section VI-1.1,

λm ⊗ λn = λm+n.

Remarque VI-37. Il arrive souvent que l’on ait besoin de découper une intégrale
en tranches “curvilignes”, pour lesquelles le théorème de Fubini ne s’applique pas. La
célèbre formule de la co-aire permet de traiter de telles situations ; on y reviendra
dans le Chapitre ??.

À titre d’illustration, on va donner deux applications du théorème de Fubini : la
démonstration générale de la Proposition VI-15 (qui dans la section VI-2.6 avait été
démontrée seulement pour des graphes de fonctions continues) ; puis une démons-
tration alternative du Théorème VI-27.

Preuve de la Proposition VI-15. Notons d’abord que le graphe de f est
mesurable, car image réciproque de 0 par l’application mesurable (x, y) 7−→ y−f(x).
En outre, l’application indicatrice du graphe de f vaut 1f(x)=y(x, y). Ensuite, par
Fubini,∫

Rn+m

1f(x)=y (x, y) dλn(x) dλm(y) =

∫
Rn

(∫
Rm

1y=f(x) (x, y) dλm(y)

)
dλn(x)

=

∫
Rn

0 dλn(x) = 0.

Ceci prouve que le graphe de f est négligeable. □
Preuve alternative du Théorème VI-27. Comme dans la preuve vue en

section VI-2.8, on se ramène au cas où A est inversible, on montre l’équivalence
entre (59) et (60) et l’invariance de la formule par composition. La différence est dans
le choix des “cas élémentaires” : on note que toute application linéaire inversible A
est produit d’applications linéaires laissant une coordonnée invariante.
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Soit alors A une telle application ; sans perte de généralité (en utilisant l’in-
variance de la mesure de Lebesgue par permutation) on peut supposer que Ax =
(A′(x1, . . . , xn), xn), et la sous-matrice An−1 formée des n − 1 premières lignes et
colonnes de A est inversible :

A =


0

An−1
...
0

∗ . . . ∗ 1


On note que detA = detAn−1. Soit P = Q× [a, b] un pavé dans Rn, on note A(P )y
la section de P selon xn = y ; cette section vaut Q si y ∈ [a, b], et ∅ sinon. Par Fubini,

λn[A(P )] =

∫
R
λn−1[A(P )xn ] dxn =

∫ b

a

λn−1[An−1(Q)] dxn = (b− a)λn−1[An−1(Q)].

On en déduit que
(A−1)#λn =

(
(A−1

n−1)#λn−1

)
⊗ λ1.

En particulier, si la formule (60) est vraie pour la sous-matrice An−1, elle sera vraie
également pour la matrice A.

Pour conclure, on raisonne par récurrence sur la dimension. Si n = 1, la propriété
souhaitée est évidente. Si la propriété est démontrée au rang n− 1, soit alors A une
matrice inversible de taille n ; on peut l’écrire comme A = A′ × A′′, où les matrices
A′ et A′′ préservent chacune une coordonnée. Par hypothèse de récurrence, et la
remarque ci-dessus, la formule (60) est vraie pour A′ et A′′, elle est donc aussi vraie
pour A grâce à l’invariance par produit. □

VI-4.3. Changement de variable. Dans la section IV-3 on a rencontré le
théorème abstrait de changement de variable :

∫
f d(T#λ) =

∫
(f ◦ T ) dλ. Dans

le cadre “concret” de Rn muni de la mesure de Lebesgue, cette identité peut être
précisée grâce à une formule qui exprime la mesure image en fonction du déterminant
jacobien du changement de variable.

Il existe de nombreuses variantes de ce théorème, sous diverses hypothèses. Celle
qui suit est un bon compromis entre généralité et simplicité. On notera dxφ la
différentielle de φ en x, que l’on peut l’identifier à la matrice des dérivées partielles :

[dxφ]ij =

(
∂φi

∂xj

)
.

La notation λnbA désignera la restriction de λn au borélien A.

Théorème VI-38 (Changement de variable C1 dans Rn). Soient U un ouvert
de Rn et φ : U → V un C1-difféomorphisme. Alors

(i) Pour tout borélien B ⊂ U ,

λn[φ(B)] =

∫
B

| det dφ| dλn;

(ii) Pour toute fonction f sommable V → R (ou pour toute fonction f mesurable
positive V → [0,+∞]), ∫

φ(U)

f dλn =

∫
U

(f ◦ φ)| det dφ| dλn;
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(iii) φ#(λnbU) = mλnbφ(U), où m est la fonction définie par

m(y) =
1∣∣det dφ−1(y)φ

∣∣ .
Remarque VI-39. Une formulation équivalente de l’énoncé (ii) ci-dessus est :

(ii’) Pour toute fonction mesurable positive g,∫
U

g(x)| det dxφ| dx =

∫
φ(U)

g(φ−1(y)) dy.

Pour s’en convaincre, il suffit de poser g = f ◦ φ, f = g ◦ φ−1 dans (ii).

Remarque VI-40. Les erreurs classiques dans l’application du Théorème VI-38
sont (a) la confusion entre φ et φ−1, surtout au niveau de la formule (iii) ; (b) l’oubli
des valeurs absolues autour du déterminant ; (c) l’oubli de la restriction à U et φ(U)
dans la formulation (iii) ; (d) la non-vérification de l’injectivité de φ.

Remarque VI-41. Le Théorème VI-27 est un cas particulier du Théorème VI-
38, correspondant au cas où φ est affine bijective.

Remarque VI-42. À son tour, le Théorème VI-38 se généralise considérable-
ment :

(a) L’hypothèse de régularité C1 peut être assouplie en régularité Lipschitz, ou
même en des hypothèses encore beaucoup plus générales telles que la différentiabilité
presque partout (mais la Remarque VI-39 n’est plus forcément valide).

(b) L’hypothèse de bijectivité de φ peut être remplacée par l’injectivité en-dehors
d’un ensemble négligeable ; mais sans cette propriété d’“injectivité presque partout”,
le théorème devient faux, et on a seulement, pour f ≥ 0,∫

φ(U)

f ≤
∫
U

f ◦ φ | det dφ|

(pourquoi ?).
(c) On peut cependant modifier les formules pour traiter des cas où φ n’est pas

injective (il convient alors d’introduire la multiplicité), et où φ est un changement de
variables Rn → Rm avec m > n (formule de l’aire) ou m < n (formule de la co-aire).
La mesure de Lebesgue doit alors être remplacée par une mesure de Hausdorff.
On reparlera brièvement de ces formules dans le Chapitre VII.

Ces diverses généralisations sont abordées dans le livre [Evans–Gariepy] ; et dans
divers articles de recherche dont certains sont très récents. La section ?? sera l’oc-
casion de revenir sur ces généralisations.

Revenant au Théorème VI-38, on peut le prouver de plusieurs manières. L’équi-
valence entre les énoncés (i)–(iii) est une conséquence facile de la définition de la
mesure image (Définition IV-65), du théorème abstrait de changement de variable
(Théorème IV-67) et de la bijectivité de φ. Il suffit donc de démontrer n’importe
laquelle de ces trois formules.

Je vais présenter ici deux stratégies : la première, empruntée à [Gramain], co-
pie l’argument utilisé à la fin de la sous-section VI-4.2 pour (re)démontrer le Théo-
rème VI-27 ; la seconde, au contraire, considère le Théorème VI-27 comme une brique
élémentaire à laquelle on peut se ramener par approximation. Cette dernière stratégie
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est plus intuitive, mais aussi plus élaborée puisqu’elle reposera sur le Théorème VI-
22, qui lui-même fait appel au lemme de recouvrement de Vitali. Les deux preuves
utilisent un argument de localisation.

Première preuve du Théorème VI-38. On va chercher à démontrer la for-
mule (i). Par régularité de la mesure de Lebesgue (ou tout simplement parce que
les compacts engendrent la tribu borélienne), il suffit de se limiter au cas où B est
compact.

On raisonne par récurrence sur la dimension n. Commençons par n = 1. Comme
les intervalles compacts engendrent la tribu borélienne, il suffit de montrer que pour
tout [a, b] ⊂ U ,

(62) λ[φ(I)] =

∫ b

a

|φ′(x)| dx.

Étant un difféomorphisme, φ est soit strictement croissante, soit strictement décrois-
sante sur [a, b]. Dans le premier cas, la formule (62) devient φ(b)−φ(a) =

∫ b

a
φ′(x) dx,

ce qui est évidemment vrai. Dans le deuxième cas, (62) se réécrit φ(a) − φ(b) =∫ b

a
(−φ′(x)) dx, ce qui revient au même. Le théorème est donc vrai pour n = 1.
Supposons maintenant le théorème démontré en dimension n−1 ≥ 1. Pour traiter

la dimension n, on utilisera le

Lemme VI-43. Soient U et V deux ouverts de Rn et φ : U → V un difféomor-
phisme. Alors localement φ s’écrit comme composition de permutations des coordon-
nées, et de difféomorphismes préservant au moins une coordonnée.

Preuve du Lemme VI-43. Soit z ∈ U . Il existe des indices j et k tels que
(∂φk/∂xj)(z) 6= 0. Quitte à permuter, on suppose k = j = 1. On pose alors
ψ(x1, . . . , xn) = (φ1(x), x2, . . . , xn). Il est clair que detz dψ = (∂ψ1/∂x1)(z), donc
par le théorème d’inversion locale ψ définit un difféomorphisme d’un voisinage O de
z dans ψ(O). Dans l’ouvert O on peut alors écrire φ = (φ ◦ ψ−1) ◦ ψ, où ψ préserve
les n− 1 dernières coordonnées, et φ ◦ ψ−1 préserve la première. □

Retournons à la preuve du Théorème VI-38. Montrons que la conclusion est
vraie si φ préserve la dernière coordonnée : φ(x1, . . . , xn) = (φ1(x), . . . , φn−1(x), xn).
Notons x′ = (x1, . . . , xn−1). Pour tout z fixé, l’application φz, obtenue en gelant la
variable xn à la valeur z et en ne conservant que les n − 1 premières coordonnées
de φ, définit un difféomorphisme de U z = U ∩ {xn = z} (vu comme un ouvert de
l’hyperplan (xn = z)) sur son image φz(U z). L’hypothèse de récurrence s’applique à
φz :

(f z)#(λn−1bUz) = | det dx′f z|−1 (λn−1bφz(Uz))

= | det d(x′,z)f |−1 (λn−1bφz(Uz)).

En appliquant le théorème de Fubini, on en déduit, exactement comme dans la
démonstration en fin de sous-section VI-4.2, que f#(λn1U) = | det dxf |−1(λn1V ). Le
théorème est donc vrai dans le cas où φ préserve l’une des coordonnées.

Le théorème est également (bien sûr) vrai quand φ est une permutation de co-
ordonnées. Or le Lemme VI-43 montre que φ s’écrit localement comme composée
de permutations et de difféomorphismes préservant une coordonnée. Grâce à l’inva-
riance de la formule (iii) par composition, on conclut que le théorème est vrai en
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dimension n, pour peu que l’on remplace U par un petit voisinage de x (et φ par sa
restriction à U).

Pour boucler la récurrence, il reste à “recoller les morceaux”, c’est-à-dire établir
la formule globale (disons pour tout borélien B ⊂ U) à partir de la formule locale
(valable pour tout borélien B inclus dans un petit voisinage d’un point x fixé).

Fixons donc U , V et φ, et supposons que tout x ∈ U est contenu dans un
voisinage Ux ⊂ U où la conclusion du théorème est vraie (avec U remplacé par Ux,
φ remplacé par sa restriction à Ux) ; on va montrer qu’alors le théorème est vrai
pour l’ouvert U tout entier. Comme on l’a déjà remarqué, il suffit de traiter le cas
où B est un compact K de U . De la famille des {Ux, x ∈ K} on extrait un sous-
recouvrement fini {Ux1 , . . . , UxN

}. On pose alors C1 = K∩Ux1 , C2 = K∩(Ux2 \Ux1),
etc. de manière à définir des ensembles boréliens C1, . . . , CN deux à deux disjoints
dont l’union est K. Puisque le théorème est vrai dans chaque Uxi

, on a

∀j ∈ {1, . . . , N}, λn[φ(Cj)] =

∫
Cj

| det dxφ| dx.

Comme φ est bijective, les φ(Cj) sont disjoints et leur union est φ(K). La sommation
en j donne donc

λn[φ(K)] =

∫
K

| det dxφ| dx,

ce qui conclut la preuve du théorème. □
Seconde preuve du Théorème VI-38. L’idée est de comparer, au voisinage

d’un point x, la mesure image φ#λn à la mesure image (Txφ)#λn, où Txφ désigne
l’application affine tangente à φ en x :

Txφ(y) = φ(x) + (dxφ)(y − x).

Pour cela, on utilise le lemme suivant :

Lemme VI-44. Soient U et V deux ouverts de Rn et φ : U → V un C1 dif-
féomorphisme. Alors pour tout δ ∈]0, 1[ et pour tout x ∈ U il existe r > 0 tel que
Br(x) ⊂ U et

(a) pour tout y ∈ Br(x),
(1− δ) | det dyφ| ≤ | det dxφ| ≤ (1 + δ) | det dyφ|;

(b) pour tous y, z ∈ Br(x),
(1− δ) |Txφ(y)− Txφ(z)| ≤ |φ(y)− φ(z)| ≤ (1 + δ) |Txφ(y)− Txφ(z)|.

Preuve du Lemme VI-44. Fixons x ; puisque φ est un difféomorphisme on a
| det dxφ| > 0. Par continuité de det dφ, il existe ε > 0 tel que

|x− y| ≤ ε =⇒ | det dyφ− det dxφ| ≤ δ | det dxφ|,
ce qui implique la propriété (a).

Ensuite, soit η ∈]0, 1[. Par continuité de dφ (fonction à valeurs dans les appli-
cations linéaires), il existe r > 0 tel que ‖dyφ − dxφ‖ ≤ η pour |x − y| ≤ r. Étant
donnés y, z dans Br(x), on définit x(t) = (1− t)y + tz, alors

φ(y)− φ(z) =

(∫ 1

0

(dx(t)φ) dt

)
· (y − z);

Txφ(y)− Txφ(z) = dxφ · (y − z);
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d’où∣∣∣(φ(y)− φ(z)
)
−
(
Txφ(y)− Txφ(z)

)∣∣∣ ≤ (∫ 1

0

‖dx(t)φ− dxφ‖ dt
)
|y − z| ≤ η |y − z|.

Par ailleurs dxφ est inversible, donc il existe une constante K > 0, ne dépendant
que de x, telle que |dxφ · (y − z)| ≥ K |y − z| (il suffit de choisir K = ‖(dxφ)−1‖−1).
On obtient ainsi∣∣∣∣∣φ(y)− φ(z)

∣∣− ∣∣Txφ(y)− Txφ(z)
∣∣∣∣∣ ≤ (εK−1)|Txφ(y)− Txφ(z)|.

La conclusion découle du choix η = Kδ. □
Revenons maintenant à la preuve du Théorème VI-38. Soit δ ∈]0, 1[ ; soit x ∈ U

et soit r > 0 tels que les énoncés (a) et (b) du Lemme VI-44 soient vrais. On pose
Ux = B(x, r) ∩ U .

Les applications φ et Txφ sont bijectives, on peut donc définir f = (1 + δ)−1φ ◦
(Txφ)

−1, et l’inégalité de droite dans l’énoncé (b) montre que f est 1-lipschitzienne
sur Txφ(Ux). Par le Théorème VI-22 (une application contractante réduit les vo-
lumes), on sait que pour tout borélien B′ ⊂ Txφ(Ux), on a λn[f(B

′)] ≤ λn[B
′].

Si B est un borélien quelconque de Ux, on peut appliquer la relation précédente à
B′ = Txφ(B) et on trouve, Txφ étant bijective, λn[(1 + δ)−1φ(B)] ≤ λn[Txφ(B)].
Puisque l’homothétie de rapport (1 + δ)−1 contracte les volumes par un facteur
(1 + δ)−n, on conclut que

λn[φ(B)] ≤ (1 + δ)n λn[Txφ(B)].

(Le lecteur familier avec la notion de mesure de Hausdorff pourra voir que cette
conclusion découle immédiatement de l’inégalité de droite dans (b) ; ici j’ai utilisé
un chemin légèrement détourné pour me ramener au Théorème VI-22.)

Un raisonnement identique à partir de l’inégalité de gauche dans (b) mène fina-
lement à
(63) (1− δ)n λn[Txφ(B)] ≤ λn[φ(B)] ≤ (1 + δ)n λn[Txφ(B)];

cette inégalité est valable pour tout borélien B inclus dans Ux.
Soit maintenant K un compact de U . Par un raisonnement simple rappelé au

cours de la première preuve du Théorème VI-38, on peut partitionner K en boré-
liens disjoints C1, . . . , CN tels que chaque Ci est inclus dans un Uxi

. On peut alors
appliquer (63) à chaque Ci :
(64) (1− δ)n λn[Txi

φ(Ci)] ≤ λn[φ(Ci)] ≤ (1 + δ)n λn[Txi
φ(Ci)].

Pour chaque i, on peut appliquer le Théorème VI-27 pour calculer le volume de
Txi

φ(Ci) :
λn[Txi

φ(Ci)] = | det dxi
φ|λn[Ci].

De la condition (a) on déduit alors

(1− δ)

∫
Ci

| det dyφ| dy ≤ λn[Txi
φ(Ci)] ≤ (1 + δ)

∫
Ci

| det dyφ| dy.

En reportant cette inégalité dans (64) on obtient

(1− δ)n+1

∫
Ci

| det dyφ| dy ≤ λn[φ(Ci)] ≤ (1 + δ)n+1

∫
Ci

| det dyφ| dy.
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Comme les φ(Ci) forment une partition de φ(K), en sommant cette double in-
égalité par rapport à l’indice i on trouve

(1− δ)n

1 + δ

∫
K

| det dyφ| dy ≤ λn[φ(K)] ≤ (1 + δ)n

1− δ

∫
K

| det dyφ| dy.

On conclut la preuve en faisant tendre δ vers 0. □

VI-5*. Mesurabilité, non-mesurabilité, et paradoxes de Banach–Tarski
Cette section est l’occasion de développer les éléments abordés dans la Mise au

point axiomatique en début de cours. On y trouvera peu de démonstrations, mais
plutôt un survol de notions fondamentales et parfois très subtiles.

VI-5.1. Ensembles boréliens et Lebesgue-mesurables. On a déjà noté que
la tribu borélienne, intuitivement, est obtenue à partir des boules en appliquant une
infinité dénombrable de fois les opérations d’union dénombrable et d’intersection
dénombrable. Pour passer de la tribu borélienne dans R à la tribu des ensembles
Lebesgue-mesurables, il a suffi d’appliquer l’opération de complétion. Les ensembles
Lebesgue-mesurables sont donc toutes les parties E de Rn telles qu’il existe des
boréliens A et B vérifiant

A ⊂ E ⊂ B, |B \ A| = 0.

De manière équivalente, les ensembles Lebesgue-mesurables sont les ensembles E
pour lesquels

λ∗[X ∩ E] + λ∗[X \ E] = λ∗[X]

pour toute partie X ⊂ R (on peut se limiter au cas où X décrit l’ensemble des
pavés). C’est cette dernière définition qu’adoptait Lebesgue. En particulier, tout
sous-ensemble d’un ensemble négligeable est Lebesgue-mesurable.

La régularité de la mesure de Lebesgue permet de donner une autre caractérisa-
tion, en apparence un peu plus précise.

Proposition VI-45 (Lebesgue-mesurabilité, Fσ etGδ). Tout ensemble Lebesgue-
mesurable E peut s’écrire sous la forme A ∪ N , où A est une union dénombrable
de fermés (un Fσ) et N un ensemble négligeable. S’il est de mesure finie, il peut
également s’écrire sous la forme B \ N , où B est une intersection dénombrable
d’ouverts (un Gδ) et N un ensemble négligeable.

Démonstration. Si E est de mesure finie, c’est une conséquence de la Propo-
sition II-57. Dans le cas où E n’est pas de mesure finie, on s’y ramène en considérant
son intersection avec une suite croissante de pavés. □

Ces descriptions sont bien sûr très grossières. Une branche de la théorie géomé-
trique de la mesure [Federer] s’attache à décrire géométriquement les ensembles
Lebesgue-mesurables.

VI-5.2. Fonctions boréliennes et Lebesgue-mesurables. On peut se de-
mander à quoi ressemble une fonction borélienne, disons de Rn dans R, et si la classe
des fonctions boréliennes est vraiment beaucoup plus large que la classe des fonc-
tions continues, ou semi-continues... La question est bien sûr formulée ici de manière
trop vague ; cependant, le théorème de Lusin (Théorème III-69) implique que toute
fonction borélienne f : Rn → R, nulle en-dehors d’un ensemble de mesure de Le-
besgue finie, coïncide avec une fonction continue en-dehors d’un ensemble de mesure
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arbitrairement petite ; et que f est, en-dehors d’un ensemble de mesure nulle, limite
simple de fonctions continues. Son corollaire III-70 indique que pour toute fonction
f sommable de Rn dans R on peut trouver une famille (fk)k∈N de fonctions continues
à support compact, telles que∫

|fk(x)− f(x)| dx −−−→
k→∞

0.

Le théorème de Vitali-Carathéodory (Théorème III-72) s’applique aussi, sans
restriction, à la mesure de Lebesgue sur Rn, et permet d’encadrer une fonction
sommable f par des fonctions semi-continues, au prix d’une erreur arbitrairement
petite sur les intégrales.

Enfin on sait (Théorème III-29) qu’une fonction Lebesgue-mesurable est une
fonction qui coïncide avec une fonction borélienne presque partout.

Pour résumer informellement : une fonction borélienne réelle est donc “pas loin
d’être continue” et elle est “presque limite de fonctions continues”. Quant à une fonc-
tion Lebesgue-mesurable, c’est une fonction “presque borélienne”, et aussi “presque
limite de fonctions continues”.

VI-5.3. Existe-t-il des ensembles non mesurables ? Cette question d’ap-
parence anodine va nous entraîner à l’assaut de questions très subtiles, dont certaines
touchent à rien moins que les fondations logiques du raisonnement mathématique.

Commençons par nous demander s’il existe des parties non boréliennes. La ré-
ponse est affirmative : il n’est pas facile d’exhiber une partie non borélienne, mais un
argument de cardinalité permettra de prouver que l’immense majorité des parties de
R est non borélienne. On pourra objecter qu’il serait plus satisfaisant de construire
explicitement des ensembles non boréliens ; c’est vrai, mais au moins l’argument non
constructif des cardinaux apportera un premier jalon. On peut comparer cette si-
tuation au problème des nombres algébriques (c’est à dire les nombres réels qui sont
racines d’un polynôme à coefficients entiers, comme

√
2) : il est très facile de montrer

que les nombres algébriques forment un ensemble dénombrable, et donc l’immense
majorité des nombres réels sont transcendants, c’est à dire non algébriques ; mais il
est bien plus difficile de construire explicitement un nombre transcendant (comme
le nombre de Liouville,

∑
10−k!) ; et il est encore bien plus difficile de montrer que

certains nombres bien connus, comme e ou π, sont transcendants (théorèmes de
Lindemann).

Théorème VI-46 (Rareté des ensembles boréliens). L’ensemble B(R) des parties
boréliennes de R a le même cardinal que R, soit c = 2ℵ0 ; alors que l’ensemble des
parties non boréliennes de R a pour cardinal 2c. Le même résultat vaut pour Rn,
n ≥ 2.

Pour éviter une digression trop importante dans la théorie des cardinaux, je
ne donnerai ici qu’une esquisse de preuve ; on trouvera une preuve complète dans
[Rudin, p. 53].

Esquisse de preuve du Théorème VI-46. Comment “compter” les boréliens ?
On commence par se donner une base dénombrable de voisinages faits d’intervalles
ouverts : par exemple, tous les intervalles ouverts de longueur 2−ℓ centrés en les
rationnels (qm)m∈N. Cette énumération (Ik)k∈N est fixée une fois pour toute. Une
union dénombrable de ces intervalles ouverts peut se représenter comme une suite
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de 0 et de 1 : pour chaque k ∈ N on indique 1 si Ik en fait partie, et 0 sinon. Une
intersection dénombrable d’unions dénombrables de Ik se représente alors comme
un tableau de 0 et de 1, indexé par N2 ; mais cela peut aussi se réindexer par N
(exercice). Pour obtenir les boréliens, on applique une infinité dénombrable de fois
l’opération “intersection dénombrable d’unions dénombrables” ; cela peut donc se
représenter comme un tableau infini d’entiers, ou encore une fonction de N dans N.
Tout se ramène donc au lemme suivant : L’ensemble des fonctions de N dans N est
en bijection avec R.

Prouvons ce lemme. On se souvient d’abord que R est en bijection avec [0, 1], qui
est lui-même en bijection avec {0, 1}N, c’est à dire les fonctions de N dans {0, 1} : il
suffit pour cela d’écrire x ∈ [0, 1] en écriture binaire, en traitant à part les nombres
dyadiques, qui sont en quantité dénombrable. Reste à montrer que les fonctions de
N dans N sont en bijection avec les fonctions de N dans {0, 1}. L’inclusion de {0, 1}N
dans NN est évidente. Réciproquement, soit f une fonction de N dans N, on va lui
associer une suite à valeurs dans {0, 1} : pour cela on inscrit f(1) fois le chiffre 1,
puis 0, puis f(2) fois le chiffre 1, puis 0, puis f(3) fois le chiffre 1, etc. (Exercice :
vérifier que c’est une injection.) Par théorème de Cantor–Bernstein, les ensembles
{0, 1}N et NN sont bien en bijection.

L’énoncé sur les parties non boréliennes découle de ce premier résultat, et d’un
peu de théorie des cardinaux : en retirant un ensemble de cardinal c à un ensemble
de cardinal 2c, on obtient un ensemble dont le cardinal est toujours 2c et cela est
strictement supérieur à c.

Enfin la généralisation à Rn est facile, quitte à remplacer les intervalles par des
boules, par exemple la famille des boules dont le centre a toutes ses coordonnées
rationnelles et dont le rayon est de la forme 2−ℓ. □

Cet argument ne s’applique plus à la famille des ensembles Lebesgue-mesurables,
qui a même cardinalité que l’ensemble de toutes les parties de R : pour s’en convaincre,
on peut se rappeler que l’ensemble triadique de Cantor C sur [0, 1] a même cardi-
nal que R, et que toutes ses parties sont Lebesgue-mesurables puiqu’il est de mesure
nulle. La cardinalité de l’ensemble des parties Lebesgue-mesurables est donc au moins
la même que P(C), soit 2c.

On peut se demander à quoi ressemblerait un ensemble Lebesgue-mesurable non
borélien. Lebesgue avait déjà identifié de tels ensembles. Le mathématicien russe
Nikolaï Nikolaïevitch Lusin (Louzine) a construit dans les années 1920 des exemples
assez explicites, au moyen de fractions continues : on rappelle que tout nombre
x ∈ [0, 1] peut s’écrire uniquement sous la forme

x =
1

a1 +
1

a2+
1

a3+...

;

où les ak sont des entiers naturels ; on appelle (ak)k∈N le développement en fraction
continue de x.

Théorème VI-47 (Ensemble non borélien de Lusin). Soit L l’ensemble des x
dont le développement en fraction continue admet une sous-suite infinie dont chaque
terme divise le terme suivant. Alors L est Lebesgue-mesurable, mais non borélien.

Une intuition derrière cet ensemble, et qu’il est défini par des propriétés qui font
intervenir une infinité potentielle de suites infinies. Il est traité dans [Nikolaï Luzin,
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Sur les ensembles analytiques, Fundamenta Mathematica, vol. 10, 1927, p. 1-95, p.
77]. Ces thèmes ont déjà été abordés dans le Chapitre d’approfondissement V.

On en vient maintenant à formuler une question bien plus délicate : Existe-t-il
des parties de R qui ne sont pas Lebesgue-mesurables ?

La réponse à cette question est un des résultats les plus frappants de la logique
moderne : on peut effectivement construire de telles parties, mais leur construction
nécessite l’axiome du choix. Si en revanche on ne postule pas cet axiome, la
mesurabilité de toutes les parties de R est un problème indécidable. On peut alors
poser comme axiome que toutes les parties de R sont mesurables, ou au contraire
qu’il existe (au moins) une partie non mesurable ; les mathématiques que l’on pourra
développer dans l’un et l’autre cas seront incompatibles, mais chacune aura a priori
sa cohérence propre. Cette découverte majeure est due au grand logicien Robert
Solovay [A model of set-theory in which every set of reals is Lebesgue measurable,
Annals of Mathematics, vol. 92 (1970), pp. 1-56]

Solovay s’appuyait sur les techniques introduites par Paul Cohen pour démon-
trer l’indécidabilité de l’“hypothèse du continu” (qui énonce, essentiellement, que le
plus petit cardinal non dénombrable est celui de R). Le théorème d’incomplétude
de Gödel, le théorème d’indécidabilité de Cohen et le théorème d’indécidabilité de
Solovay sont peut-être les trois résultats de logique les plus marquants du vingtième
siècle.

Comment construire un ensemble non mesurable ? On se souvient que d’après la
Proposition VI-5, la mesure de Lebesgue induit sur le tore Tn une mesure invariante
par addition modulo Zn. Si l’on construit un ensemble non mesurable E dans T = T1,
alors E × Tn−1 constituera un ensemble non mesurable de Tn. C’est précisément ce
que montre le résultat suivant.

Théorème VI-48 (Paradoxe de Vitali). Sous l’hypothèse de l’axiome du choix,
il existe une partie V de T telle que T puisse s’écrire comme réunion dénombrable
disjointe de translatés de V . En particulier, V n’est pas Lebesgue-mesurable.

Démonstration. La seconde partie du théorème découle de la première : en
effet, si V était mesurable, de mesure positive, alors la mesure de T serait infinie,
ce qui est faux ; et s’il était de mesure nulle, alors la mesure de V serait nulle, par
σ-additivité.

Pour définir V , on introduit une relation d’équivalence R dans T comme suit :
xRy ⇐⇒ x− y ∈ Q.

L’ensemble T est alors partagé en une infinité de classes d’équivalence, et on choisit
un représentant dans chaque classe ; on note V l’ensemble des représentants ainsi
sélectionnés.

Toute classe d’équivalence s’obtient à partir de son représentant, par addition
(modulo 1) de rationnels ; si l’on se limite à des rationnels de [0, 1[ on obtient des
éléments distincts de T. La conclusion est que T est la réunion disjointe dénombrable
des qk+V , où les qk sont les rationnels de [0, 1[ et l’addition est considérée modulo 1.

□
Dans le raisonnement précédent, on a utilisé l’axiome du choix pour choisir

arbitrairement un représentant dans chaque classe d’équivalence. Au vu du théorème
de Solovay, cela est inévitable. Le contre-exemple de Sierpiński, mentionné dans la
Remarque IV-60, reposait également sur l’axiome du choix.
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Mentionnons pour conclure deux autres “paradoxes” menant à l’existence d’en-
sembles non mesurables ; bien évidemment, tous deux reposent encore sur l’axiome
du choix :

— Sergei Bernstein a défini un sous-ensemble B ⊂ R tel que B et R \ B inter-
sectent tout sous-ensemble fermé non dénombrable de R. En particulier, tout
compact inclus dans B est au plus dénombrable, donc de mesure nulle, et la
régularité de la mesure de Lebesgue impliquerait |B| = 0 si B était mesu-
rable. De même on aurait |R\B| = 0... Ce paradoxe est étudié dans [Oxtoby,
pp.22–23]

— Wacław Sierpiński a construit un ensemble S ⊂ R2 tel que (i) S intersecte
tout ensemble fermé mesurable de R2 de mesure positive, et (ii) on ne peut
pas trouver trois points de S alignés. Il s’ensuit que S n’est pas mesurable,
sinon le théorème de Fubini impliquerait que |S| = 0 (puisque l’intersection
de S avec toute droite verticale est réduite à au plus deux points), et on
pourrait trouver un ensemble de mesure positive dans R2 \ S... On trouvera
dans [Oxtoby, p.54–55] une preuve simplifiée (utilisant, outre l’axiome du
choix, l’hypothèse du continu).

À ce stade, on pourrait encore conserver l’espoir de définir une mesure sur toutes
les parties de R... mais elle ne pourrait vérifier ni l’invariance par translation (à
cause du paradoxe de Vitali), ni la régularité (à cause du paradoxe de Bernstein),
ni le théorème de Fubini (à cause du paradoxe de Sierpinski). Au vu de toutes
ces restrictions, on peut douter de l’intérêt qu’aurait une telle mesure ; quoi qu’il
en soit, même ce dernier espoir est ruiné par le théorème suivant, dû à Banach et
Kuratowski, généralisé par Ulam [Dudley, pp.526–527 ; Billingsley, p.37] ; il utilise
l’axiome du choix et l’hypothèse du continu.

Théorème VI-49 (Obstruction de Banach–Kuratowski). Sous hypothèse de
l’axiome du choix et de l’hypothèse du continu, soit µ une mesure finie sur la σ-
algèbre de toutes les parties de [0, 1], telle que µ[{x}] = 0 pour tout x ∈ [0, 1]. Alors
µ est identiquement nulle.

Ici l’obstruction a trait à la théorie des cardinaux, comme le montre une géné-
ralisation abstraite due à Ulam (voir [Oxtoby, p. 25–26]).

Corollaire VI-50. La seule mesure finie et sans atome que l’on puisse définir
sur toutes les parties de [0, 1] est la mesure nulle.

VI-5.4. Contre-exemple de Hausdorff. L’existence d’ensembles non mesu-
rables pourrait être considérée comme un défaut majeur de la théorie de la mesure.
Après tout, en mécanique classique, tous les objets ont une masse, et la théorie de la
mesure peut être vue comme une tentative de formaliser le concept de masse dans
un cadre abstrait. L’obstruction de Banach–Kuratowski ne laisse guère le choix : si
l’on veut mesurer tous les ensembles, il faut abandonner l’axiomatique même de la
mesure, et le seul coupable envisageable est le fameux axiome de σ-additivité, im-
posé avant tout pour des raisons mathématiques. Se pose alors la question naturelle
de savoir si l’on peut remplacer la mesure de Lebesgue par une fonction additive
d’ensembles, ou “mesure finiment additive”, à savoir une fonction µ vérifiant
µ[∅] = 0, et µ[A∪B] = µ[A]+µ[B] quand A et B sont disjoints, et qui serait définie
sur l’ensemble de toutes les parties de Rn. On souhaite en outre que cette fonction
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additive conserve la propriété naturelle d’invariance par isométrie affine, et bien sûr
qu’elle soit non triviale (non identiquement nulle). Nous voici donc face à la

Question : Existe-t-il des fonctions additives d’ensembles définies sur toutes les
parties de Rn, non triviales, finies sur les compacts et invariantes par isométries ?

La réponse à cette question est encore négative. Pour l’expliquer, introduisons
le concept d’ensemble paradoxal, qui généralise à un cadre finiment additif l’idée
utilisée dans le contre-exemple de Vitali. Dans la suite, j’emploierai parfois informel-
lement le terme de “mesure” pour des fonctions additives qui ne sont pas forcément
σ-additives, aucune confusion n’étant possible.

Définition VI-51 (découpage et recollement). Soient A et B deux ensembles
de Rn. On dit que A peut être découpé et recollé en B s’il existe une partition
finie de A en morceaux A1, . . . , Ak, et des déplacements (i.e. des isométries affines
de déterminant 1) g1, . . . , gk tels que les morceaux g1(A1), . . . , gk(Ak) forment une
partition de B.

Remarquons que cette définition ne correspond pas de très près au concept in-
tuitif de “découpage et recollement” : il se peut que les parties Ai soient imbriquées
de manière très complexe, de sorte que leur séparation physique soit impossible.
Cependant, c’est une approximation naturelle de ce concept.

Définition VI-52 (ensemble paradoxal). Un ensemble de Rn est dit paradoxal
si on peut le découper et le recoller en deux copies disjointes de lui-même.

Il est naturel de penser que de tels ensembles sont forcément de mesure nulle,
sinon on aurait une contradiction apparente avec le fait que les deux copies disjointes
doivent avoir deux fois le volume de l’objet originel. L’existence même d’ensembles
paradoxaux semble douteuse. Le théorème suivant, dû à Felix Hausdorff [Wagon,
p. 18], répond à cette question.

Théorème VI-53 (paradoxe de Hausdorff). Sous hypothèse de l’axiome du choix,
il existe un sous-ensemble dénombrable D de la sphère S2 tel que S2\D est paradoxal.

Ce paradoxe repose sur la constatation suivante, d’une grande importance en
théorie des groupes : le groupe SO3 des déplacements linéaires de R3, qui laisse
la sphère S2 invariante, admet pour sous-groupe une copie du groupe libre à deux
éléments. Un système explicite de générateurs peut d’ailleurs être construit, voir
[Wagon, p. 15]. Voyons maintenant ce que l’on peut déduire de ce paradoxe.

Corollaire VI-54 (non-existence de mesures finiment additives). Sous l’hypo-
thèse de l’axiome du choix, soit µ une mesure finiment additive définie sur toutes les
parties de R3, finie sur les compacts et invariante par déplacement. Alors µ[K] = 0
pour tout compact de R3.

Corollaire VI-55 (non-existence de mesures finiment additives, autre formu-
lation). Il est impossible de prouver l’existence d’une mesure finiment additive, non
nulle, définie sur toutes les parties de R3, finie sur les compacts et invariante par
déplacement.

Ce dernier énoncé apporte un point final à notre quête : il est impossible de
construire une notion raisonnable de volume sur toutes les parties de R3. La conclu-
sion est la même pour toute dimension n ≥ 4 : il suffit pour le voir de prendre le
produit cartésien des contre-exemples dans R3, avec [0, 1]n−3.



LA MESURE DE LEBESGUE 233

Preuve du Théorème VI-53. Soit µ une mesure vérifiant les hypothèses, non
nulle sur les compacts ; il existe donc R > 0 tel que µ[RB3] > 0, où B3 est la boule
unité dans R3. Quitte à remplacer µ par (m1/R)#µ, où ma(x) = ax, on peut supposer
que µ[B3] > 0. Tous les singletons ont même mesure pour µ, forcément nulle, sinon
µ[A] serait infini pour toute partie A infinie. La restriction de µ à la boule privée
de son centre est donc une mesure finiment additive, bien définie et invariante par
l’action de SO3.

L’application x 7−→ x/|x| envoie la boule privée de son centre sur la sphère S2,
et transporte donc la mesure µ en une mesure non nulle sur S2, qui reste finiment
additive et invariante par l’action de SO3 ; on la notera toujours µ. En particulier,
si D est la partie dénombrable apparaissant dans le paradoxe de Hausdorff, on a

µ[S2 \D] = 2µ[S2 \D],

ce qui montre que µ[S2 \D] = 0.
Il reste à vérifier que D est de mesure nulle pour aboutir à une contradiction.

Soit ℓ une ligne issue de l’origine, n’intersectant pas D ; on définit Rθ comme la
rotation d’angle θ autour de ℓ. L’ensemble des angles θ tels que Rθ envoie au moins
un élément de D dans D est dénombrable ; en conséquence, il existe au moins un
angle θ pour lequel D et Rθ(D) sont disjoints. On en déduit que µ[D′] = 2µ[D] ≤
µ[S2], où D′ = D ∪ Rθ(D) ; en particulier µ[D] ≤ µ[S2]/2. Comme D′ lui-même
est dénombrable, le même raisonnement montre que µ[D′] ≤ µ[S2]/2, en particulier
µ[D] ≤ µ[S2]/4. Par récurrence, on montre que µ[D] ≤ µ[S2]/2m pour tout m ≥ 1,
d’où finalement µ[D] = 0. □

VI-5.5. Paradoxe de Banach–Tarski. Du paradoxe de Hausdorff on déduit
qu’il est trop ambitieux de chercher à “mesurer” toutes les parties de l’espace eu-
clidien, au moins dans R3. Les paradoxes dits de Banach–Tarski approfondissent
la discussion dans une autre direction, et mènent à s’interroger sur l’axiomatique
mathématique, en fournissant des conclusions qui violent le bon sens.

Théorème VI-56 (paradoxes de Banach–Tarski). (i) Sous l’axiome du choix,
pour tout n ≥ 3, la boule unité de Rn est paradoxale : on peut la découper et la recoller
en deux boules disjointes de rayon 1 (pour cela, cinq morceaux sont nécessaires et
suffisants).

(ii) Soient A et B deux parties de Rn d’intérieur non vide, n ≥ 3. Alors on peut
découper A et le recoller en B.

Ces paradoxes sont discutés en détail dans [Wagon]. Le premier énoncé, considéré
par certains comme “le théorème le plus surprenant de toute la mathématique”, est
suffisamment incroyable pour qu’on l’énonce sous une forme encore plus explicite : Il
est possible de découper une boule de rayon 1 en 5 morceaux A1, . . . , A5 et de trouver
des isométries g1, . . . , g5 telles que l’union des gi(Ai) forme deux boules disjointes,
chacune étant de rayon 1.

Les paradoxes de Banach–Tarski mènent à la même conclusion que celui de Haus-
dorff : Au moins pour n ≥ 3, il est impossible de définir une mesure finiment additive
sur l’ensemble de toutes les parties de Rn.

Or il se trouve que la conclusion est différente pour n ≤ 2 !

Théorème VI-57 (existence de mesure finiment additive dans R2). Sous hypo-
thèse de l’axiome du choix, pour n = 1 ou n = 2, il est possible de définir une mesure
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finiment additive µ sur toutes les parties de Rn, qui soit invariante par déplacement
et coïncide avec la mesure de Lebesgue sur tous les pavés.

Tous ces résultats, et bien d’autres qui leur sont liés, sont démontrés et com-
mentés dans [Wagon]. Le théorème VI-57 ne prétend pas que la mesure µ coïncide
avec la mesure de Lebesgue sur tous les boréliens, ce qui suggère que son maniement
est délicat. Quoi qu’il en soit, la différence de comportement entre les dimensions
inférieures ou égales à 2 d’une part, et supérieures ou é́galés à 3 d’autre part, reflète
des différences fondamentales dans la structure des groupes d’isométries correspon-
dants, qui a donné naissance à la notion de groupe moyennable, aujourd’hui une
branche importante de la théorie géométrique des groupes.

Cela dit, la conclusion du paradoxe de Banach–Tarski, qui ne fait pas intervenir
le concept de mesure, semble si choquante pour le sens commun, que l’on peut se
demander s’il ne faut pas revoir l’ensemble des axiomes qui a permis de l’établir.
C’est l’occasion de discuter un peu plus en détail de l’axiome du choix.

VI-5.6. Axiome du choix. L’écrasante majorité des démonstrations mathé-
matiques, en-dehors du domaine de la logique, repose sur un ensemble d’axiomes
“incontestables”, appelé couramment théorie des ensembles ZF (Zermelo–Fraenkel).
Cette théorie permet de construire les entiers, les rationnels, les réels, etc. On peut
ajouter, ou pas, à cette théorie l’axiome dit axiome du choix, qui énonce, essentiel-
lement, que le produit d’ensembles non vides est toujours non vide. En clair, étant
donnée une collection d’ensembles non vides, on peut choisir un élément dans cha-
cun d’entre eux, et rassembler tous les éléments ainsi choisis en un ensemble. Cet
axiome peut paraître inoffensif, mais il est suffisant à aboutir à des paradoxes tels
que ceux de Vitali, Hausdorff, Sierpiński ou Banach–Tarski. En outre il n’est pas
vraiment intuitif, car dans le cas où la famille d’ensembles est infinie on ne pourra
jamais construire explicitement leurs représentants, ni même esquisser une méthode.

D’un autre côté, si l’on supprime complètement l’axiome du choix, on tombe vite
sur des paradoxes qui heurtent tout autant le sens mathématique commun. Ainsi, ZF
est compatible avec l’assertion selon laquelle R est union dénombrable d’ensembles
dénombrables... Cela montre bien que nous utilisons sans nous en rendre compte
des versions de l’axiome du choix. L’argument diagonal de Cantor en fournit un
exemple !

Une variante de l’axiome du choix qui permet d’éviter ce genre de paradoxe,
et en même temps n’est pas assez forte pour impliquer l’existence d’ensembles non
mesurables, est l’axiome du choix dénombrable, qui énonce qu’un produit dé-
nombrable d’ensembles non vides est non vide.

Une variante légèrement plus forte est l’axiome du choix dépendant : étant
donné une famille dénombrable d’ensembles En, pour tout n on peut choisir xn ∈ En,
dépendant de xn−1 d’une manière que l’on spécifie. La théorie obtenue en ajoutant
cet axiome à ZF permet d’effectuer (presque) tous les raisonnements habituels en
analyse, et reste compatible avec la non-existence d’ensembles mesurables. En par-
ticulier, la démonstration des paradoxes de Vitali, Hausdorff, Sierpiński et Banach–
Tarski est impossible dans ce contexte.

Notons pour finir qu’il existe un autre axiome célèbre que l’on peut ou pas im-
poser, et que nous avons déjà rencontré dans certains paradoxes, c’est l’hypothèse
du continu, à savoir que R est le plus petit ensemble infini non dénombrable.
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VI-5.7. Quelle attitude adopter ? Au vu de la discussion précédente, il y a
trois attitudes possibles :

- l’attitude classique : accepter l’axiome du choix, se résoudre à ce que certains
ensembles ne soient pas mesurables, à ce que certains paradoxes existent (après tout,
ce ne sont pas les seuls) et vérifier la mesurabilité des objets avec lesquels on travaille,
quand il y a besoin ;

- l’attitude iconoclaste : n’accepter que l’axiome du choix dépendant, postuler la
mesurabilité de toutes les parties de R, et se résoudre à ce que l’axiome du choix ne
soit pas vrai ;

- l’attitude sceptique : n’accepter que l’axiome du choix dépendant, s’interdire
l’usage de l’axiome du choix, mais sans supposer non plus la mesurabilité de toutes
les parties de Rn ; vérifier la mesurabilité dans les démonstrations, et se résoudre
à ce que certains énoncés, comme la non-mesurabilité de certaines parties, soient
indémontrables.

L’attitude classique est le choix le plus fréquent. L’axiome du choix mène parfois
à des démonstrations formellement élégantes, parfois via ses divers avatars tels que
le Lemme de Zorn, ou le Théorème de Tychonov dans sa version la plus générale (un
produit quelconque de compacts est compact). Il mène parfois à des énoncés très
synthétiques ; on le verra par exemple au sujet de la mesure de Haar au Chapitre ??.

L’attitude iconoclaste est quelque peu dangereuse, car cela réclame une certaine
discipline que de savoir quels sont les résultats qui nécessitent l’axiome du choix et
quels sont ceux qui ne le réclament pas. Mais surtout, l’axiome que l’on adopte (la
non-existence de parties non mesurables) est un axiome très fort.

C’est finalement l’attitude sceptique que je recommande sans hésitation : c’est
la plus économe en axiomes, et l’expérience montre qu’elle suffit à couvrir tous les
énoncés classiques d’analyse réelle. Après tout c’est un devoir, en mathématique, de
se passer des hypothèses superflues ! Cette attitude n’exclut pas, bien sûr, de recourir
à l’axiome du choix dans une phase prospective de recherche de preuve.

VI-5.8. Justification pratique de la mesurabilité. Au vu de la discussion
précédente, on ne peut construire une application non mesurable que si on cherche
absolument à le faire ; justifier la mesurabilité d’une application est donc en général
une opération de routine. En pratique, il n’y a guère qu’une situation à laquelle il
faut prendre garde : si f(x, y) est une fonction mesurable de deux variables, disons
réelles, il n’y a pas de raison a priori pour que la fonction

f : x 7−→ sup
y
f(x, y)

soit mesurable. Dans la pratique, on cherche toujours, en présence d’une telle situa-
tion, à se ramener à un supremum pris sur une famille dénombrable.

Exemple VI-58. Soit f : Rn → R une fonction localement λn-sommable ; on
définit la fonction maximale de f par

Mf(x) := sup
r>0

1

|Br(x)|

∫
Br(x)

f,

où Br(x) désigne la boule Euclidienne de rayon r, centrée en x. La famille des r > 0
n’est pas dénombrable, la mesurabilité de Mf n’est donc pas évidente a priori.
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Cependant, étant donnés deux rationnels q et q′ tels que q ≤ r ≤ q′, on a

|Bq(x)| ≤ |Br(x)| ≤ |Bq′(x)|;
∫
Bq(x)

f ≤
∫
Br(x)

f ≤
∫
Bq′ (x)

f.

Le supremum sur tous les nombres réels positifs peut donc être remplacé par un
supremum sur tous les nombres rationnels positifs. La fonction maximale est donc
effectivement mesurable !

Remarque VI-59. Une situation du même type, un peu plus subtile, survient
quand on considère des sommes de Minkowski :

A+B :=
{
x ∈ Rn; ∃ a ∈ A; ∃ b ∈ B; x = a+ b

}
.

Dans un tel cas, la mesurabilité de A et B n’implique pas forcément celle de A +
B. Pour y remédier, on fera par exemple l’hypothèse que A et B sont compacts,
auquel cas A+B l’est également. Ou bien on utilisera une mesure extérieures pour
mesurer A + B. Ou encore on se rappellera que les images continues de boréliens
sont des ensembles analytiques et en particulier Lebesgue-mesurables (c’est la théorie
défrichée dans le Chapitre V) ; et il est clair que la somme de Minkowski de deux
ensembles boréliens fait partie de cette catégorie. Donc : Si A et B sont boréliens,
A+B n’est pas forcément borélien, mais à tout le moins Lebesgue-mesurable.

VI-5.9. Subtilités liées au produit. Plus traîtres que les exemples précédents
sont les subtilités liées à la combinaison de négligeabilité et de structure de produit
tensoriel. En effet, si l’on note L(Rn) la tribu des ensembles Lebesgue-mesurables
en dimension n, et si l’on admet l’existence de parties non mesurables de R, alors

L(Rm)⊗ L(Rn) 6= L(Rm+n) !

Pour s’en convaincre, il suffit de choisir un ensemble non Lebesgue-mesurable X
dans R, et de l’envoyer sur la diagonale (y = x) dans R2, via l’application ϕ : x 7−→
(x, x), ou sur l’axe horizontal (y = 0) dans R2, via l’application ϕ : x 7−→ (x, 0).
Comme la diagonale (ou l’axe horizontal) est de mesure nulle dans R2, ϕ(X) est
négligeable, et en particulier mesurable ; mais son image réciproque par ϕ n’est pas
mesurable. La conclusion est que la tribu L(R)⊗L(R) ne contient pas ϕ(X) ; cette
tribu est en fait strictement plus petite que la tribu L(R2). Comme corollaire particu-
lièrement déplaisant de ce contre-exemple, la formule de découpage en tranches,

λ2[A] =

∫
R
λ1[Ax] dx,

où Ax := {y ∈ R; (x, y) ∈ A} n’est pas valide pour un ensemble Lebesgue-mesurable
quelconque. Cette formule redevient valide si l’on définit les tranches après avoir
modifié A sur un ensemble de mesure nulle “bien choisi” (voir [Rudin, pp.168-169]).

Ce contre-exemple utilisait l’axiome du choix ; sans cet axiome, ce qu’il en reste
est que l’identité L(Rm)⊗ L(Rn) = L(Rm+n) est tout simplement indémontrable.

VI-5.10. Quelle tribu utiliser ? La tribu de Lebesgue est obtenue à partir de
la tribu borélienne “simplement” par complétion. A priori, cette opération devrait
rendre les raisonnements plus simples. Cependant, le paragraphe précédent a bien
montré qu’elle implique des subtilités importantes ; en fait elle risque de compliquer
les justifications. C’est une des raisons pour lesquelles je recommande vivement de
travailler uniquement avec la tribu borélienne chaque fois que cela est possible,
c’est-à-dire dans la grande majorité des problèmes d’analyse. L’ouvrage [Lieb–Loss]
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est un exemple de traité d’analyse réelle entièrement basé sur la tribu borélienne ;
et dans ma propre carrière de recherche, je n’ai jamais rencontré un problème où il
était vraiment utile de compléter la tribu borélienne.

VI-5.11. En conclusion. La discussion de toute cette section appelle à des
recommandations d’humilité : ne pas chercher à mesurer toutes les parties, ne pas
chercher à rendre mesurables les parties négligeables, mais se contenter des ensembles
boréliens (ou de leur généralisation, les ensembles analytiques et coanalytiques) ; ne
pas imposer l’axiome du choix mais se contenter de l’axiome du choix dépendant ;
accepter des zones d’ombre et de non-démontrabilité.





CHAPITRE VII

Les mesures de Hausdorff

Ce chapitre est consacré aux mesures de Hausdorff, qui généralisent la mesure de
Lebesgue. Même si elles n’ont pas la même importance pratique et universelle que
la mesure de Lebesgue, elles jouent un rôle majeur dans de nombreux domaines de
la mathématique et des sciences naturelles.

VII-1. Motivations
La théorie des mesures de Hausdorff est née une quinzaine d’années après celle

de la mesure de Lebesgue, et fut développée principalement par Besicovich pendant
les quarante années qui ont suivi. Elle répondait à plusieurs motivations.

VII-1.1. Mesures d’objets de dimension inférieures. Plaçons-nous en di-
mension 3 pour simplifier la discussion. La mesure de Lebesgue λ3 permet d’attribuer
à toutes les parties (mesurables) de R3 un “volume” ; mais dans de nombreux pro-
blèmes on a besoin de définir l’aire d’une surface, ou la longueur d’une courbe tracée
dans R3. La mesure de Lebesgue de tels objets est bien sûr nulle, ce qui suggère
l’introduction de nouvelles mesures pour définir les concepts d’“aire” ou de “lon-
gueur” de parties de R3. Bien sûr, on s’attend à ce que l’aire d’un objet soit infinie
si son volume est non nul, de sorte que ces nouvelles mesures seraient intéressantes
uniquement quand on les appliquerait à des ensembles Lebesgue-négligeables.

C’est dans cette perspective que Carathéodory construisit, vers 1914, des mesures
de dimension k dans Rn, avec 1 ≤ k < n, grâce à la notion de mesure extérieure
qu’il venait de développer.

VII-1.2. Changements de variables. Nous avons vu au chapitre précédent
des formules faisant intervenir un changement de variables T entre sous-ensembles
de Rn, et noté l’apparition du déterminant Jacobien | det∇T |. Qu’advient-il si notre
changement de variables fait intervenir des fonctions Rm → Rn, avec, par exemple,
m > n ? Nous avons déjà rencontré un exemple très simple : le théorème de Fubini
peut être considéré comme un changement de variables z ∈ Rm+n → (x, y) ∈ Rm×Rn

avec z = (x, y), et on peut écrire∫
Rm+n

f(z) dλm+n(z) =

∫
Rm

(∫
Rn

f(x, y) dλn(y)

)
dλm(x).

Bien sûr, dans ce cas il n’y a aucun problème car le changement de variables cor-
respond à un produit cartésien ; mais que se passe-t-il quand les choses sont plus
complexes ?

Un exemple familier et très utile est le changement de variables polaire
(aussi appelé changement de variables sphérique), dans lequel on troque la variable
x ∈ Rn\{0} pour le couple (r, σ) ∈ R+×Sn−1, avec r := |x| et σ := x/|x|. Comment
écrire la formule de changement de variables correspondante ? Voici comment pour-
rait raisonner un physicien ou un ingénieur : Faisons varier r dans un “intervalle
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infinitésimal” [r − dr, r + dr] et σ à l’intérieur d’un “disque infiniment petit” tracé
sur la sphère Sn−1, de centre σ et de surface dσ. La région ainsi visitée par le point
x est, à des infiniment petits d’ordre supérieur près, un cylindre centré en rσ, dont
la hauteur est 2 dr et la section a (par homogénéité) une “surface” rn−1 dσ. On en
déduit la formule de changement de variable

dx = rn−1 dr dσ.
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����

σ

r

Sn−1

Figure 1. Elément de volume autour de x dans les variables sphériques

Quelle est la signification de ce symbole dσ, que l’on peut interpréter comme
une “mesure d’aire infinitésimale sur la sphère Sn−1 ? Il s’agit bien de l’élément
d’intégration par raport à une mesure σ sur Sn−1, que l’on peut introduire comme
la restriction à Sn−1 de la mesure de Hausdorff de dimension n − 1 dans Rn. Il est
donc parfaitement licite d’écrire∫

Rn

f(x) dx =

∫
R+

(∫
Sn−1

f(rσ) dσ

)
rn−1 dr.

Il y a bien d’autres façons de définir σ : par exemple, comme l’élément de volume
sur Sn−1, vu comme une variété Riemannienne. On peut également, en basse dimen-
sion la définir au moyen de coordonnées explicites, ce qui est commode pour effectuer
des calculs : ainsi, quand n = 2, on peut identifier σ à un angle dans [0, π[ et écrire
dx = r dr dθ ; quand n = 3 on introduit traditionnellement deux “angles solides”
θ ∈ [0, π] et ϕ ∈ [0, 2π[, tels que (par exemple) σ = (sin θ cosϕ, sin θ sinϕ, cos θ), et
alors la formule correspondante est dx = rn−1 dr sin θ dθ dϕ... Mais c’est l’interpré-
tation en termes de restriction de mesure de Hausdorff qui s’avère conceptuellement
la plus naturelle pour généraliser la formule de changement de variables.

VII-1.3. Notion de dimension. Nous avons l’habitude de penser qu’une courbe
“régulière” est de dimension 1, car on peut localement la déformer “continûment”
en un morceau de droite ; de manière plus générale, il est naturel de penser à un
ensemble comme étant de dimension k si on peut le décrire localement au moyen de
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k fonctions indépendantes ; en particulier l’image par une application régulière d’un
ensemble de dimension k devrait être de dimension au plus k.

De tels énoncés sont effectivement vrais quand on travaille avec des fonctions
régulières ; mais il est possible de construire des courbes continues surjectives de
[0, 1] dans [0, 1]2, dites “courbes de Peano”. L’image d’une telle courbe est incontes-
tablement de dimension 2... Cet exemple montre bien qu’il est impossible de définir
une notion de dimension qui soit basée sur les dimensions d’espaces de départ et
d’arrivée. Comment déterminer si l’image d’une fonction continue [0, 1] → [0, 1]2,
non surjective, doit être considérée comme étant de dimension 0, 1 ou 2 ?

Le point de vue adopté en théorie de la mesure est le suivant : pour définir la
dimension d’un objet, on essaie de le mesurer par toute une famille de mesures, qui
sont associés à des objets de dimension déterminée. Ainsi, si un objet a une longueur
positive non nulle, il est naturel de penser qu’il est de dimension 1 ; s’il a une surface
positive non nulle, de dimension 2. Ce sont les mesures de Hausdorff qui vont jouer
ce rôle en définissant rigoureusement les notions de longueur, surface, etc.

Comme l’a découvert Hausdorff vers 1919, il est en fait possible de définir ces
mesures pour des dimensions non entières, et d’en déduire une notion de dimension
qui peut elle aussi être non entière. C’est cette contribution, techniquement simple
mais conceptuellement remarquable, qui a valu à son nom de rester attaché aux
mesures de Hausdorff et à la dimension ainsi définie, dite dimension de Hausdorff.

La dimension de Hausdorff permet de définir un ordre dans la notion de né-
gligeabilité : plutôt que de dire qu’un objet est de mesure de Lebesgue nulle, on
pourra souvent dire plus précisément qu’il est de telle ou telle dimension de Haus-
dorff. Comme on s’y attend, un point sera de dimension 0, un segment de droite de
dimension 1, etc.

Il existe aussi une autre notion populaire de dimension, antérieure à celle de
dimension de Hausdorff, et qui est souvent plus simple à manipuler, même si son
usage est moins courant que celui de la dimension de Hausdorff : c’est la dimension
de Minkowski. Mais l’un des grands avantages du formalisme de Hausdorff, c’est
qu’il fournit à la fois une notion de dimension et une notion de mesure.

Dans les dernières décennies, l’étude des objets fractals s’est développée considé-
rablement, motivée par les progrès de l’informatique, les suggestions visionnaires du
mathématicien polono-français Benoît Mandelbrot, et la découverte de formalismes
fractals dans des domaines aussi variés que la mécanique des fluides, les systèmes
dynamiques chaotiques, la théorie du signal, etc. Les mesures de Hausdorff, déjà très
utilisées par les spécialistes de théorie géométrique de la mesure, en particulier dans
le domaine du calcul des variations, se sont alors imposées comme l’un des outils-clés
dans l’étude des objets fractals [Falconer].

VII-1.4. Mesures de référence abstraites. Comme nous l’avons vu au cha-
pitre précédent, ses propriétés d’invariance font de la mesure de Lebesgue une mesure
de référence naturelle dans Rn. Si maintenant on se donne un espace métrique abs-
trait (X, d), peut-on y définir une mesure borélienne de référence “naturelle” ? Les
mesures de Hausdorff sont de bons candidats pour cela. En effet, pour toute dimen-
sion N , on peut définir a priori sur (X, d) une “mesure de Hausdorff de dimension N”
(qui malheureusement sera souvent triviale). Ainsi, si X est une variété de dimension
n, muni de sa distance géodésique, alors la mesure de Hausdorff N -dimensionnelle
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sur X coïncidera avec la mesure de volume quand N = n, et avec la mesure nulle
quand N > n.

VII-1.5. Ensembles de Besicovitch et problème de Kakeya. En 1919 le
mathématicien japonais Sōichi Kakeya posa le problème suivant, vaguement motivé
par des applications mécaniques : quelle est l’aire minimale qu’une épingle doit
balayer pour pouvoir s’orienter dans toutes les directions du plan ? Il proposa un
ensemble de surface fort réduite, mais Besicovitch montra que l’infimum des aires
de surfaces balayées était en fait... zéro ! La solution de ce problème était moins
intéressante que l’outil technique qu’il introduisit pour cela, : un ensemble de mesure
nulle, compact, comprenant des segments orientés dans toutes les directions. La
construction de Besicovitch, qui avait un parfum de géométrie fractale, lui permettait
aussi de construire des contre-exemples en théorie de l’intégration : si f est une
fonction définie dans le plan, valant 1 quand (x, y) est dans ce fameux ensemble et
a au moins une coordonnée rationnelle, et 0 sinon, alors quelle que soit la direction
que l’on choisit, il existe un axe parallèle à cette direction selon lequel f n’est pas
Riemann-intégrable ; cette fonction f est alors Riemann-intégrable en dimension 2,
sans qu’aucun choix de coordonnées ne permette de la considérer comme Riemann-
intégrable dans une direction, puis dans l’autre.

On appelle en son honneur ensemble de Besicovitch tout ensemble B ⊂ Rn,
qui pour tout angle σ ∈ Sn−1 contient au moins un segment de longueur unité
orienté selon σ. Ces ensembles sont reliés à de nombreux problèmes d’analyse, en
particulier harmonique, ce qui motiva des recherches approfondies pour déterminer
leur taille minimale. Le problème de Kakeya consiste à montrer que tout ensemble
de Besicovitch dans Rn est de dimension (de Hausdorff et de Minkoswki) au moins n.
Après sa résolution en dimension n = 2 par le mathématicien britannique Roy Davies
en 1971, il a suscité une quantité considérable de travaux par des analystes de premier
plan, établissant avec ténacité des bornes partielles ou étudiant des cas particuliers.
Il fallut attendre 2025 pour que la Chinoise Hong Wang et l’Américain Joshua Zahl
résolvent le cas n = 3, causant l’une des grandes sensations mathématiques de
l’époque. Ainsi les questions originelles de Kakeya et Besicovitch ont mené à des
développements profonds dans la théorie des dimensions fractionnaires.

VII-2. Construction des mesures de Hausdorff
VII-2.1. Définition. Comme on l’a déjà vu, la mesure de Lebesgue, ou lon-

gueur, d’une partie A de R est définie comme l’infimum des sommes des longueurs
des intervalles recouvrant A :

|A| := inf
{∑

ℓ(Ik); Ik intervalle; A ⊂ ∪Ik
}
.

C’est cette définition que l’on a envie de généraliser. En dimension plus grande que 1,
les candidats naturels pour jouer le rôle d’intervalles sont les boules. Un calcul assez
simple (basé sur un changement de variable polaire !) montre que le volume de la
boule de rayon r en dimension d ∈ N est

|Br|d = α(d) rd, α(d) :=
πd/2

Γ
(
d
2
+ 1
) ,

où Γ(x) :=
∫∞
0
e−ttx−1 ds est la fonction Γ habituelle.
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Si l’on cherche à définir des dimensions d non entières, il est naturel (mais non
obligatoire) d’utiliser la même formule pour α(d), ce qui revient à prolonger par
analyticité la fonction “volume d’une boule de rayon r en dimension d”.

Voici maintenant une première tentative de construction de la “mesure d-dimensionnelle”,
copiant la définition de la mesure de Lebesgue :

µd[A] := inf

{
∞∑
k=1

α(d)rdk; A ⊂
∞⋃
k=1

Brk(xk)

}
?

On se rend compte tout de suite que cette définition est absurde : le volume 1-
dimensionnel d’une boule de R2 serait fini ! Le problème vient de ce que la notion de
dimension doit dépendre uniquement de la structure locale d’un objet, et que donc
on doit forcer le recouvrement par des boules à “épouser les détails” de l’ensemble
A ; autrement dit, il faut définir la mesure d-dimensionnelle en fonction de recou-
vrements par des petites boules. Avec la mesure de Lebesgue sur R, cette propriété
était superflue : un “gros” intervalle de longueur L peut se partager en L/ε “petits”
intervalles de longueur ε, et les deux recouvrements ainsi obtenus sont équivalents
en termes de mesure.

Voici donc une deuxième tentative de définition de “mesure d-dimensionnelle” :

µd[A] := lim
ε→0

inf

{
∞∑
k=1

α(d) rdk; A ⊂
∞⋃
k=1

Brk(xk); rk ≤ ε

}
.

La mesure ainsi définie est dite mesure de Hausdorff sphérique [Falconer1, p. 7].
Elle a le défaut de reposer sur la notion de boule, qui n’est pas invariante par
restriction : si A ⊂ Rn, et B ⊂ Rn est une boule de rayon r, alors A ∩ B n’est pas
forcément une boule dans A (il suffit que le centre de la boule n’appartienne pas à
A...). Ce qui est vrai en revanche, c’est que le diamètre de A ∩ B est inférieur ou
égal à 2r.

Pour avoir une notion aussi intrinsèque que possible, et être sûr que la mesure
d’un objet ne dépend pas de la taille de l’espace dans lequel on le plonge, on souhai-
terait donc définir les mesures de Hausdorff en fonction des diamètres, sans référence
à la notion de boule. Cette troisième tentative est la bonne, elle mène à la définition
finalement retenue pour les mesures de Hausdorff :

Définition VII-1 (mesure de Hausdorff). Soient A ⊂ Rn, et d ∈ R+. On définit
la mesure de Hausdorff d-dimensionnelle de A par

(65) Hd[A] = lim
ε→0

inf

{
∞∑
k=1

α(d) r(Ck)
d; A ⊂

∞⋃
k=1

Ck diam (Ck) ≤ ε

}
,

où les Ck sont des parties arbitraires de Rn, r(Ck) := diam (Ck)/2 est le demi-
diamètre de Ck, et

α(d) :=
πd/2

Γ(d
2
+ 1)

est le “volume de la boule unité de dimension d”.

Remarques VII-2. (i) Posons

Hd
ε [A] = inf

{
∞∑
k=1

α(d) r(Ck)
d; A ⊂

∞⋃
k=1

Ck diam (Ck) ≤ ε

}
.
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Comme Hd
ε [A] est clairement une fonction décroissante de ε, l’existence de

limε→0 Hd
ε [A] est assurée, et cette limite est un supremum.

(ii) Soit A tel que Hd[A] < +∞, alors pour tout ε > 0 on a Hd
ε [A] < +∞, et

pour tout δ > 0 on peut trouver une famille dénombrable (Ck) d’ensembles
de diamètre au plus ε, recouvrant A, telle que

∞∑
k=1

α(d) r(Ck)
d ≤ Hd

ε [A] + δ.

Pour tout εk > 0, l’ensemble C ′
k des points dont la distance à Ck est stricte-

ment inférieure à εk est un ouvert contenant A ; en choisissant εk suffisamment
petit, on peut faire en sorte que les quantités

∑
r(Ck)

d et
∑
r(C ′

k)
d ne dif-

fèrent pas de plus que δ. On a donc l’énoncé suivant : Pour tous δ > 0, ε > 0
et ε′ > ε on peut trouver une famille dénombrable (C ′

k) d’ouverts, de diamètre
au plus ε′, recouvrant A, telle que

∞∑
k=1

α(d)r(C ′
k)

d ≤ Hd
ε [A] + δ.

En remplaçant les Ck par les Ck, on voit également que le mot “ouverts” dans
l’énoncé précédent peut être remplacé par “fermés”. En faisant ensuite tendre
ε et ε′ vers 0, on vérifie facilement que la définition de la mesure de Hausdorff
est inchangée si l’on impose au recouvrement d’être constitué d’ensembles
ouverts (resp. fermés).

L’énoncé suivant justifie la terminologie “mesure de Hausdorff”.

Proposition VII-3 (la mesure de Hausdorff est une mesure de Borel). Pour
tout d ≥ 0, la fonction A 7−→ Hd[A] est une mesure extérieure sur Rn, et définit une
mesure sur la tribu borélienne B(Rn).

Démonstration. Il est clair que Hd[∅] = 0 et que Hd est une fonction croissante
d’ensembles. On vérifie facilement que

Hd
ε [∪Ak] ≤

∑
k∈N

Hd
ε [Ak].

En passant à la limite ε → 0 dans le terme de gauche, et en utilisant l’inégalité
Hd

ε ≤ Hd dans le terme de droite, on trouve

Hd[∪Ak] ≤
∑
k∈N

Hd[Ak].

La fonction Hd est donc sous-additive : c’est bien une mesure extérieure, définie sur
l’ensemble de toutes les parties de Rn.

Soit M la tribu des ensembles Hd-mesurables, au sens de l’énoncé du Théo-
rème II-82 ; on sait que H définit une mesure sur M. Pour vérifier que M contient
toutes les parties boréliennes, on utilise le critère de Carathéodory présenté au Théo-
rème II-92. Soient donc A et B deux parties de Rn vérifiant d(A,B) > 0, on cherche
à montrer que

Hd[A ∪ B] = Hd[A] +Hd[B].

Pour tout ε < d(A,B)/2, un ensemble de diamètre ε ne peut intersecter à la fois
A et B ; si l’on se donne un recouvrement de A ∪ B par des ensembles de diamètre
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au plus ε on pourra donc en extraire des sous-recouvrements disjoints de A et B
en considérant d’une part les ensembles qui intersectent A, d’autre part ceux qui
intersectent B. On en déduit que Hd

ε [A ∪ B] = Hd
ε [A] +Hd

ε [B], et la conclusion en
découle par passage à la limite. □

Exemples VII-4. (i) Soit A = {x0} un singleton. Il est clair que l’on peut
recouvrir A par une boule de rayon nul, ce qui est de volume d-dimensionnel
nul pour tout d > 0. Il s’ensuit que H0[A] = 1, Hd[A] = 0 pour tout d > 0.
Par σ-additivité, pour tout A dénombrable, H0[A] n’est autre que le cardinal
de A ; et cette identité reste valable si A n’est pas dénombrable. On conclut
que H0 n’est autre que la mesure de comptage.

(ii) Il est facile de vérifier que la mesure de Hausdorff H1 dans R n’est autre que
la mesure de Lebesgue. Le caractère intrinsèque de la définition de H1 garantit
que le mesure H1 restreinte à un segment de droite de R2 est également la
mesure de Lebesgue sur ce segment de droite (vu comme sous-ensemble d’une
copie de R).

(iii) Soit µ la mesure définie sur R2 par∫
f dµ =

∫ 1

0

f(0, t) dt.

Un peu de réflexion montre que µ = δ0 ⊗ H1b[0,1], où le symbole b signifie
“restriction”.

(iv) On pourra montrer en exercice que si I = [x, y] est un segment de droite
dans R2 (non réduit à un point), alors Hd[I] vaut +∞ si d < 1, |x − y| si
d = 1 et 0 si d > 1.

VII-2.2. Propriétés élémentaires. Commençons par un critère de négligea-
bilité, conséquence immédiate de la structure de mesure extérieure :

Proposition VII-5 (critère pratique de Hausdorff-négligeabilité). Soit A ⊂ Rn.
Alors Hd[A] = 0 si et seulement si on peut inclure A dans une union d’ensembles
Bk tels que

∑∞
k=1 diam (Bk)

d est arbitrairement petit.
Cet énoncé généralise le critère de négligeabilité habituel pour la mesure de

Lebesgue dans R : un sous-ensemble de R est de mesure nulle si et seulement si on
peut l’inclure dans une union dénombrable d’intervalles dont la somme des longueurs
est arbitrairement petite.

Voici maintenant une propriété bien commode des mesures de Hausdorff, qui
explique en partie le rôle privilégié des fonctions Lipschitziennes dans ce contexte :

Proposition VII-6 (borne sous l’action des fonctions Lipschitziennes). (i) Soit
f une fonction k-Lipschitzienne définie sur un borélien de Rn, à valeurs dans Rm,
alors pour tout ensemble borélien B ⊂ A et pour tout d ∈ [0, n] on a

Hd[f(A)] ≤ kd Hd[A].

(ii) Plus généralement, si f et g sont deux fonctions définies sur un borélien de
Rn, à valeurs dans Rm, telles que pour tous x, y ∈ A on ait

|f(x)− f(y)| ≤ |g(x)− g(y)|,
alors pour tout borélien B ⊂ A et pour tout d ∈ [0, n] on a

Hd[f(A)] ≤ Hd[g(A)].
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Démonstration. Si f est k-Lipschitzienne, en passant au supremum pour
(x, y) ∈ B × B dans l’inégalité |f(x) − f(y)| ≤ k|x − y|, on voit que pour tout
ensemble C ⊂ A, diam (f(C)) ≤ k diam (C). L’énoncé (i) en découle immédiate-
ment.

La démonstration de (ii) est similaire : l’hypothèse implique diam (f(C)) ≤
diam (g(C)). □

Passons maintenant à des propriétés d’invariances, qui elles aussi découlent di-
rectement de la définition :

Proposition VII-7 (invariance par isométrie-multiplication). Soit T une appli-
cation affine de la forme

T (x) = αAx+ b,

où A est une isométrie, α > 0 et b ∈ Rn. Alors

T#Hd = α−d Hd.

En particulier, pour tout borélien C, on a Hd[C+ b] = Hd[C] et Hd[αC] = αd Hd[C],
et Hd est 2d-doublante.

Remarque VII-8. Lors d’un changement de variables dans une intégrale faisant
intervenir des mesures de Hausdorff, ce n’est donc pas le déterminant jacobien qui
apparaît, même pour des opérations de multiplication scalaire.

La Propriété VII-7 peut sembler étrange si l’on se souvient de la caractérisation de
la mesure de Lebesgue par son invariance sous l’action des translations : les mesures
de Hausdorff vérifient la même propriété d’invariance ! Il n’y a pas de contradiction
car les mesures de Hausdorff, malgré leur propriété de doublement, sont souvent très
singulières (ou triviales), comme le montre la propriété suivante.

Proposition VII-9. Soit Cn := [0, 1[n⊂ Rn ; alors Hd[Cn] = +∞ pour tout
d < n et 0 pour tout d > n. En particulier,

- si d < n, alors Hd[O] = +∞ pour tout ouvert (non vide) de Rn ;
- si d > n, alors Hd est la mesure nulle sur Rn.

Démonstration. Pour tout k ≥ 1, on peut partager Cn en 2nk “petits” cubes
semi-ouverts de côté 2−k, qui sont tous de mesure 2−dk Hd[Cn], par la Proposi-
tion VII-7. La σ-additivité implique donc

Hd[Cn] = 2nk2−dk Hd[Cn].

Si Hd[Cn] /∈ {0,+∞} on a donc forcément n = k.
Dans le cas où d > n, on peut appliquer la Proposition VII-5 : les petits cubes

sont de diamètre
√
n2−k, et la somme de leurs diamètres à la puissance d vaut donc

2nknd/22−dk −−−→
k→∞

0.

Il s’ensuite que Hd[Cn] = 0. Comme Rn est union dénombrable de copies de Cn, il
s’ensuit que Hd[Rn] = 0.

Dans le cas où d < n, pour montrer que Hd[Cn] = +∞ il suffit de montrer que
Hd[Cn] > 0. On peut raisonner comme suit : si Bk est un ensemble de diamètre 2rk,
alors on peut l’inclure dans une boule euclidienne de rayon 2rk, et λn[Bk] ≤ 2nα(n)rnk .
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On a donc, pour tout recouvrement de Cn par des ensembles Bk de demi-diamètre
rk ≤ 1,

1 = λn[Cn] ≤
∑
k

λn[Bk] ≤ 2nα(n)
∑
k

rnk ≤ 2nα(n)
∑
k

rdk,

et en passant à l’infimum on voit que Hd[Cn] ≥ 1/(2nα(n)). Il s’ensuit que Hd[Cn] =
+∞, et donc Hd[C] = +∞ pour tout cube semi-ouvert de Rn. On conclut en notant
que tout ouvert contient un cube semi-ouvert. □

VII-2.3. Régularité. Il résulte de la Proposition VII-9 que la mesure de Haus-
dorff Hd en dimension n > d n’est ni σ-finie, ni régulière au sens de la Définition II-56.
Cependant, la propriété II-57 (que de nombreux auteurs appellent aussi régularité)
reste vraie :

Théorème VII-10 (régularité faible de la mesure de Hausdorff). Soit d ≥ 0, et
soit A ⊂ Rn une partie quelconque. Alors

(i) Il existe G, intersection dénombrable d’ouverts contenant A, telle que
Hd[G] = Hd[A];

(ii) Si A est Hd-mesurable et Hd[A] < +∞, alors il existe F , union dénombrable
de fermés contenus dans A, telle que

Hd[F ] = Hd[A].

En particulier,
Hd[A] = sup

{
Hd[K]; K compact; K ⊂ A

}
.

Remarque VII-11. L’énoncé (i) peut surprendre, puisque G est l’intersection
décroissante des Uk, où chaque Uk est une intersection finie d’ouverts, donc un ou-
vert ; si Hd[A] < +∞ on a donc

Hd[A] = Hd[G] < limHd[Uk] = +∞.

Pourquoi cela n’est-il pas en contradiction avec la σ-additivité de Hd ?

Démonstration du Théorème VII-10. (i) Sans perte de généralité, on sup-
pose que Hd[A] < +∞. Pour tout k, on a Hd

1/k[A] ≤ Hd[A] < +∞, et par la
remarque VII-2(ii), on peut trouver un recouvrement de A par des ouverts C ′

k,j de
diamètre au plus 2/k, tel que∑

j

α(d) r(C ′
k,j)

d ≤ Hd
1/k[A] +

1

k
.

On pose alors
Ok :=

⋃
j∈N

C ′
k,j, G :=

⋂
k≥1

Ok.

Il est clair que G contient A, et d’autre part pour tout k on a

Hd
2/k[G] ≤

∑
j

α(d) r(C ′
k,j)

d ≤ Hd
1/k[A] +

1

k
.

Il s’ensuit que Hd[G] ≤ Hd[A], d’où la conclusion.
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(ii) Chacun des ouverts Ok peut s’écrire comme union dénombrable croissante
de fermés Fk,j (j ∈ N). Par σ-additivité,

lim
j→∞

Hd[A ∩ Fk,j] = Hd[A ∩Ok] = Hd[A].

Pour tout δ > 0 et k ≥ 1 on choisit jk tel que

Hd[A ∩ Fk,jk ] ≥ Hd[A]− 2−kδ.

On pose
F ′ :=

⋂
k≥1

Fk,jk ;

on a alors Hd[A ∩ F ′] ≥ Hd[A] − δ. Attention, rien ne garantit que F ′ soit inclus
dans A ! Cependant, F ′ est inclus dans ∩Ok = G, et Hd[G \ A] = 0, il s’ensuit que
Hd[F ′ \A] = 0. Par la partie (i) du théorème, il existe un ensemble G′, intersection
dénombrable d’ouverts, de mesure nulle, tel que F ′ \A ⊂ G′. Alors Fδ := F ′ \G′ est
contenu dans A, c’est une intersection dénombrable de fermés, et

Hd[Fδ] ≥ Hd[F ′]−Hd[G′] = Hd[F ′] ≥ Hd[A]− δ.

On conclut en posant F :=
⋂

k≥1 F1/k. □

Les mesures de Hausdorff vérifient certaines des propriétés de densité au sens de
Lebesgue. On établit ainsi le théorème suivant [Evans-Gariepy, pp. 72-75]

Théorème VII-12 (densité au sens de Hausdorff). Soit A ⊂ Rn un ensemble
Hd-mesurable, avec Hd[A] < +∞, 0 < d < n. Alors pour Hd-presque tout x ∈ A,

2−d ≤ lim sup
r→0

Hd[Br(x) ∩ A]
α(d) rd

≤ 1

et pour Hd-presque tout x ∈ Rn \ A,

lim
r→0

Hd[Br(x) ∩ A]
α(d) rd

= 0.

Remarque VII-13. Il ne faut pas être surpris par la dissymétrie des deux énon-
cés : les ensembles Hd-mesurables de mesure finie sont “très petits”, en particulier
leur complémentaire est toujours de mesure infinie. En tous les cas, il n’est pas
toujours vrai que Hd-presque tout point x de A soit régulier, au sens où on aurait

lim
r→0

Hd[B(x, r) ∩ A]
α(d) rd

= 1.

Un travail considérable a été accompli dans la deuxième moitié du vingtième
siècle pour préciser l’énoncé ci-dessus et décrire les ensembles Hd-mesurables de
manière plus précise. De manière générale, on peut décomposer un ensemble Hd-
mesurable en une “partie régulière”, dont Hd-presque tous les points sont réguliers, et
une partie “totalement irrégulière”, dont Hd-presque aucun point n’est régulier. Les
propriétés de ces ensembles et leur description géométrique (existence de tangentes,
etc.) occupent une bonne partie de [Falconer1], et constituent encore un domaine de
recherche en activité.
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VII-2.4. Généralisation abstraite. Il est facile de généraliser la notion de
mesure de Hausdorff à un espace métrique X arbitraire : il suffit d’utiliser la for-
mule (65) pour A ⊂ X, en prenant l’infimum sur tous les recouvrements de A par
des parties Bk de X, de diamètre au plus ε.

VII-3. Identification des mesures de Hausdorff
Quand d n’est pas un entier, il est difficile d’interpréter la mesure de Hausdorff Hd

d’une manière intuitive ; elle définit une sorte de volume en dimension fractionnaire,
qu’il vaut sans doute mieux considérer de manière purement formelle. En revanche,
quand d est un entier, la question se pose de savoir si on retrouve des concepts
familiers de longueur, surface, volume, etc.

Juste après avoir défini la notion de mesure de Hausdorff, on a remarqué que la
mesure de Hausdorff 0-dimensionnelle coïncide avec la mesure de comptage. Nous
allons maintenant voir qu’il y a bien identité entre les deux notions naturelles de “vo-
lume n-dimensionnel dans Rn”, données respectivement par la mesure de Lebesgue
et par la mesure de Hausdorff n-dimensionnelle. On verra en outre que la mesure de
Hausdorff 1-dimensionnelle prolonge une définition courante de la longueur.

VII-3.1. Inégalité isodiamétrique. Soit A ⊂ Rn, de demi-diamètre r. Il est
clair que le volume de A est égal à α(n)rn si A est une boule, mais que peut-on dire
dans le cas général ? On est tenté de penser que A est inclus dans une boule de rayon
r, ou r+ε avec ε > 0 arbitrairement petit, mais ce n’est pas forcément le cas, comme
le montre l’exemple d’un triangle de côté 1 dans R2 est de diamètre 1. Cependant,
l’inégalité isodiamétrique assure que le volume d’un tel ensemble est inférieur ou
égal à celui d’une boule de même rayon.

Théorème VII-14 (inégalité isodiamétrique). Soit A ⊂ Rn un ensemble Lebesgue-
mesurable, et r son demi-diamètre. Alors

λn[A] ≤ α(n)rn.

En d’autres termes, à diamètre fixé, les boules maximisent le volume.

Remarques VII-15. (i) On pourra comparer cet énoncé à celui de l’inégalité
isopérimétrique, qui stipule qu’à surface fixée, les boules maximisent le vo-
lume.

(ii) L’inégalité isodiamétrique peut paraître évidente à première vue, mais elle
ne l’est pas, car un ensemble de diamètre 2r ne peut pas, en général, s’inclure
dans une boule de rayon r.

La preuve du Théorème VII-14 sera l’occasion d’utiliser pour la première fois la
technique puissante de symétrisation de Steiner.

Définition VII-16 (symétrisation de Steiner). Soit A ⊂ Rn, et soit a ∈ Rn

un vecteur de norme 1. Soit Pa l’hyperplan passant par 0, orthogonal à a. On peut
écrire A comme l’union disjointe des La,z ∩ A, où La,z est la ligne dirigée par a,
passant par z ∈ Pa. Pour chaque z ∈ Pa, on construit le segment A′

z centré en z, tel
que H1[A′

z] = H1[La,z ∩ A]. La réunion disjointe des segments A′
z ainsi obtenus est

appelé symétrisé de Steiner de A par rapport à l’hyperplan Pa.

J’admettrai le lemme suivant [Evans-Gariepy pp. 67-68], et suggère comme exer-
cice de le démontrer informellement.
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Figure 2. Le triangle équilatéral ne rentre pas dans le disque de
même diamètre.

Figure 3. Représentation schématique de la symétrisation de Steiner

Lemme VII-17 (propriétés de la symétrisation de Steiner). La symétrisation de
Steiner réduit le diamètre et préserve la mesure de Lebesgue.

Démonstration de l’inégalité isodiamétrique. Soit (e1, . . . , en) une base
euclidienne de Rn. On note Sa la symétrisation de Steiner par rapport à Pa, et
A∗ := SenSen−1 . . . Se1A. Le diamètre de A∗ est alors inférieur ou égal à celui de A,
tandis que la mesure de Lebesgue de A∗ est égale à celle de A ; il suffit donc de
montrer le résultat pour A∗.

Par récurrence, et en utilisant le fait que la réflexion autour de Pek laisse ej inva-
riant pour tout j 6= k, on montre que A∗ est symétrique par rapport à Pe1 , . . . , Pen ,
et donc symétrique par rapport à l’origine. Il s’ensuit que A∗ est contenu dans une
boule de centre 0 et de rayon diam (A∗)/2. Le résultat en découle. □

VII-3.2. Dimension n : le volume. La mesure de Hausdorff n-dimensionnelle
en dimension n coïncide avec la mesure de Lebesgue λn :

Théorème VII-18 (Hn = λn). Soit A ⊂ Rn un ensemble Borélien. Alors
Hn[A] = λn[A].

En particulier, si Ek est un sous-espace affine de Rn, de dimension k, alors la
restriction de Hk à Ek coïncide avec la mesure de Lebesgue sur Ek.

Je vais commencer par présenter une démonstration simple d’un énoncé plus
faible selon lequel Hn est proportionnelle à λn. La démonstration complète du Théo-
rème VII-18 est plus subtile et utilisera l’inégalité isodiamétrique.
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Démonstration partielle du Théorème VII-18. Il est clair que Hn est
invariante par translation (de même que toutes les mesures de Hausdorff sur Rn).
Pour montrer que Hn et λn sont proportionnelles (il existe c(n) > 0 tel que Hn =
c(n)λn), il suffit donc de montrer que Hb[Cn] ∈ (0,+∞), où Cn = [0, 1]n.

Soit ε > 0, et k ∈ N tel que 2−k ≤ ε/
√
n ≤ 2−k+1. On peut recouvrir Cn par

2nk cubes de côté 2−k, dont chacun aura un diamètre
√
n2−k ≤ ε. Il s’ensuit que

Hn
ε [Cn] ≤ C(n) 2nk2−nk = C(n), où C(n) est une constante ne dépendant que de n.

En prenant la limite quand ε→ 0 on conclut que

Hn[Cn] < +∞.

Par ailleurs, si A est un ensemble quelconque, sa mesure de Lebesgue extérieure
est majorée par C ′(n)diam (A)n, où C ′(n) est le volume de la boule de rayon 2 dans
Rn. Si l’on a un recouvrement de Cn par des ensembles Aj, la somme de toutes
les mesures extérieures de ces ensembles est au moins égale à celle du cube, d’où∑
C ′(n)(diam (A))n ≥ 1. On en déduit que Hn

ε [Cn] est minoré par une constante
positive indépendante de ε, et en faisant tendre ε vers 0 on conclut que

Hn[Cn] > 0.

□

Démonstration complète du Théorème VII-18. La deuxième partie de
ce théorème se déduit de la première grâce au caractère intrinsèque de la définition
de mesure de Hausdorff : la restriction de la mesure de Hausdorff Hk à Ek est
exactement la mesure de Hausdorff Hk définie sur Ek, qui est une copie de Rk.

Soit (Ck)k≥1 un recouvrement de A par des ensembles de diamètre inférieur ou
égal à ε. Grâce à l’inégalité isodiamétrique, on a

λn[A] ≤
∑
k

λn[Ck] ≤
∑
k

α(n)r(Ck)
n.

En passant à l’infimum, on voit que λn[A] ≤ Hn
ε [A], et donc λn[A] ≤ Hn[A]. Il nous

reste à montrer l’inégalité inverse.
Il est facile de montrer, en utilisant des cubes dyadiques, que

λn[A] = inf

{
∞∑
k=1

λn[Qk]; A ⊂
⋃

Qk, r(Qk) ≤ ε

}
,

où les Qk sont des cubes dyadiques de côtés parallèles aux axes. Pour de tels cubes,
on peut trouver une constante cn, dépendant uniquement de n, telle que

α(n)r(Qk)
n = cnλn[Qk].

On en déduit que Hn ≤ cnλn.
Pour conclure, on utilise le résultat suivant, conséquence du Lemme de recou-

vrement de Vitali, et plus précisément de son Corollaire II-103 (et de la Propriété
VI-7 : Étant donné un cube Q et ε > 0, on peut écrire

Q =
⋃
j≤1

Bj ∪N,

où les Bj sont des boules fermées de rayon au plus ε, disjointes, et N est un ensemble
Lebesgue-négligeable.
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Soit maintenant A un ensemble Lebesgue-mesurable, on choisit une famille (Ck)
de cubes Qk recouvrant A, telle que∑

k

λn[Qk] ≤ λn[A] + δ,

où δ > 0 est arbitrairement petit. Pour chaque Qk on introduit une famille de
boules (Bk,j)j≥1 et un ensemble négligeable Nk vérifiant les conclusions du lemme
admis ci-dessus ; en particulier, H[Nk] ≤ cn · 0 = 0. On donc

Hn
ε [A] ≤

∑
k≥1

Hn[Qk] =
∑
k≥1

(
∑
j≥1

H[Bk,j] +H(Nk))

≤
∑
k≥1

∑
j≥1

λn[Bk,j] =
∑
k≥1

λn[∪Bk,j] =
∑
k≥1

λn[Qk] ≤ λn[A] + δ.

Ceci conclut l’argument. □

VII-3.3. Dimension 1 : la longueur. On pourrait convenir a priori de choisir
H1 comme définition de la longueur d’une partie de Rn. Cependant, il existe une
autre notion simple et populaire de longueur, bâtie sur le concept de rectifiabilité.
Commençons par en rappeler les propriétés principales.

Définition VII-19 (rectifiabilité). Soient I un intervalle de R et γ : I → Rn

une courbe continue injective. On dit que γ est rectifiable sur I si pour tout intervalle
compact [a, b] ⊂ I,

L[a,b](γ) :=

sup

{
N∑
k=0

|γ(tk+1)− γ(tk)|; a = t0 ≤ t1 ≤ . . . ≤ tN ≤ tN+1 = b, N ∈ N

}
< +∞

où le supremum est pris sur toutes les subdivisions finies (a = t0, t1, . . . , tN , tN+1 = b)
de [a, b]. On appelle alors
(66) L(γ) := sup

[a,b]⊂I

L[a,b](γ)

la longueur de γ.

En d’autres termes, la longueur d’une courbe est le supremum de toutes les
longueurs des “approximations polygonales” de cette courbe. Ce procédé de calcul
de longueur est la rectification de la courbe.

Remarques VII-20. (i) Par définition, L[a,b](γ) est toujours supérieur ou
égal à |γ(b) − γ(a)|, et on peut vérifier qu’il y a égalité quand la courbe est
une fonction affine : la ligne droite est bien le plus court chemin entre deux
points !

(ii) On généralise sans difficulté cette notion à un espace métrique abstrait.

Noter l’hypothèse d’injectivité faite dans la définition : des maux de tête s’en-
suivraient si l’on devait prendre en compte la multiplicité ; ou alors il faudrait bien
prendre garde à définir la longueur de la courbe γ, et non simplement de son image
γ([a, b]). Mais par souci de simpliciité, dans cette partie je ne travaillerai qu’avec des
courbes injectives.
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γ(t0)

γ(t1)

γ(t2)

γ(t3)

Figure 4. Approximation polygonale d’une courbe

Une courbe γ étant donnée, on appelle reparamétrage de γ toute courbe (in-
jective) γ̃, dont l’image est la même que celle de γ. On note que la longueur est
invariante par reparamétrage.

Si γ est une courbe rectifiable définie sur un intervalle I, et x0 est un point arbi-
traire de I, alors on peut définir un reparamétrage privilégié de γ, dit paramétrage
par longueur d’arc : on définit la longueur orientée à partir de x0 par

ℓx0(x) =

{
L[x0,x](γ) (x ≥ x0)

−L[x,x0](γ) (x < x0)
;

on vérifie que la fonction ℓx0 est continue et strictement croissante, en particulier
inversible sur son image. On définit alors le reparamétrage γ̃ par

γ̃(x0 + ℓx0(x)) = γ(x), ℓ(x) = L[x0,x](γ).

Les propriétés suivantes découlent presque immédiatement de la définition.

Proposition VII-21 (propriétés du paramétrage par longueur d’arc). Soit γ :
I → R une courbe paramétrée par longueur d’arc. Alors pour tout [a, b] ⊂ I,

L[a,b](γ) = b− a;

En particulier,
(67) |γ(b)− γ(a)| ≤ b− a,

et
L(γ) = |I|.

Le théorème suivant montre que la dimension de Hausdorff de dimension 1 est
une généralisation du concept de rectifiabilité.

Théorème VII-22 (L = H1). Soient I un intervalle de R, et γ : I → R une
courbe injective rectifiable. Alors

H1[γ(I)] = L(γ).

Démonstration. Sans perte de généralité, on supposera que γ est paramétrée
par longueur d’arc. Si (Ak)k∈N est un recouvrement de γ(I), on définit un recouvre-
ment (Bk)k∈N de I en définissant Bk := γ−1(Ak). l’inégalité (67) implique alors que
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diam (Bk) ≥ diam (Ak). En utilisant les définitions des mesures de Hausdorff, on en
déduit

H1(γ(I)) ≥ H1(I) = |I| = L(γ).

Pour établir l’inégalité inverse, commençons par remarquer que H1(γ([a, b])) ≥
|γ(b) − γ(a)|. En effet, si π est la projection orthogonale de γ([a, b]) sur la ligne
droite joignant γ(a) et γ(b), alors π réduit les distances, donc, par définition des
mesures de Hausdorff, H1(γ([a, b])) ≥ H1(π(γ([a, b]))) = H1([γ(a), γ(b)]). On peut
identifier la droite passant par γ(a) et γ(b) à R ; en utilisant alors l’identié H1 = λ1 en
dimension 1, on constate que H1([γ(a), γ(b)]) n’est autre que la longueur du segment
[γ(a), γ(b)], i.e. |γ(b)− γ(a)|.

Enfin, soit [a, b] ⊂ I et soit a = t0 ≤ t1 ≤ . . . ≤ tN ≤ tN+1 = b une subdi-
vision de [a, b] ; cette subdivision découpe l’intervalle I en sous-intervalles ouverts
I0, I1, . . . , IN+1, IN+2. Les points étant de mesure de Hausdorff H1 nulle, on a

H1(γ(I)) =
N+2∑
k=0

H1(γ(Ik)) ≥
N+1∑
k=1

H1(γ(Ik)) ≥
N∑
k=0

|γ(tk+1)− γ(tk)|.

En prenant le supremum sur toutes les subdivisions possibles, puis sur [a, b] ⊂ I, on
conclut que

H1(γ(I)) ≥ L(γ),

ce qui achève la preuve. □

VII-3.4. Autres dimensions entières. On vient de constater que la mesure
de Hausdorff n-dimensionnelle s’identifie à la mesure de Lebesgue, i.e. au volume
n-dimensionnel, et que la mesure de Hausdorff 1-dimensionnelle s’identifie à une
notion de longueur, au moins dans le cas des courbes rectifiables. Il convient d’être
plus prudent en ce qui concerne les autres dimensions entières ! Appliquées à des
objets suffisamment “réguliers”, les mesures de Hausdorff donneront les résultats
attendus : par exemple, la mesure H2 définit une notion de surface, etc. Cependant,
pour des objets irréguliers, ces notions peuvent ne pas recouper les autres notions en
vigueur... Cette remarque vaut aussi pour la dimension 1, dans le cas d’objets peu
réguliers.

Le cas le plus frappant est celui où d = n − 1. Soit A ⊂ Rn une partie com-
pacte (pour simplifier), comment définir la “surface” (ou volume n−1-dimensionnel)
S(∂A) de son bord ∂A ? Il existe trois définitions, plus ou moins naturelles selon les
contextes. La première fait intervenir les mesures de Hausdorff, la seconde est une
définition possible du “contenu de Minkowski”, et la troisième est naturelle en théorie
des distributions, ou en physique mathématique.

(i) S(A) := Hn−1(∂A) ;

(ii) S(A) := lim inf
ε→0

λn[Aε]− λn[A]

ε
;

(iii) S(A) := sup

{∫
A

∇ · J ; J ∈ C∞
c (Rn;Rn), |J | ≤ 1

}
, où le supremum est pris

sur l’ensemble des fonctions J de Rn dans Rn, de classe C∞ et à support compact,
bornées par 1 en norme, et l’on a noté

∇ · J =
n∑

k=1

∂Jk
∂xk
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la divergence de J .
C’est probablement la formule (ii) qui est la plus intuitive, et la plus simple à

se représenter visuellement. D’autre part, le lecteur qui se souvient de la formule de
Green–Ostrogradski ne sera pas surpris par l’apparition de l’opérateur divergence
dans la formule (iii) ; en effet, cette formule énonce que, sous des conditions de
régularité suffisante, ∫

A

∇ · J =

∫
∂A

J(x) ·N(x) dσ(x),

où N(x) désigne la normale à ∂A en x et σ... la mesure de surface sur ∂A.

A

Figure 5. Surface au sens de Minkowski : l’accroissement infinitési-
mal du volume est donné par le produit de la surface par la largeur
d’épaississement

Les trois définitions précédentes de la surface de A peuvent donner des résultats
différents pour des ensembles A “pathologiques”. Attention donc, dans un contexte
peu régulier, à préciser la notion de “surface k-dimensionnelle” employée.

VII-4. Dimension
VII-4.1. Échelle des mesures de Hausdorff. La proposition suivante éta-

blit le fait intuitif que si une dimension convient pour évaluer la taille d’un objet,
les dimensions supérieures sont trop grossières (ainsi, si une courbe a une surface
positive, sa longueur doit être infinie ; si elle a une longueur finie, sa surface doit être
nulle).

Proposition VII-23 (au plus une dimension donne une mesure non triviale).
Soit A ⊂ Rn ; alors

(i) si Hd[A] < +∞ pour un certain d ≥ 0, alors Hd′ [A] = 0 pour tout d′ > d ;
(ii) si Hd[A] > 0 pour un certain d > 0, alors Hd′ [A] = +∞ pour tout d′ < d ;
(iii) pour tout d > n, on a Hd[A] = 0 ;

Démonstration de la Proposition VII-23. Soient A ⊂ Rn, d1 < d2, et
soit (Ck)k∈N un recouvrement de A par des ensembles de demi-diamètre respectif
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rk ≤ ε/2. Alors ∑
k

rd2k ≤ εd2−d1
∑
k

rd1k .

Si maintenant on a Hd[A] < +∞ pour un certain d > 0, alors pour tout ε > 0
on a Hd

ε [A] < +∞, et il existe donc un recouvrement dénombrable de A par des
ensembles de demi-diamètre rk ≤ ε/2, tel que∑

k

rdk ≤ C < +∞.

Pour ce même recouvrement, on a alors
∑

k r
d′

k ≤ Cεd
′−d −→ 0 dès que d′ > d. Cela

prouve que Hd′
ε [A] = O(εd

′−d), et en particulier Hd′ [A] = 0.
Si d’autre part Hd[A] > 0 pour un certain d > 0, alors pour tout ε > 0 assez

petit on a Hd
ε [A] ≥ δ > 0 ; en particulier, tout recouvrement dénombrable de A par

des ensembles de demi-diamètre rk ≤ ε/2,∑
k

rdk ≥ δ

α(d)
> 0,

d’où, pour tout d′ < d,∑
k

α(d′)rd
′

k ≥ εd−d′δ
α(d′)

α(d)
−−→
ε→0

+∞,

et finalement Hd′ [A] = +∞.
L’assertion (iii) a déjà été établie ; nous allons reproduire brièvement le raisonne-

ment. Comme Rn est union dénombrable de pavés, il suffit de prouver qu’un pavé de
Rn est de mesure d-dimensionnelle nulle pour d > n. Puisque ce pavé est de mesure
de Lebesgue finie donc de mesure d-dimensionnelle finie, (iii) découle de (i). □

VII-4.2. Dimension de Hausdorff. Au vu de la Proposition VII-23, la fonc-
tion d 7−→ Hd[A] est très particulière : on se convainc facilement qu’elle vaut +∞
quand d est strictement plus petit qu’un certain d0, et 0 quand d est strictement
supérieur à d0.

+∞

d0
d

Hd[A]

Figure 6. Graphe de Hd[A] ; Hd0 [A] peut se situer n’importe où sur
la ligne pointillée.
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Ceci mène naturellement à la définition de la dimension de Hausdorff.

Définition VII-24. Soit A ⊂ Rn. On définit sa dimension de Hausdorff, que
l’on note dim(A) ou dimH(A), par

dim(A) := inf{d ≥ 0; Hd[A] = 0} ∈ [0, n]

De manière équivalente, dim(A) est l’unique d0 tel que Hd[A] = +∞ pour tout
d < d0, et Hd[A] = 0 pour tout d > d0.

La dimension de Hausdorff se prête bien à de nombreux énoncés théoriques, car
elle est associée naturellement aux mesures de Hausdorff ; en revanche elle est parfois
difficile à calculer. Le théorème suivant se déduit facilement de la Proposition VII-6 :

Théorème VII-25 (dimension des graphes et images). Soit f : Rn → Rm une
fonction Lipschitzienne. Soit A une partie mesurable de Rn, on note G(f, A) =
{(x, f(x)); x ∈ A} le graphe de f sur A. Alors

(i) dimH(f(A)) ≤ dimH(A) ≤ n ;
(ii) Si λn[A] > 0, alors dimH(G(f, A)) = n.

Remarques VII-26. (i) On se souvient que le graphe d’une fonction conti-
nue est de mesure de Lebesgue nulle ; nous voyons ici que le graphe d’une
application lipschitzienne a la dimension attendue. De manière générale, la
dimension de Hausdorff d’un graphe est supérieure ou égale à la dimension
de l’espace de départ ; elle peut être strictement supérieure pour des appli-
cations qui sont seulement hölderiennes (ou encore moins régulières) et pas
lipschitziennes.

(ii) L’application de Peano montre que l’image du segment [0, 1] par une appli-
cation continue peut être de dimension 2 (bien sûr, cette application n’est pas
lipschitzienne !). Une trajectoire typique du mouvement brownien plan pour
les temps t ∈ [0, 1] fournit un autre exemple de courbe dont l’image est de
dimension 2, cependant la mesure 2-dimensionnelle de cette image est nulle !
Les trajectoires du mouvement brownien ne sont bien sûr pas lipschitziennes,
mais elles sont Hölder-α pour tout α < 1/2 (il est naturel d’imaginer que l’ex-
posant 1/2 est critique pour de tels contre-exemples). En revanche, l’image
d’une courbe lipschitzienne est toujours de dimension inférieure ou égale à 1.
Si on considère une fonction lipschitzienne définie sur un segment [0, 1], à
valeurs dans Rn, son image sera soit réduite à un point, soit de dimension 1.

(iii) En corollaire de ce théorème, on voit que les applications bilipschit-
ziennes préservent la dimension de Hausdorff (bilipschitzienne = bi-
jective lipschitzienne de réciproque lipschitzienne). C’est une des raisons pour
lesquelles les applications bilipschitziennes constituent une notion naturelle
d’“isomorphisme” dans l’étude des objets fractals.

VII-4.3. Dimension de Minkowski. Expliquons maintenant une autre no-
tion populaire, souvent plus simple à calculer et antérieure à celle de Hausdorff, dite
dimension de Minkowski.

Commençons par nous interroger sur le moyen de faire la différence entre un
objet monodimensionnel et un objet bidimensionnel ? Intuitivement, le second est
beaucoup plus “recouvrant” ; on peut formaliser cela en considérant l’ensemble des
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points qui leur sont proches. Plaçons-nous dans le carré [0, 1]2 pour simplifier. On
quadrille ce carré en petits sous-carrés de côté ε = 1/K, K � 1. On s’attend
à ce qu’un objet monodimensionnel X rencontre environ L/ε tels sous-carrés, où
L désigne la longueur de X, tandis qu’un objet bidimensionnel Y en rencontrera
environ S/ε2, où S désigne l’aire de Y . Et si l’on considère la réunion de tous les
sous-carrés rencontrés par ces objets, sa surface est environ Lε dans le premier cas, S
dans le deuxième. Par extrapolation, on a envie de dire qu’un objet est de dimension
d si le nombre de petits carrés nécessaire à son recouvrement est de l’ordre de ε−d.

Cette idée conduit à la dimension de Minkowski d’un sous-ensemble A de
Rn : on pose

dimM(A) = lim
ε→0

logNε(A)

| log ε|
,

où Nε(A) est, au choix : le nombre minimal de boules de diamètre ε (resp. de
cubes de côté ε, resp. de cubes pris parmi un réseau de côté ε, resp. d’ensembles
de diamètre ε) par lequel on peut recouvrir A ; ou encore le nombre maximal de
points que l’on peut placer dans A de telle sorte qu’ils soient tous à une distance
supérieure ou égale à ε les uns des autres. Toutes ces équivalences sont passées
en revue dans [Falconer2, Chapitre 3] où la dimension de Minkowski est appelée
dimension de [comptage de] boîtes (“box dimension”). Notons que dans le cas où la
limite quand ε → 0 n’existe pas, on peut toujours définir une dimension supérieure
(resp. inférieure) en remplaçant la limite par une lim sup (resp. lim inf). Enfin, il
existe encore une autre façon équivalente de définir cette dimension :

dimM(A) := n+ lim
ε→0

log λn[Aε]

| log ε|

où Aε est le ε-voisinage de A, i.e.

Aε := {x ∈ Rn; d(x,A) ≤ ε}.

La définition de la dimension de Minkowski est assez intuitive, et elle est souvent
relativement facile à calculer ou estimer ; mais elle a quelques défauts troublants. Par
exemple, l’ensemble ([0, 1]∩Q)2 est dense dans [0, 1]2, et la définition précédente lui
attribue une dimension 2 ; pourtant, un point est de dimension 0, et dans un cadre
de mesures σ-additives, on trouverait naturel qu’une union dénombrable d’objets de
dimension donnée d soit également un objet de dimension d. La conclusion est que
la dimension de Minkowski n’est pas associée à une notion naturelle de mesure.

VII-4.4. Comparaisons. Nous voici avec deux notions de dimension fraction-
naire : Hausdorff et Minkowski, qui ne coïncident pas forcément.

De manière générale, la dimension de Minkowski est toujours supérieure ou égale
à la dimension de Hausdorff ; mais l’inégalité peut être stricte, puisque [0, 1]∩Q est
de dimension de Hausdorff 0 et de dimension de Minkowski 1...

Par ailleurs, la dimension de Minkowski vérifie l’identité

dimM(A× B) = dimM(A) + dimM(B),

ce qui n’est pas toujours vrai de la dimension de Hausdorff.
On trouvera dans [Falconer2, Chapitre 3] d’autres définitions en usage de la

notion de dimension, et une discussion des liens qui existent entre ces notions.
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VII-4.5. Ensembles de Cantor. Commençons par l’exemple utilisé par Haus-
dorff lui-même pour illustrer sa notion de dimension : l’ensemble triadique de Cantor,
défini comme la limite des ensembles fermés Ck, où C0 = [0, 1] et Ck est obtenu à
partir de Ck−1 en supprimant le tiers (ouvert) central de chacune des composantes
connexes de Ck−1. L’ensemble résultant est clairement de mesure de Lebesgue nulle,
on peut se demander quelle est sa dimension.

Figure 7. Premières étapes de la construction de l’ensemble tria-
dique de Cantor

Si l’on prend ε = 3−k, on voit que l’ensemble triadique de Cantor C dans [0, 1]
peut se recouvrir par 2k = ε−d segments de longueur ε (soit des boules de rayon
ε/2), avec d = log 2/ log 3, et que ce recouvrement est le plus économique que l’on
puisse réaliser. Il est facile d’en déduire que

dimM(C) =
log 2

log 3
.

La dimension de Hausdorff est déjà plus difficile à calculer. On sait qu’elle n’est
pas plus grande que la dimension de Minkowski, soit log 2/ log 3. Par ailleurs, on peut
faire un calcul heuristique simple en tirant parti de la construction auto-similaire
de l’ensemble C et de l’identité Hd[λA] = λdHd[A], facile à vérifier. S’il existe un
exposant d tel que Hd[C] ∈]0,+∞[, alors, comme C est l’union de deux copies de
C/3, on aura

Hd[C] = 2Hd[C/3] =
2

3d
Hd[C],

ce qui impose 3d = 2, i.e. d = log 2/ log 3.
On est donc tenté de conclure que la dimension de Hausdorff de C est égale à

la dimension de Minkowski. C’est effectivement le cas : le raisonnement esquissé ci-
après prouve en effet que pour tout recouvrement de C par une famille dénombrable
d’intervalles ouverts (Ik)k∈N, on a

(68)
∑
k

|Ik|d ≥
1

2
,

et il s’ensuit que Hd[C] > 0.
Pour établir l’inégalité (68), on remarque d’abord que par compacité on peut se

limiter à une famille finie d’intervalles ouverts, dont chacun a une longueur comprise
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entre 3−(ℓ+1) et (strictement) 3−ℓ, pour un unique ℓ = ℓ(k). L’intervalle Ik peut alors
intersecter au plus une des composantes connexes de Cℓ, et donc pour j ≥ ℓ il ne
peut intersecter plus de 2j−ℓ ≤ 2j3d |Ik|d composantes connexes de Cj. On choisit j
suffisamment grand pour que 3−j soit plus petit que toutes les longueurs |Ik| ; alors
toutes les composantes connexes de Cj doivent être intersectées par les Ik, il y en a
2j, et on a donc

2j ≤
∑
k

(nombre de composantes connexes intersectées par Ik)

≤
∑
k

2j3d |Ik|d,

d’où
∑

k |Ik|2 ≥ 3−d = 1/2.
Avec un peu plus d’efforts, on peut montrer que Hd[C] = 21−d, qui constitue une

sorte de mesure de la taille de C en dimension d. Notons que l’on ne peut utiliser la
σ-additivité pour cela : pour tout k, on a Hd[Ck] = +∞...

Le contenu de Minkowski permet, ici encore, de prédire le résultat de manière
très simple : par définition, le contenu de Minkowski d’un sous-ensemble de dimension
d de Rn est le produit de α(d) par le coefficient dominant de Nε quand ε → 0, et
fournit une sorte de volume d-dimensionnel qui cadre bien avec l’intuition que l’on
se fait des notions de longueur, surface, etc. Ici on a α(1) = 2 et Nε ' 2−dε−d, de
sorte que le contenu de Minkowski coïncide bien avec Hd[C]. Mais cette égalité n’est
pas la règle !

On note que du point de vue topologique, l’ensemble triadique de Cantor est
“totalement discontinu” : bien qu’il ne soit pas dénombrable, il ne contient aucun
segment, et toutes ses composantes connexes sont donc des points. Du point de vue
topologique, il est naturel de lui attribuer une dimension nulle ! On peut montrer
d’ailleurs que c’est le cas de toute partie dont la dimension de Hausdorff est stricte-
ment inférieure à 1 [Falconer2, Proposition 2.5]. On peut mettre cette remarque en
regard d’une suggestion de Mandelbrot, selon laquelle on pourrait définir un objet
fractal comme un objet dont la dimension de Hausdorff est strictement supérieure à
la dimension topologique.

De manière générale, on appelle ensemble de Cantor un espace topologique com-
pact totalement discontinu (dont les composantes connexes sont des points) et sans
point isolé (un point x0 d’un espace X est dit isolé s’il existe un voisinage V de x0
qui ne rencontre X qu’en x0). Ces ensembles jouent un rôle important dans diverses
branches des mathématiques ; on peut en construire de nombreux exemples par des
variantes du procédé de construction diadique de Cantor. Voici quelques exemples
intéressants :

- On coupe le segment [0, 1] en k segments (k ≥ 3, supposons k impair pour sim-
plifier), on élimine les k−2 intervalles centraux pour ne garder que les deux segments
extrêmes. On coupe chacun des segments ainsi obtenus en k parties égales, et sur ces
k parties on élimine les k− 2 parties centrales. Et ainsi de suite ! On construit de la
sorte un ensemble de Cantor “k-adique fin” de dimension log 2/ log k (arbitrairement
petite). Si au contraire à chaque étape on choisit d’éliminer seulement le segment
central, l’ensemble limite C est un ensemble de Cantor “k-adique gras” de dimension
log 2/ log c(k), où c(k) = (2k+1)/k est le coefficient de proportionnalité permettant
de passer de l’ensemble à sa “composante gauche” (C = c(k)(C ∩ [0, 1/2])) ; comme
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c(k) → 1 pour k → ∞, l’ensemble ainsi construit est de dimension arbitrairement
proche de 1.

- On coupe le segment [0, 1] en trois tiers, on élimine le tiers central. On coupe
chacun des segments ainsi obtenus en cinq parties égales, et sur ces cinq parties on
élimine les trois parties centrales. On coupe chacun des segments ainsi obtenus en
sept parties égales, et sur ces sept parties on élimine les cinq parties centrales. Et
ainsi de suite ! On construit de la sorte un ensemble de Cantor non dénombrable
mais “extrêmement fin”, en fait de dimension 0.

- On construit un Cantor triadique sur [0, 1/2], un Cantor 5-adique gras sur
[1/2, 3/4], un Cantor 7-adique gras sur [3/4, 7/8], un Cantor 9-adique gras sur
[7/8, 15/16], etc. L’ensemble ainsi obtenu est de mesure de Lebesgue nulle, comme
union dénombrable d’ensembles de mesure nulle ; mais il sera de dimension 1, puisque
la mesure d-dimensionnelle d’un Cantor k-adique gras est +∞ pour d > log 2/ log c(k).

VII-4.6. Autres exemples. Le flocon de von Koch dans R2 est l’un des fractals
les plus simples et les plus célèbres : partant d’un triangle équilatéral, on construit
sur chaque côté un triangle équilatéral plus petit d’un facteur 1/3, pointant vers
l’extérieur. Puis on recommence.... La frontière de la figure limite est appelée flocon
de von Koch (voir [Falconer2], p.xv). Il n’est pas très difficile de montrer que sa
dimension fractale est log 4/ log 3, ce qui correspond au fait qu’à chaque étape on
remplace chaque segment de longueur ℓ par quatre segments de longueur ℓ/3 (com-
parer au Cantor triadique, dans lequel on remplaçait chaque segment de longueur ℓ
par deux segments de longueur ℓ/3).

Figure 8. Brique élémentaire de la construction du flocon de von Koch

Ici encore, la dimension de Hausdorff est strictement supérieure à la dimension
topologique “naturelle” qui est 1. En particulier, le flocon de von Koch est de “lon-
gueur” infinie, et de “surface” nulle. Selon une argumentation célèbre de Mandelbrot,
avec une bonne approximation on peut considérer qu’un objet tel que la côte de la
Bretagne présente le même comportement : sauf à aller à des échelles ridiculement
précises (de l’ordre du rocher), il est impossible de mesurer sa longueur ; des esti-
mations de la dimension de cette côte ont même été proposées. D’autres fractals
célèbres se trouvent dans [Falconer2], comme les ensembles de Julia, de Mandelbrot,
ainsi que de nombreux fractals aléatoires.

Le calcul de la dimension des fractals a motivé le développement de méthodes de
calcul de la dimension de Hausdorff, passées en revue dans [Falconer2]. On mention-
nera en particulier la puissante et élégante technique de la distribution de masse
(pp. 64–66) : étant donné une partie A de Rn, si l’on peut trouver une mesure de
probabilité µ sur A telle que∫∫

A×A

µ(dx)µ(dy)

|x− y|s
< +∞,

alors dimH(A) ≥ s.
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Malgré ces méthodes, le calcul de la dimension de Hausdorff est parfois un casse-
tête insoluble, ou presque. Voici un exemple “simple” discuté en pp. 148–153 de ce
même ouvrage : sur le segment [0, 1] définissons, pour λ > 1 et s ∈]1, 2[, la fonction

fs,λ : t 7−→
∞∑
k=1

λ(s−2)k sin(λkt).

Cette fonction, dite “fonction de Weierstrass”, est continue (elle est donnée par un
développement en série absolument convergent) mais différentiable nulle part sur
[0, 1] (noter que la série des dérivées est violemment divergente ; cela ne constitue
bien sûr pas une preuve, mais rend plausible la non-différentiabilité). Il est prouvé
dans [Falconer2] que pour λ assez grand, la dimension de Minkowski du graphe de
fs,λ est exactement s. On a longtemps conjecturé que la dimension de Hausdorff a la
même valeur, et cela a été affirmé par Benoît Mandelbrot ; mais pendant longtemps
cela restait une conjecture, on savait seulement que limλ→∞ dimH(G(fs,λ, [0, 1])) = s ;
ce n’est qu’en 2015 que le mathématicien chinois Weixiao Shen fournit une preuve
complète [Mathematische Zeitschrift. 289 (1–2) : 223–266 (2018)].

Enfin, comme je l’ai mentionné en début de chapitre, l’estimation de la dimension
minimale des ensembles de Besicovitch, aussi appelée problème de Kakeya, a tenu
en haleine des générations de spécialistes, à l’interface de la théorie géométrique de
la mesure et de l’analyse harmonique ; et on sait aujourd’hui résoudre ce problème
seulement en dimensions n ≤ 3.

VII-5*. Changements de variables : aire et co-aire
Les mesures de Hausdorff sont particulièrement utiles pour énoncer des change-

ments de variables de Rm dans Rn de manière unifiée. Ce sont les fameuses formules
de l’aire et de la co-aire. On les donne ici sans preuve ; le chapitre 3 de [Evans-
Gariepy] leur est entièrement consacré.

Théorème VII-27 (formule de l’aire). Soit T : Rn → Rm une application lip-
schitzienne, avec m ≥ n, et soit A ⊂ Rn un ensemble Lebesgue-mesurable. Alors∫

A

| det∇T | dλn =

∫
Rm

H0[A ∩ T−1{y}]Hn(dy).

Théorème VII-28 (formule de la co-aire). Soit T : Rn → Rm une application
lipschitzienne, avec m ≤ n, et soit A ⊂ Rn un ensemble Lebesgue-mesurable. Alors∫

A

| det∇T | dλn =

∫
Rm

Hn−m[A ∩ T−1{y}]λm(dy).

Exemple VII-29. Soit f : [0, 1] → Rn une courbe lipschitzienne simple ; alors
par la formule de l’aire,

(69)
∫ 1

0

|f ′(s)| ds =
∫
Rn

1f([0,1])H1(dy) = H1[f([0, 1])],

ce qui identifie H1 avec une notion naturelle de plus de longueur d’une courbe. Fi-
nalement, pour une courbe lipschitzienne simple à valeurs dans Rn, on peut calculer
la longueur de trois façons équivalentes : par mesure de Hausdorff, par rectification
(Définition VII-19) ou par intégration de la vitesse. Cela reste vrai si la courbe est
absolument continue.



CHAPITRE VIII

Espaces de Lebesgue et mesures signées

Jusqu’ici, on a considéré des fonctions “individuellement”. Dans ce chapitre et le
suivant, l’attention portera sur des familles entières de fonctions : des “espaces de
fonctions”, ou espaces fonctionnels. On munira ces espaces de structures géomé-
triques et topologiques : par exemple un produit scalaire pour définir l’orthogonalité
et plus généralement les angles, une norme pour mesurer la taille des fonctions et
leur éloignement, une description de leurs formes linéaires, qui sont autant de fa-
çons de les cartographier par des coordonnées. En première approximation, on peut
dire que c’est cette étude des propriétés géométriques et topologiques des espaces de
fonctions qui constitue l’analyse fonctionnelle.

Le but premier de l’analyse fonctionnelle est de mettre en place des schémas
de démonstrations intuitifs ou simples, similaires aux arguments géométriques ou
topologiques que l’on fait dans un espace euclidien (usage de coordonnées, ortho-
gonalité, construction de limites, etc.). On peut faire remonter ce point de vue à
Fourier lui-même, avec des motivations issues de la physique mathématique.

Dans ce chapitre, j’introduirai deux types d’espaces fonctionnels. Dans un pre-
mier temps, je fixerai une mesure, et construirai des espaces de fonctions mesu-
rables, définis par leur “degré d’intégrabilité” : intégrabilité de la puissance p pour
les espaces Lp de Lebesgue. L’exploration de ces espaces fut, sous l’impulsion des ma-
thématiciens polonais du Café écossais, le premier grand projet de l’analyse fonction-
nelle. Leur étude nous mènera à quelques développements sophistiqués, en particulier
les puissantes techniques d’interpolation entre espaces de Lebesgue. Par extension,
on considèrera également l’espace de toutes les fonctions mesurables.

Le deuxième type d’espace fonctionnel ne sera pas constitué de fonctions à pro-
prement parler, mais des fonctions d’ensembles : ce sera l’espace des mesures, ou plus
précisément des mesures signées, que l’on peut considérer comme des “fonctions
généralisées”.

Les questions prioritaires que l’on se pose sur les espaces fonctionnels sont : les
normes, la complétude, la séparabilité, la réflexivité, l’uniforme convexité, l’existence
de systèmes de coordonnées commodes. L’étude de ces questions commencera dans
le présent chapitre, et se poursuivra dans le chapitre suivant.

La section la plus importante de ce chapitre est la Section VIII-1, qui introduit
les espaces de Lebesgue et leurs propriétés élémentaires, approfondies ensuite dans
la Section VIII-2. La Section VIII-2.4 explore les fonctions mesurables en général.
La Section VIII-4 est consacrée aux mesures signées.

VIII-1. Espaces Lp de Lebesgue
VIII-1.1. Définitions.

Définition VIII-1 (espaces Lp). Soit (X,A, µ) un espace mesuré.
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- Pour tout p ∈]0,+∞[ on définit l’espace de Lebesgue d’ordre p comme l’ensemble
des fonctions mesurables de X dans R telles que |f |p soit intégrable.

- On définit l’espace de Lebesgue d’ordre ∞ comme l’ensemble des fonctions
mesurables de X dans R telles qu’il existe C < ∞ tel que |f | ≤ C en-dehors d’un
ensemble de mesure nulle.

- On définit l’espace de Lebesgue d’ordre 0 comme l’ensemble des fonctions me-
surables de X dans R qui sont nulles en-dehors d’un ensemble de mesure finie.

L’espace de Lebesgue d’ordre p est noté Lp(X,A, µ), ou simplement Lp(µ) (ou
encore Lp(X,µ) ou Lp(X) ou Lp(dµ) ou Lp, etc).

Remarques VIII-2. (i) L’espace Lp(µ) dépend de µ ; c’est évident pour p <
∞, mais on se laisse plus facilement piéger dans le cas p = ∞. Ainsi la fonction
1/x appartient à L∞([0, 1], δ1/2).

(ii) On rencontre aussi parfois l’exposant de Lebesgue en bas : Lp(X) ; mais
je recommande de garder la place d’indice en bas pour le comportement à
l’infini, comme dans C0(X), Cc(X) ; dans le cadre des espaces Lp, cela pourra
se traduire par des poids à l’infini.

Exemples VIII-3. (i) Si X = N, muni de la tribu triviale de toutes les
parties, et µ est la mesure de comptage, l’espace Lp(X,µ) pour 0 ≤ p < +∞
est l’ensemble des suites réelles (un)n∈N telles que (avec la convention 00 = 0)∑

n∈N

|un|p < +∞.

Pour p = ∞ c’est l’ensemble des suites réelles bornées.
Dans ce cas, on utilise traditionnellement les notations ℓp ou ℓp(N) pour l’es-
pace de Lebesgue d’ordre p.

(ii) Soient B1 = B1(0) ⊂ Rn, et λn la mesure de Lebesgue sur la tribu boré-
lienne de Rn. Alors, la fonction fα : x 7−→ |x|−α appartient à Lp(B1, λn) si
et seulement si p < n/α, et et à Lp(Rn \ B1, λn) si et seulement si p > n/α.
Elle n’appartient à aucun espace Lp(Rn, λn). En pratique, pour vérifier l’ap-
partenance d’une fonction à un espace de Lebesgue, on est souvent amené à
étudier séparément l’intégrabilité Lp “locale” et l’intégrabilité Lp “à l’infini”.

Remarques VIII-4. (i) On rencontre exceptionnellement des espaces de Le-
besgue d’ordre négatif. La définition ne fait pas de mystère : f ∈ Lp (p < 0)
si et seulement si 1/|f | ∈ L−p. Cette notion n’a guère d’intérêt que si µ est
finie.

(ii) Les espaces de Lebesgue constituent en général une très bonne “échelle” pour
quantifier l’intégrabilité des fonctions mesurables ; mais parfois cette échelle
n’est pas assez précise. On ne peut, par exemple, en termes d’appartenance
à des espaces Lp, faire la différence entre des fonctions de référence telles que

hα,β : x 7−→ [log(1/|x|)]β

|x|α

pour des valeurs différentes de β. D’autres espaces fonctionnels plus “fins”
permettent de distinguer ces fonctions : par exemple, les espaces de Lorentz
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Lp,q, introduits par l’analyste russo-américain George G. Lorentz dans les
années 1950. Si X = B1(0) ⊂ Rn est muni de la mesure de Lebesgue, alors
la fonction hα,β pour β > 0 appartient à Lp si et seulement si p < n/α ; et
à Lp,q si et seulement si p < n/α ou p = n/α et q < 1/β. Pour β = 0, cette
fonction appartient à Lp,∞, que l’on appelle aussi espace de Marcinkiewicz
Mp, du nom de Józef Marcinkiewicz (brillant représentant de l’illustre école
d’analyse harmonique polonaise, tué en 1940 dans les massacres des élites
polonaises par l’armée soviétique). Les définitions, données ci-après, peuvent
être omises en première lecture.

Définition VIII-5. Soit (X,A, µ) un espace mesuré, et soient p, q ∈]0,+∞[. On
appelle espace de Lorentz Lp,q(X,µ) l’ensemble des fonctions mesurables f : X → R
telles que

‖f‖Lp,q(X,µ) = p
1
q

∥∥∥t µ[|f | ≥ t
]1/p∥∥∥

Lq
(
(0,+∞), dt

t

)
=

(∫ ∞

0

p tq−1 µ
[
|f | ≥ t

] q
p dt

) 1
q

soit fini (attention, malgré la notation, il ne s’agit pas d’une norme).
Définition VIII-6. Soit (X,A, µ) un espace mesuré, et soit p ∈]0,+∞[. On

appelle espace de Marcinkiewicz Mp(X,µ) l’ensemble des fonctions mesurables f :
X → R telles qu’il existe une constante C ≥ 0 telle que

∀t ≥ 0, µ
[
{x; |f(x)| ≥ t}

]
≤
(
C

t

)p

.

On notera alors ‖f‖Mp(X,µ) ou ‖f‖Lp,∞(X,µ) l’infimum des constantes C admissibles
(ce n’est pas une norme non plus).

Exercice VIII-7. En utilisant l’inégalité de Tchebychev, montrer que pour tout
p ≥ 1, Lp(X,µ) ⊂ Lp,∞(X,µ), avec injection continue au sens où ‖f‖Lp,∞ ≤ ‖f‖Lp .
Montrer, en considérant des puissances inverses, que cette inclusion est stricte dans
Rn. L’espace Lp,∞ est donc “un peu plus grand” que l’espace Lp.

Exercice VIII-8. En utilisant le principe de sommation par tranches, montrer
que pour tout p ≥ 1, Lp,p(X,µ) = Lp(X,µ).

On peut étendre facilement la définition des espaces Lp à des espaces de fonctions
à valeurs vectorielles, plus précisément à valeurs dans un espace muni d’une
distance invariante par translation :

Définition VIII-9. Soit E un espace vectoriel ; on dit qu’une distance sur d est
invariante par translation si pour tous x, y, z ∈ E on a

d(x+ z, y + z) = d(x, y).

Il est clair qu’une norme définit une distance invariante par translation. Mais
le concept de distance invariante par translation est beaucoup plus général : par
exemple, si N est une norme, alors N/(1 +N) est une telle distance.

Définition VIII-10 (espaces Lp à valeurs vectorielles). Soient (X,µ) un espace
mesuré, et E un espace vectoriel muni d’une distance d invariante par translation.
Pour tout p ∈ [0,+∞], on définit alors l’espace Lp(X;E) = Lp(X,µ;E) comme
l’espace des fonctions mesurables f : X → E telles que d(0, f) ∈ Lp(X,µ).
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VIII-1.2. Inégalité de Minkowski. Le point de départ de l’analyse fonction-
nelle des espaces de Lebesgue est l’inégalité suivante, dont le cœur remonte aux
travaux de Hermann Minkowski sur les volumes à la fin du dix-neuvième siècle.

Théorème VIII-11 (inégalité de Minkowski). Soit (X,A, µ) un espace mesuré,
et soit p ∈ [1,+∞[. Alors, pour toutes fonctions f, g mesurables X → R,(∫

|f + g|p dµ
)1/p

≤
(∫

|f |p dµ
)1/p

+

(∫
|g|p dµ

)1/p

,

où par convention |(+∞) + (−∞)| = +∞. De plus, si p > 1 et si les deux intégrales
apparaissant au membre de droite sont finies et non nulles, il y a égalité si et
seulement si il existe α > 0 tel que f = α g presque partout.

La preuve la plus populaire de cette inégalité découle de celle de Hölder [Rudin
p. 64, Lieb–Loss p. 48], voir Exercice VIII-14 ci-après. On va donner un autre argu-
ment ci-dessous, et en même temps démontrer quelques variantes de l’inégalité de
Minkowski, selon un plan parallèle à la présentation de l’inégalité de Hölder dans la
Section IV-4.4.

Théorème VIII-12 (variantes de l’inégalité de Minkowski). Soit p ∈ [1,+∞[.
(i) Soient (X,A, µ) un espace mesuré, et f et g deux fonctions mesurables sur

X, à valeurs dans R. Alors, pour tout λ ∈]0, 1[,∫
|f + g|p dµ ≤ 1

λp−1

∫
|f |p dµ+

1

(1− λ)p−1

∫
|g|p dµ.

(ii) Soient (X,A, µ) un espace mesuré, k ∈ N, f1, . . . , fk des fonctions mesurables
sur X, à valeurs dans R. Alors(∫

|
∑
i

fi|p dµ

)1/p

≤
∑
i

(∫
|fi|p dµ

)1/p

.

(iii) Soient (X,A, µ) et (Y,B, π) deux espaces mesurés σ-finis. Alors, pour toute
fonction F mesurable de X × Y dans R+ ∪ {+∞}, on a(∫

X

(∫
Y

F (x, y) π(dy)

)p

µ(dx)

)1/p

≤
∫
Y

(∫
X

F (x, y)p µ(dx)

)1/p

π(dy).

(iv) Soient X et Y deux ensembles quelconques, et L un opérateur linéaire, défini
sur un sous-espace vectoriel de l’ensemble des fonctions de X dans R, à valeurs dans
l’ensemble des fonctions de Y dans R. On suppose que L est positif, i.e. Lf ≥ 0 si
f ≥ 0. Soient f, g ≥ 0 dans le domaine de L. Alors

L((f + g)p)1/p ≤ [L(f p)]1/p + [L(gp)]1/p,

ce qui est une inégalité entre deux fonctions de Y dans R.
(v) Soient (X,A, µ) un espace mesuré, (E, ‖ · ‖) un espace vectoriel normé, et

f, g : X → E des fonctions mesurables. Alors(∫
‖f + g‖p dµ

)1/p

≤
(∫

‖f‖p dµ
)1/p

+

(∫
‖g‖p dµ

)1/p

.
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(vi) Soient (X,A, µ) un espace mesuré, f, g : X → C deux fonctions mesurables
à valeurs complexes. Alors(∫

|f + g|p dµ
)1/p

≤
(∫

|f |p dµ
)1/p

+

(∫
|g|p dµ

)1/p

.

De plus, si p > 1 et si les deux intégrales apparaissant au membre de droite sont
finies et non nulles, il y a égalité si et seulement si il existe α > 0 tel que f = α g
presque partout.

Démonstration. On va se contenter ici de démontrer l’inégalité (i) du Théo-
rème VIII-12 et d’en déduire l’inégalité de Minkowski du Théorème VIII-11. Le
reste (discussion des cas d’égalité dans le Théorème VIII-11, énoncés (ii) à (vi) du
Théorème VIII-12) est laissé en exercice.

Pour démontrer (i), on écrit d’abord, par convexité de la fonction t 7−→ |t|p,
|f(x)+g(x)|p = |λ(f(x)/λ)+(1−λ)(g(x)/(1−λ))|p ≤ λ|f(x)/λ|p+(1−λ)|g(x)/(1−λ)|p.
On intègre ensuite contre µ, pour trouver∫

|f + g|p dµ ≤ 1

λp−1

∫
|f |p + 1

(1− λ)p−1

∫
|g|p.

On optimise alors en λ (on minimise le membre de droite). L’inégalité de Min-
kowski est obtenue en utilisant l’identité élémentaire

inf
0≤λ≤1

(
a

λp−1
+

b

(1− λ)p−1

)
=
(
a

1
p + b

1
p
)p
.

On peut être plus explicite : cela correspond à choisir

λ =

(∫
|f |p
) 1

p(∫
|f |p
) 1

p +
(∫

|g|p
) 1

p

,

qui donne l’inégalité souhaitée. □
Remarque VIII-13. Cette méthode de preuve (démonstration d’une inégalité

auxiliaire dépendant d’un paramètre, puis optimisation sur ce paramètre) est très
répandue en analyse.

Exercice VIII-14. Écrire (f + g)p = f(f + g)p−1+ g(f + g)p−1 et appliquer l’in-
égalité de Hölder pour contrôler

∫
f(f+g)p−1 et

∫
g(f+g)p−1 séparément. Retrouver

ainsi l’inégalité de Minkowski.

VIII-1.3. Distances Lp. À ce stade on a seulement défini l’ensemble des fonc-
tions Lp ; on va maintenant munir cet ensemble d’une structure qui, selon les cas,
sera soit une “semi-distance”, soit une semi-norme.

Théorème VIII-15 (semi-distances Lp). Soit (X,A, µ) un espace mesuré. Pour
tout p ∈ [0,+∞], on définit sur Lp(X,µ) une application Np, à valeurs dans [0,∞],
par les formules

Np(f) =

(∫
|f |p dµ

)min(1,1/p)

(0 < p <∞);

N∞(f) = inf
{
C; µ

[
{x; |f(x)| > C}

]
= 0
}
;
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N0(f) = µ
[
{x; f(x) 6= 0}

]
.

La quantité N∞(f) est appelée supremum essentiel de |f |, ce que l’on note esssup |f |.
Les quantités Np(f) sont également notées ‖f‖Lp(X,µ) ou ‖f‖Lp(X) ou ‖f‖Lp(µ), ou
‖f‖Lp, voire ‖f‖p.

L’application Np définit alors sur Lp

(i) pour 1 ≤ p ≤ ∞ : une semi-norme, i.e. pour toutes fonctions f, g et tout
λ ∈ R,

Np(f) ≥ 0; Np(f + g) ≤ Np(f) +Np(g); Np(λf) = |λ|Np(f);

(ii) pour 0 ≤ p < 1 : une application positive, homogène de degré p, vérifiant
l’inégalité triangulaire, i.e. pour toutes fonctions f, g et tout λ ∈ R,

Np(f) ≥ 0; Np(f) ≤ Np(f) +Np(g); Np(λf) = |λ|pNp(f).

En outre, pour tout p ∈ [0,+∞], une fonction f dans Lp(X,µ) vérifie Np(f) = 0 si
et seulement si elle est nulle µ-presque partout.

Démonstration. Les assertions d’homogénéité sont évidentes, ainsi que le trai-
tement des cas d’égalité. Les inégalités triangulaires sont donc le coeur de cette pro-
position. Pour p = 1, p = 0 ou p = ∞, on les vérifie aisément ; pour 1 < p < ∞
c’est l’inégalité de Minkowski ; pour 0 < p < 1 c’est une conséquence immédiate de
l’inégalité élémentaire

(a+ b)p ≤ ap + bp.

□
Nous pouvons maintenant définir les espaces fonctionnels de Lebesgue. Pour ce

faire, on va transformer les semi-distances Lp en distances, en quotientant l’espace
par le noyau de Np.

Définition VIII-16 (espaces de Lebesgue). Soit (X,A, µ) un espace mesuré, et
soit p ∈ [0,+∞]. On appelle espace de Lebesgue (quotienté) d’ordre p, et on note
Lp(X,µ) (ou Lp(X) ou Lp(µ) ou Lp(dµ), ou simplement Lp), l’espace vectoriel de
toutes les classes d’équivalence de fonctions dans Lp(X,µ), pour la relation d’équiva-
lence définie par l’égalité µ-presque partout. Si une classe d’équivalence f est donnée,
Np attribue la même valeur à tous ses représentants ; on note cette quantité Np(f),
ou ‖f‖Lp(X,µ) ou ‖f‖Lp, ou simplement ‖f‖p.
L’espace (Lp(X,µ), Np) ainsi défini est un espace vectoriel qui est

- normé pour 1 ≤ p ≤ ∞ ;
- muni d’une distance invariante par translation pour 0 ≤ p < 1.
Remarques VIII-17. (i) En clair, il y a deux espaces de Lebesgue Lp. Le

premier est l’espace vectoriel des fonctions mesurables dont la puissance p est
intégrable ; dès qu’il existe des ensembles négligeables non vide, ce n’est pas
un espace normé. Le deuxième est obtenu à partir du premier en identifiant
des fonctions qui coïncident presque partout, et c’est un espace normé. Cette
identification nous mène dans un univers a priori peu rassurant où les “fonc-
tions” ne sont pas définies partout, mais seulement presque partout, et où la
valeur d’une fonction en un point donné n’est jamais déterminée. Mais sans
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cette identification, on ne peut aller bien loin dans l’analyse fonctionnelle.
Certains auteurs distinguent les deux espaces, par exemple en utilisant la no-
tation Lp pour l’espace non quotienté, mais la plupart du temps on tolère la
confusion entre les deux, et ce sera le cas dans ce chapitre.

(ii) Si une fonction appartient à Lp, l’ensemble des points où elle est infinie est de
mesure nulle. Quand on passe aux classes d’équivalence par la relation d’éga-
lité presque partout, on peut donc supposer que les “fonctions” considérées
sont à valeurs dans R plutôt que R.

(iii) Pour p ∈ [0, 1[ l’espace Lp, quotienté par la relation d’égalité presque par-
tout, est un espace vectoriel muni d’une distance invariante, mais ce n’est pas
un espace vectoriel normé : l’inégalité de Minkowski du Théorème VIII-11 ne
s’applique plus, et l’inégalité triangulaire non plus. Il existe en fait une inéga-
lité de Minkowski dans ce cas, mais seulement pour des fonctions positives,
et elle est renversée par rapport à celle du Théorème VIII-11 (de même que
l’inégalité de Hölder). On peut aller plus loin et montrer que Lp n’est pas
normable pour 0 ≤ p < 1. L’existence de la distance Np dans ce cas ne suffit
pas à en faire des espaces fonctionnels agréables, de sorte qu’on ne les utilise
presque jamais. On pourra démontrer l’inégalité de Minkowski renversée en
exercice.

Pour conclure ce paragraphe, introduisons les semi-distances Lp sur les espaces
de Lebesgue à valeurs vectorielles Lp(X;E).

Proposition VIII-18 (espaces de Lebesgue à valeurs vectorielles). Soit (X,A, µ)
un espace mesuré, et soit E un espace vectoriel muni d’une distance invariante par
translation : pour tout p ∈ [0,∞] on définit

Np(f) := Np(d(0, f)).

L’application Np est alors une application positive, vérifiant l’inégalité triangulaire.
Si E est un espace vectoriel normé et d la distance associée à la norme, Np est
homogène de degré min(p, 1), et en particulier définit une semi-norme pour p ≥ 1.

Si l’on quotiente Lp(X;E) par la relation d’égalité presque partout, on obtient
un espace vectoriel sur lequel Np définit une distance invariante par translation. Si
E est un espace vectoriel normé, et p ≥ 1, alors l’espace Lp(X;E) ainsi obtenu est
un espace vectoriel normé.

Beaucoup des propriétés que nous verrons par la suite se généralisent sans dif-
ficulté à ce cadre à valeurs vectorielles ; j’en admettrai quelques-unes sans démons-
tration. Le seul point un tant soit peu délicat dans le maniement des espaces de
Lebesgue à valeurs vectorielles ne concerne pas les opérations dans les espaces Lp,
mais la construction de l’intégrale.

VIII-1.4. Théorème de convergence dominée Lp. Avant d’aller plus loin,
voici une variante simple et utile du théorème de convergence dominée, adaptée aux
espaces de Lebesgue.

Théorème VIII-19 (convergence dominée dans les Lp). Soient (X,A, µ) un
espace mesuré et p ∈]0,+∞[. Soit (fk)k∈N une suite de fonctions mesurables de X
dans R, convergeant presque partout vers une fonction f . On suppose qu’il existe
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une fonction g ∈ Lp(X) telle que |fk| ≤ g presque partout, pour tout k. Alors,
f ∈ Lp(X,µ) et ∫

|fk − f |p dµ −−−→
k→∞

0,

c’est-à-dire que fk converge vers f dans Lp.
Le même énoncé reste vrai si l’on suppose que |fk| ≤ gk presque partout, avec gk −→ g
presque partout et

∫
gpk −→

∫
gp.

Démonstration. Il est clair que |f(x)| ≤ g(x) pour presque tout x, et donc
que f ∈ Lp. On applique alors le théorème de convergence dominée à la famille
|fk − f |p : cette famille est dominée par la fonction intégrable (2g)p, et converge
presque partout vers 0, son intégrale converge donc vers 0. □

VIII-1.5. Théorème de Riesz–Fischer. L’analyse étant basée pour une grande
part sur des procédés de limite et d’approximation, on n’utilise le plus souvent les
espaces vectoriels normés que s’ils sont complets, c’est à dire que toute suite de
Cauchy converge. Le théorème suivant assure la complétude des espaces de Lebesgue
et ouvre donc la voie à leur usage dans toutes sortes de problèmes. Il est issu des tra-
vaux simultanés du mathématicien juif hongrois Frigyes Riesz, déjà rencontré dans
le Chapitre III, et du mathématicien juif autrichien Ernst Sigismund Fischer, qui
fut élève entre autres de Minkowski. Trois ans à peine après l’intégrale de Lebesgue,
ils réalisaient ainsi un pont entre cette nouvelle branche de l’analyse, et des idées
issues de la géométrie et de l’algèbre, et offraient à l’analyse fonctionnelle naissante
l’un de ses premiers succès.

Théorème VIII-20 (théorème de complétude de Riesz–Fischer). Soit (X,A, µ)
un espace mesuré, et soit p ∈ [0,+∞]. Soit (fk)k∈N une suite de Cauchy dans
Lp(X,µ). Alors

(i) il existe f ∈ Lp tel que fk −→ f dans Lp ;
(ii) il existe une suite extraite de (fk), notée (fk′), et une fonction g fixée dans

Lp, telle que
|fk′ | ≤ g µ-presque partout;

fk′(x) −−−→
k′→∞

f(x) pour µ-presque tout x.

Corollaire VIII-21 (statut des espaces Lp). Soit (X,A, µ) un espace mesuré.
Alors,

(i) Pour tout p ∈ [1,+∞], l’espace Lp(X,µ), muni de la norme Lp, est un espace
de Banach, i.e. un espace vectoriel normé complet.

(ii) L’espace L2(X,µ), muni de la forme bilinéaire symétrique

(f, g) −→
∫
fg dµ

est en outre un espace de Hilbert, i.e. un espace vectoriel complet muni d’une
forme bilinéaire symétrique définie positive.

(iii) Pour tout p ∈ [0, 1[, l’espace Lp(X,µ), muni de la distance Lp, est un espace
de Fréchet, i.e. un espace vectoriel muni d’une distance invariante par translation,
et complet.
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Remarque VIII-22. La complétude éventuelle de l’espace X ne joue aucun rôle ;
ce qui est utilisé en revanche de manière cruciale, c’est la complétude de l’espace
d’arrivée, ici R. Ces résultats se généralisent aux espaces de Lebesgue à valeurs
vectorielles, Lp(X;E), si E est

- un espace de Banach dans le cas (i) ;
- un espace de Hilbert dans le cas (ii) ;
- un espace de Fréchet dans le cas (iii).

L’analyse de Banach et l’analyse de Hilbert sont les branches les plus développées
de l’analyse fonctionnelle. On en développera dans le chapitre suivant les résultats
les plus fondamentaux, et on les appliquera aux espaces de Lebesgue. L’analyse dans
les espaces de Fréchet est plus délicate et d’usage moins répandu.

Démonstration du théorème de Riesz–Fischer. Soit (fk)k∈N une suite
de Cauchy dans Lp(X,µ). Si l’on démontre l’existence d’une sous-suite convergente,
alors toute la suite convergera (c’est une propriété générale des suites de Cauchy
dans les espaces métriques).

Par récurrence, on construit une suite extraite, disons (fkℓ)ℓ∈N, telle que

Np(fkℓ+1
− fkℓ) ≤ 2−ℓ.

Le problème est de construire une limite à cette suite. Dans la suite, pour alléger la
notation, j’écrirai (fk)k∈N au lieu de (fkℓ)ℓ∈N.

Pour construire la limite, distinguons plusieurs cas.

1. Supposons d’abord 1 ≤ p <∞. On pose f0 = 0, et, pour tout x ∈ X,

gk(x) =
k∑

j=1

|fj(x)− fj−1(x)|, g(x) =
∞∑
j=1

|fj(x)− fj−1(x)|

Par convergence monotone,∫
g(x)p dµ = lim

k→∞

∫
gk(x)

p dµ;

et par inégalité de Minkowski,

‖gk‖Lp ≤ ‖f0‖Lp +
k∑

j=1

‖fj − fj−1‖Lp ≤ ‖f0‖Lp + 2,

on en déduit que g ∈ Lp(X,µ). En particulier, il existe un ensemble négligeable N
tel que g(x) < +∞ pour tout x /∈ N .

Pour x hors deN , la série
∑

|fj(x)−fj−1(x)| converge ; la série
∑

(fj(x)−fj−1(x))
est donc aussi (absolument) convergente, par complétude de R. On pose

f(x) =
∞∑
j=1

(fj(x)− fj−1(x)) = lim
n→∞

fn(x).

On définit ensuite f arbitrairement (par exemple f = 0) sur N . la suite (fn) est
alors dominée par une fonction Lp et converge presque partout vers f , on en déduit
qu’elle converge vers f dans Lp.
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2. Pour p = ∞, on sait qu’en-dehors d’un ensemble de mesure nulle on a

|f(x)| ≤ ‖f0‖L∞ +
∞∑
k=0

‖fk − fk+1‖L∞ ,

ce qui montre que f ∈ L∞ ; en outre,

|fn(x)− f(x)| ≤
∞∑
k=n

‖fk − fk+1‖L∞ −−−→
n→∞

0,

ce qui prouve la convergence de fk vers f dans L∞.

3. Dans le cas où 0 < p < 1, on pose

gk(x) =
(
|f0(x)|p+

k∑
j=1

|fj(x)−fj−1(x)|p
) 1

p
, g(x) =

(
|f0(x)|p+

∞∑
j=1

|fj(x)−fj−1(x)|p
) 1

p
.

Par convergence monotone, on a toujours∫
|g(x)|p dµ = lim

k→∞

∫
|gk(x)|p dµ;

et c’est cette fois l’inégalité triangulaire qui assure que

Np(gk) ≤ Np(f0) +
k∑

j=1

Np(fj − fj−1) ≤ Np(f0) + 2,

on en déduit que |g|p ∈ L1(X) et on conclut comme dans le cas 1 ≤ p <∞.

4. Enfin, pour p = 0 on peut écrire∫
X

∑
k≥1

1fk ̸=fk−1
dµ =

∑
k≥1

∫
X

1fk ̸=fk−1
dµ < +∞;

en particulier, l’ensemble N des x ∈ X tels que fk(x) 6= fk−1(x) pour une infinité de
k est de mesure nulle. Pour tout x /∈ N on sait que la suite (fk(x)) est constante à
partir d’un certain rang, et en particulier converge vers une fonction que l’on note
f(x). On redéfinit f = 0 sur N . Comme

lim
k0→∞

∑
k≥k0

∫
X

1fk ̸=fk−1
dµ = 0,

on voit que pour k0 assez grand la mesure de l’ensemble des x tels qu’il existe
un k ≥ k0 pour lequel fk(x) 6= fk−1(x) est arbitrairement petite. On conclut que
N0(fk0−f) est arbitrairement petit pour k0 assez grand. La preuve est donc complète
(c’est le cas de le dire). □

Remarque VIII-23. Dans le cas où p = 1, on a retrouvé une variante de la
réciproque du théorème de convergence dominée (Théorème IV-24).
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VIII-1.6. Produit tensoriel d’espaces de Lebesgue. Soient (X1,A1, µ1)
et (X2,A2, µ2) des espaces mesurés. Nous avons accès aux espaces Lp(X1, µ1) et
Lp(X2, µ2), faits de fonctions p-intégrables dans la variable x1 ou dans la variable
x2. Quand on manipule des fonctions Lp intégrables dans les deux variables x1 et
x2, elles peuvent être

- données intrinsèquement comme fonctions de x1 et x2 ;
- ou construites à partir de fonctions de x1 et de fonctions de x2, et d’opérations

élémentaires ou de passages à la limite.

Pour produire une fonction p-intégrable dans les deux variables à partir de fonc-
tions p-intégrables d’une variable, une opération élémentaire particulièrement simple
et naturelle consiste à multiplier de telles fonctions. Soient donc f1 ∈ Lp(X1, µ1) et
f2 ∈ Lp(X2, µ2), on note

(f1 ⊗ f2)(x1, x2) = f1(x1) f2(x2).

Cette fonction est appelée produit tensoriel de f1 par f2.
Nous avons donc deux espaces a priori intéressants :
- l’espace Lp(X1 ×X2, µ1 ⊗ µ2) ;
- l’espace Lp(X1, µ1)⊗Lp(X2, µ2), qui par définition est l’adhérence dans Lp(X1×

X2, µ1 ⊗ µ2) de l’espace vectoriel engendré par les produits tensoriels ; c’est donc
l’ensemble de toutes les limites de combinaisons linéaires finies de produits tensoriels.

Le théorème suivant, dont la démonstration est repoussée au chapitre suivant,
donne des conditions suffisantes pour qu’il y ait identité entre ces deux notions, et
pour que toute fonction Lp-intégrable dans les deux variables puisse être approchée
par des combinaisons linéaires de produits tensoriels :

Théorème VIII-24. Soient (X1, d1) et (X2, d2) des espaces métriques séparables,
équipés de mesures de Borel µ1 et µ2, régulières et σ-finies. On munit X1 × X2

de la topologie produit ; alors pour tout p ∈ [1,+∞[, Lp(X1, µ1) ⊗ Lp(X2, µ2) =
Lp(X1 ×X2, µ1 ⊗ µ2).

On trouvera une démonstration en p. ??.

VIII-1.7. Espaces de Lebesgue locaux. Il est souvent utile de travailler avec
des fonctions qui sont intégrables, ou Lp-intégrables, sur des ensembles bornés (par
exemple) sans être nécessairement intégrables sur tout l’espace. Dans ce cours, on
adoptera la définition suivante.

Définition VIII-25 (espaces de Lebesgue locaux). Soit (X, d) un espace mé-
trique. On note Lp

loc(X) l’ensemble des fonctions mesurables X → R qui sont Lp-
intégrables sur toutes les boules de X.

Bien noter que cette définition dépend fortement de la métrique, pas seulement
de la topologie. On pourrait bien sûr définir les espaces locaux en utilisant des
ensembles compacts ; mais en pratique c’est le concept précédent qui nous sera utile.

VIII-2. Inégalités et relations entre espaces de Lebesgue
Dans cette section on va passer en revue des inégalités précieuses qui lient les

normes de Lebesgue Lp pour des exposants p différents.
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VIII-2.1. Inégalité de Hölder Lp et dualité des normes Lp.

Théorème VIII-26 (inégalité de Hölder dans les espaces Lp). Soit (X,A, µ) un
espace mesuré, et soient f, g deux fonctions mesurables de X dans R, p ∈ [1,+∞],
p′ := p/(p− 1). Alors ∣∣∣∣∫

X

fg dµ

∣∣∣∣ ≤ ∫
X

|fg| dµ ≤ ‖f‖Lp ‖g‖Lp′

(où le membre de gauche est par convention +∞ si fg n’est pas intégrable).
Plus généralement, soit k ∈ N, soient f1, . . . , fk des fonctions mesurables, et

p1, . . . , pk des exposants dans [1,+∞], tels que
∑
p−1
k ≥ 1. Alors

‖
∏
j

fj‖Lr ≤
∏
j

‖fj‖Lpj , où 1

r
=

k∑
j=1

1

pj
.

Preuve du Théorème VIII-26. Si r = ∞, nécessairement p = q = ∞ et
l’inégalité est évidente. Dans le cas contraire, il suffit d’appliquer l’inégalité de Hölder
habituelle (Théorème IV-83) aux fonctions |f |r et |g|r, avec les exposants conjugués
p/r et q/r (en effet, (r/p) + (r/q) = 1). □

Corollaire VIII-27 (convergence de produits). Soient (X,A, µ) un espace me-
suré, p ∈ [1,∞] et p′ := p/(p − 1). Soient (fn) et (gn) des suites de fonctions me-
surables, telles que fn −→ f dans Lp(X,µ) et gn −→ g dans Lp′(X,µ). Alors fngn
converge vers fg dans L1, et en particulier∫

fngn dµ −→
∫
fg dµ.

Plus généralement, si l’on se donne k suites de fonctions mesurables (f1,n), . . . , (fk,n)
telles que

∀j, fj,n −→ fj dans Lpj(µ),

avec
∑
p−1
j ≤ 1, alors∏

j

fj,n −−−→
Lr(µ)

∏
j

fj, où 1

r
=

k∑
j=1

1

pj
.

Démonstration. Il est clair que le deuxième énoncé implique le premier, et que
par récurrence, il suffit de traiter le cas k = 2. On se donne donc deux exposants p et
q, et fn −→ f dans Lp, gn −→ g dans Lq, et on cherche à montrer que fngn −→ fg
dans Lr, avec 1/r = (1/p) + (1/q). Pour cela on écrit
‖fngn−fg‖Lr ≤ ‖fn(gn−g)‖Lr+‖g(fn−f)‖Lr ≤ ‖fn‖Lp‖gn−g‖Lq+‖g‖Lp‖fn−f‖Lq .

Puisque la suite (fn) converge dans Lp, elle est bornée dans cet espace ; on en déduit
que l’expression précédente converge vers 0 quand n→ ∞. □

On verra au chapitre suivant que l’espace Lp peut être identifié à l’espace des
formes linéaires continues sur Lp′ , p′ := p/(p − 1), sous certaines restrictions sur p
(1 < p ≤ ∞, X σ-fini pour p = ∞) ; on dit qu’il y a dualité entre les espaces Lp

et Lp′ . Indépendamment de ce théorème non trivial, on peut démontrer simplement
certains liens très utiles entre norme Lp et norme Lp′ , valables pour tous p ∈ [1,∞].
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Théorème VIII-28 (représentation duale des normes Lp). Soient (X,µ) un
espace mesuré, et p ∈ [1,∞[. Alors, pour tout f ∈ Lp(µ),

‖f‖Lp(µ) = sup

{∫
fg dµ; ‖g‖Lp′ (µ) = 1

}
= sup

∥g∥
Lp′ (µ)

̸=0

∫
fg dµ

‖g‖Lp′ (µ)

,

où p′ := p/(p − 1) ∈]1,∞]. En outre, le supremum peut être restreint à l’ensembles
des fonctions g qui s’écrivent comme combinaisons linéaires (finies) de fonctions
indicatrices d’ensembles mesurables de mesure finie.

Si (X,A, µ) est σ-fini, cet énoncé est également valable pour p = ∞.

Démonstration. Si f = 0 (presque partout), l’identité est évidente ; on se
limite donc au cas où f 6= 0. L’égalité entre les deux suprema est une conséquence
de ce que ‖ · ‖Lp est une norme. L’inégalité de Hölder se réécrit∫

fg dµ

‖g‖Lp′ (µ)

≤ ‖f‖Lp(µ),

pour tout g ∈ Lp′(µ), ce qui implique

sup
∥g∥

Lp′ (µ)
̸=0

∫
fg dµ

‖g‖Lp′ (µ)

≤ ‖f‖Lp(µ).

Il suffit donc de montrer que

(70) ‖f‖Lp(µ) ≤ sup
∥g∥

Lp′ (µ)
̸=0

∫
fg dµ

‖g‖Lp′ (µ)

.

Commençons par le cas où p < ∞ ; pour montrer (70) il suffit de choisir g :=
|f |p−2f ∈ Lp′(µ).

Montrons maintenant, toujours dans le cas p < ∞, que le supremum peut être
restreint à des fonctions “très simples”. On sait que la partie positive f+ de f est
limite d’une suite croissante de fonctions simples hk ; puisque f+ ∈ Lp(X,µ), ces
fonctions sont Lp-intégrables, et par convergence monotone, hk converge vers f+
dans Lp. En appliquant le même raisonnement à f−, on voit que f est limite dans Lp

d’une suite fk de fonctions simples Lp, qui s’écrivent forcément comme combinaisons
linéaires de fonctions indicatrices d’ensembles mesurables de mesure finie. Il en est
de même de gk := |fk|p−2fk. On a alors ‖fk‖Lp =

∫
fkgk dµ. On écrit, en utilisant

l’inégalité de Hölder,∫
fgk dµ =

∫
fkgk dµ+

∫
(f − fk) gk dµ ≥ ‖fk‖Lp − ‖f − fk‖Lp‖gk‖Lp′ .

Le premier terme du membre de droite tend vers ‖f‖Lp , tandis que le second tend
vers 0 puisque fk −→ f dans Lp. On en déduit que

lim inf

∫
fgk dµ ≥ ‖f‖Lp ,

ce qui conclut la preuve.
Passons maintenant au cas où p = ∞. Par définition de ‖f‖L∞ , pour tout ε >

0, l’ensemble Yε := {x; |f(x)| > ‖f‖L∞ − ε} est de mesure strictement positive.
Comme X est σ-fini, on peut trouver dans Yε un sous-ensemble Zε de mesure finie
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et strictement positive (c’est là d’une manière très faible d’utiliser la σ-finitude). On
pose alors

g :=
1Zε sign(f)

µ[Zε]
;

c’est une fonction intégrable, ‖g‖L1 = 1 et∫
X

fg dµ =
1

µ[Zε]

∫
Zε

|f | dµ ≥ 1

µ[Zε]

∫
Zε

(‖f‖L∞ − ε) dµ ≥ ‖f‖L∞ − ε.

On conclut en faisant tendre ε vers 0. □
VIII-2.2. Relations d’inclusion. Il faut garder en tête les relations d’inclu-

sion entre espaces de Lebesgue. Limitons la discussion au cas où p ≥ 1. Si l’espace
X est de mesure finie, alors les espaces de Lebesgue Lp(X) sont emboîtés :

Théorème VIII-29 (emboîtement décroissant des espaces de Lebesgue). Soit
(X,A, µ) un espace mesuré fini : µ[X] < +∞. Alors, dès que q ≥ p ≥ 1 on a, pour
tout f mesurable de X dans R,

‖f‖Lp ≤ ‖f‖Lq µ[X]
1
p
− 1

q .

En particulier, les espaces de Lebesgue Lp(X,µ) (p ≥ 1) sont emboîtés dans le sens
décroissant :

q ≥ p ≥ 1 =⇒ Lq ⊂ Lp,

et cette injection est continue.

Dans le cas général, les espaces de Lebesgue ne sont pas emboîtés, et il n’y a pas
de règle générale. On peut d’ailleurs trouver des situations où l’emboîtement a lieu,
mais dans le sens opposé à celui que l’on vient de voir.

Théorème VIII-30 (emboîtement croissant des espaces de Lebesgue). Soit (X,A, µ)
un espace mesuré tel que

∃ε > 0; ∀x ∈ X, µ[{x}] ≥ ε.

Alors, dès que q ≥ p ≥ 1, pour tout f mesurable de X dans R on a

‖f‖Lq ≤ 1

ε
1
p
− 1

q

‖f‖Lp .

En particulier, les espaces de Lebesgue Lp(X,µ) (p ≥ 1) sont emboîtés dans le sens
croissant :

q ≥ p ≥ 1 =⇒ Lp(X,µ) ⊂ Lq(X,µ),

et l’injection est continue.

Exemples VIII-31. Soit X = B1(0) ⊂ Rn, muni de la mesure de Lebesgue λn :
alors les espaces Lp(B1) sont emboîtés dans le sens décroissant. En revanche, les
espaces ℓp(N) sont emboîtés dans le sens croissant. Quant aux espaces Lp(R), ils ne
sont emboîtés ni dans le sens croissant, ni dans le sens décroissant.

Preuve du Théorème VIII-29. C’est une conséquence de l’inégalité de Höl-
der : on écrit ∫

|f |p × 1 ≤
(∫

(|f |p)q/p
)p/q (∫

1

)1−p/q

et on élève les deux membres de l’inégalité à la puissance 1/q. □
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Preuve du Théorème VIII-30. Sans perte de généralité, supposons f posi-
tive. Pour tout x0 ∈ X, on a∫

f p dµ ≥ µ[{x0}] f(x0)p ≥ εf(x0)
p.

En passant au supremum essentiel, on obtient
‖f‖Lp ≥ ε1/p‖f‖L∞ .

En reportant cette information dans l’inégalité∫
f q ≤ ‖f‖q−p

L∞

∫
f p,

on trouve ∫
f q ≤ 1

ε
q
p
−1

‖f‖pLp‖f‖q−p
Lp ,

d’où l’on déduit facilement le résultat. □
Même quand ils ne sont pas emboîtés, les espaces de Lebesgue sont “en inter-

polation”, l’espace de Lebesgue Lp est “entre” Lp0 et Lp1 dès que p est entre p0 et
p1 :

Théorème VIII-32 (interpolation des espaces de Lebesgue). Soit X un espace
mesuré. Alors, dès que 1 ≤ p ≤ q ≤ r ≤ ∞, on a, pour toute fonction mesurable
f : X → R,
(71) ‖f‖Lq ≤ ‖f‖θLp‖f‖1−θ

Lr ,

où θ est choisi de sorte que
1

q
=
θ

p
+

1− θ

r
.

En particulier,
Lp ∩ Lr ⊂ Lq,

et cette injection est continue. En outre, Lp ∩ Lr est dense dans Lq.

Démonstration. La preuve de l’inégalité (71) consiste à écrire f q = faf b, où
q = a + b, et à appliquer l’inégalité de Hölder avec des exposants bien choisis ; il
s’agit d’un excellent exercice, vivement recommandé à la lectrice. On en déduit bien
sûr que Lp ∩ Lr est inclus dans Lq. L’injection est continue si l’on munit Lp ∩ Lr

de sa norme “naturelle” ‖f‖Lp + ‖f‖Lr . Reste à prouver la densité : au vu des
relations d’inclusion, on a L1 ∩ L∞ ⊂ Lp ∩ Lr ⊂ Lq, il suffit donc de montrer que
L1 ∩ L∞ est dense dans Lq. Soit donc f ∈ Lq, on pose fk := f1|f |≤k. Alors fk est
borné par construction, et intégrable puisque

∫
|f |q ≥ kq−1

∫
|fk|. En appliquant le

Théorème VIII-19, on vérifie facilement que ‖fk − f‖Lq −→ 0 quand k → ∞. □
Remarque VIII-33. Je présenterai en fin de chapitre des théorèmes plus géné-

raux, dits d’interpolation, qui vont dans la même direction.

Voici un corollaire simple et utile du théorème précédent.

Corollaire VIII-34 (convergence via interpolation). Soit X un espace mesuré,
et soient p, q deux exposants compris entre 1 et ∞. Soit (fn)n∈N une suite de fonctions
mesurables convergeant vers f dans Lp, et bornée dans Lq. Alors, pour tout exposant
r compris entre p et q (exclus), la suite (fn) converge vers f dans Lr.
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VIII-2.3. Continuité de la norme en p. On a défini une famille de normes Lp

pour un paramètre p variant continûment entre 0 et ∞. Une question très naturelle
est la continuité de cette norme en le paramètre p.

Théorème VIII-35 (continuité de la norme Lp en p). Soient (X,A, µ) un espace
mesuré, et f : X → R une fonction mesurable. Soit

J :=
{
p ∈ [0,∞]; Np(f) < +∞

}
.

Alors J est un intervalle (éventuellement vide) et p 7−→ Np(f) est continue sur
l’adhérence de J (à valeurs dans [0,+∞]).

Remarques VIII-36. (i) Remarquons que p 7−→ Np(f) n’est en général pas
continue sur [0,+∞] tout entier ; c’est pourquoi on se restreint à l’adhérence
de J . Par exemple, si l’on considère X = R, muni de la mesure de Lebesgue,
alors la fonction identiquement égale à 1 n’appartient à aucun autre espace de
Lebesgue que L∞, donc Np(f) = +∞ pour tout p < +∞ ; mais N∞(f) = 1,
il n’y a donc pas continuité quand p→ ∞. En fait, pour tout p0 > 0 on peut
trouver, en jouant sur la décroissance à l’infini et une singularité en 0, une
fonction qui appartienne à Lp(R) uniquement si p = p0 (exercice).

(ii) L’intérêt principal de ce théorème est la continuité en +∞. En fait, d’après
la démonstration qui suit, dès qu’il existe q ≥ 1 tel que f ∈ Lq(X), alors

Np(f) −−−→
p→∞

‖f‖L∞ .

Cet énoncé est utile dans des problèmes de recherche très concrets (par
exemple le “schéma d’itération de Moser” en théorie des équations aux déri-
vées partielles).

(iii) L’inégalité (71) entraîne que logNp(f) est une fonction convexe de 1/p,
et on peut montrer que cette fonction est semi-continue inférieurement. Ces
propriétés impliquent que Np(f) est continue sur J (la convexité implique
seulement la continuité dans l’intérieur de J). Cependant, on va donner une
démonstration qui n’utilise pas explicitement cet argument.

Démonstration. 1. Le fait que l’ensemble des valeurs de p où Np(f) < +∞
est un intervalle découle facilement du Théorème VIII-32. En fait on peut montrer
que la fonction logNp(f) est une fonction convexe de 1/p, ce qui implique aussi le
résultat.

2. Considérons d’abord la continuité en p 6= {0,∞}. Par continuité de l’applica-
tion p 7−→ Xmin(1,1/p) pour p ∈]0,+∞[, il suffit de prouver que pour toute suite pk
convergeant vers p, f ∈ Lpk ,∫

|f |pk dµ −−−→
k→∞

∫
|f |p dµ.

Notons bien que l’hypothèse f ∈ Lp n’est pas faite, de sorte que p pourrait être
au bord de l’intervalle J . On supposera par exemple que pk tend vers p en crois-
sant. Alors on a convergence monotone (l’une croissante, l’autre décroissante) de
|f |pk1|f |≥1 et |f |pk1|f |<1 vers |f |p1|f |≤1 et |f |p1|f |<1 respectivement. Le passage à la
limite croissante ne pose pas de problème ; et puisque |f |pk ∈ L1, on peut passer
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aussi à la limite décroissante. On conclut que∫
|f |≥1

|f |pk −→
∫
|f |≥1

|f |p;
∫
|f |<1

|f |pk −→
∫
|f |<1

|f |p.

Le théorème en découle.
3. Un raisonnement du même type permet de traiter le cas p = 0, en séparant

les trois cas |f | = 0, 0 < |f | ≤ 1, |f | > 1.
4. Passons maintenant au cas où p = ∞. Soit q ≥ 1 tel que f ∈ Lq. En utilisant

les identités élémentaires
‖f‖Lq = ‖|f |q‖1/qL1 ; ‖|f |q‖L∞ = ‖f‖qL∞ ,

on voit que l’on peut remplacer le problème sur f par le problème sur |f |q, et que
l’on peut donc supposer sans perte de généralité

f ∈ L1; f ≥ 0.

On supposera également que f n’est pas identiquement nulle, auquel cas la solution
est triviale ; donc ‖f‖L∞ 6= 0.

5. Soit K > 0 tel que K < ‖f‖L∞ . Par définition du supremum essentiel, on a
a(K) := µ[{f ≥ K}] > 0;

il s’ensuit, par inégalité de Tchebychev,
‖f‖Lp ≥ [a(K)Mp]1/p =Ma(K)1/p −−−→

p→∞
M.

En faisant tendre M vers ‖f‖L∞ , on en déduit (que ‖f‖L∞ soit fini ou non)
lim inf
p→∞

‖f‖Lp ≥ ‖f‖L∞ .

Si ‖f‖L∞ = +∞, ceci achève la preuve.
6. Supposons maintenant que ‖f‖L∞ < +∞. Comme f ∈ L1, on peut utiliser,

pour tout p ≥ 1, l’inégalité d’interpolation

‖f‖Lp ≤ ‖f‖1/pL1 ‖f‖1−1/p
L∞

(qui se démontre très simplement, sans même que l’on ait besoin de recourir à
l’inégalité de Hölder). En faisant tendre p vers l’infini dans cette inégalité, on obtient

lim sup
p→∞

‖f‖Lp ≤ ‖f‖L∞ ,

ce qui conclut la preuve. □

VIII-2.4. Interpolation entre espaces de Lebesgue. Le Théorème VIII-32
montre comment, à partir d’informations dans des espaces de Lebesgue Lp et Lq,
on peut parfois obtenir des informations dans des espaces de Lebesgue Lr pour tout
r compris entre p et q. Nous allons maintenant voir des théorèmes plus généraux
qui rendent ce point de vue systématique. Dans la suite, on note Lp(X) + Lq(X)
l’espace vectoriel de toutes les fonctions mesurables de la forme f +g, où f ∈ Lp(X)
et g ∈ Lq(X). En outre, si T est un opérateur linéaire d’un espace vectoriel normé
E dans un espace vectoriel normé F , on pose

‖T‖E→F := sup
∥x∥E ̸=0

‖Tx‖F
‖x‖E

.
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Les deux théorèmes qui suivent sont les deux principaux théorèmes d’interpola-
tion entre espaces de Lebesgue. Ils reposent sur des techniques très différentes, et ne
sont pas comparables. Le premier a donné naissance à la théorie de l’interpolation
complexe, et le second à la théorie de l’interpolation réelle, techniques d’une
grande importance en analyse.

Théorème VIII-37 (théorème d’interpolation de Riesz–Thorin). Soient X et Y
deux espaces mesurés et p0, p1, q0, q1 des exposants compris entre 1 et ∞ au sens
large. Soit T un opérateur linéaire continu de Lp0(X) dans Lq0(X), et de Lp1(X)
dans Lq1(Y ). Alors, pour tout θ ∈]0, 1[, l’opérateur T admet un unique prolongement
continu de Lpθ(X) dans Lqθ(Y ), où

1

pθ
=

1− θ

p0
+

θ

p1
,

1

qθ
=

1− θ

q0
+
θ

q1
.

En outre, si l’on pose Mθ = ‖T‖Lpθ→Lqθ , alors

Mθ ≤M1−θ
0 M θ

1 .

Cas particulier important : Si 1 ≤ p ≤ q ≤ ∞, et T est un opérateur
linéaire, borné de Lp dans Lp et de Lq dans Lq, alors T se prolonge uniquement en
un opérateur borné de Lr dans Lr, pour tout r ∈ [p, q].

Le Théorème de Riesz–Thorin peut se reformuler comme suit : l’ensemble des
couples (1/p, 1/q) tels que T soit continu de Lp dans Lq est un ensemble convexe,
et log ‖T‖Lp→Lq est une fonction convexe du couple (1/p, 1/q). Ce théorème a pour
avantage de donner des bornes très précises, qui sont optimales dans le cas général
(ce qui n’exclut pas qu’on ne puisse les améliorer quand on considère un opérateur
T particulier). Le théorème qui suit ne donne pas de bornes aussi bonnes, mais
permet d’inclure dans la discussion les espaces de Marcinkiewicz, dont nous avons
vu qu’ils sont “légèrement” plus gros que les espaces de Lebesgue ; ce raffinement
s’avère parfois précieux.

Théorème VIII-38 (Théorème d’interpolation de Marcinkiewicz). Soient (X,A, µ)
et (Y,B, ν) des espaces mesurés, et soient p0, q0, p1, q1 ∈ [1,+∞] avec q0 6= q1,
p0 ≤ q0, p1 ≤ q1. Si T est linéaire continu de Lp0(X) dans Lq0,∞(Y ) et de Lp1(X)
dans Lq1,∞(Y ), alors pour tout θ ∈]0, 1[, l’opérateur T admet un unique prolongement
continu de Lpθ(X) dans Lqθ(Y ), où

1

p
=

1− θ

p0
+

θ

p1
,

1

q
=

1− θ

q0
+
θ

q1
.

En outre, si l’on note M0 = ‖T‖Lp0→Lq0,∞, M1 = ‖T‖Lp1→Lq1,∞, Mθ = ‖T‖Lpθ→Lqθ ,
alors il existe une constante Cθ, ne dépendant que de θ, p0, p1, q0, q1, telle que

Mθ ≤ CθM
1−θ
0 M θ

1 .

Cas particulier important : Soient (X,A, µ) et (Y,B, ν) des espaces mesurés
σ-finis, et soit T un opérateur linéaire continu de L1(X) dans L1,∞(Y ) et de L∞(X)
dans L∞(Y ). Alors, pour tout p ∈]1,+∞], il existe un unique prolongement de T en
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un opérateur continu de Lp(X) dans Lp(Y ). Plus précisément, il existe une constante
numérique C (C = e1/e ≤ 2 convient) telle que pour tout p ∈ [1,+∞],

‖T‖Lp→Lp ≤ Cp

p− 1
‖T‖1/pL1→L1,∞‖T‖1−1/p

L∞→L∞ .

Parlons maintenant des démonstrations de ces théorèmes. C’est Marcel Riesz,
le petit frère de Frigyes Riesz, qui eut le premier l’idée, vers 1926, de la technique
d’interpolation entre espaces de Lebesgue, et prouva le théorème maintenant appelé
théorème de Riesz–Thorin, dans une forme un peu plus restrictive. Vers la fin des
années 1930, le mathématicien suédois Olof Thorin mit au point la preuve esquissée
ci-après, basée sur l’analyse complexe et devenue très populaire. À peu près au
même moment, Józef Marcinkiewicz démontrait le théorème qui porte son nom par
des méthodes très différentes.

Un outil-clé dans la preuve de Riesz–Thorin est le lemme suivant, qui est bien sûr
une variante du principe du maximum pour les fonctions holomorphes (voir [Rudin]
par exemple) :

Lemme VIII-39 (Lemme des trois droites). Soit S := {x + iy; x ∈ [0, 1]; y ∈
R} ⊂ C une bande du plan complexe, et soit f : S → C une fonction continue
bornée, holomorphe dans l’intérieur de S. Alors,

(i) supS |f | = sup∂S |f | ;
(ii) soit Mθ := supy∈R |f(θ + iy)| ; alors

Mθ ≤M θ
1M

1−θ
0 .

Démonstration. 1. Supposons d’abord que f a pour limite 0 à l’infini, et soit
ε < ‖f‖∞ ; puisque f tend vers 0 à l’infini, il existe M ∈ R tel que |f | (vu comme une
fonction sur R2) atteint son maximum sur [0, 1]× [−M,M ]. On conclut la preuve de
(i) en appliquant le principe du maximum pour les fonctions holomorphes définies
sur des ouverts bornés.

2. Dans le cas général où f ne converge pas forcément vers 0, on s’y ramène en
considérant z0 tel que |f(z0)| ≥ (1 − δ)‖f‖∞ et en posant g(z) = e−λ(z−z0)2f(z),
λ > 0. En appliquant le résultat précédent, on voit que |g(z)| atteint son maximum
sur le bord ; or ce maximum est au moins |g(z0)| ≥ (1− δ)‖f‖∞. En particulier,

sup
∂S

|f | ≥ (1− δ)‖f‖∞,

et on conclut (i) en faisant tendre δ vers 0.
3. L’énoncé (ii) est obtenu à partir de (i) en posant h(z) = e−λzf(z), λ ∈ R.

Alors
Mθ ≤ eλθ sup

S
|h| ≤ eλθ sup

∂S
|h| ≤ eλθ max(M0, e

−λM1).

On choisit λ de sorte que
M0 = e−λM1,

i.e. eλ =M1/M0. L’estimation ci-dessus devient alors

Mθ ≤M θ
1M

1−θ
0 .

□
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Démonstration du Théorème de Riesz–Thorin. On note p = pθ, q = qθ ;
et Mj = ‖T‖Lpj→Lqj . On va utiliser le Théorème VIII-28, sous la forme

‖f‖Lq(µ) = sup
∥g∥

Lq′ ̸=0

∫
fg dµ

‖g‖Lq′ (µ)

,

où le supremum est pris sur toutes les fonctions g qui sont combinaisons linéaires
de fonctions indicatrices d’ensembles de mesure finie ; nous appellerons “fonctions
simples” de telles fonctions.

Montrer que T est borné Lp → Lq avec norme au plus M θ
1M

1−θ
0 revient à prouver

que

(72) ‖Tf‖Lq ≤M θ
1M

1−θ
0 ‖f‖Lp

pour toute fonction f ∈ Lp, ou, de manière équivalente, pour toute fonction f simple.
Encore une fois, par densité et en traitant à part le cas p = ∞, on voit qu’il suffit
d’établir (72) dans le cas où f est une fonction simple. Notre but est donc

(73)
∣∣∣∣∫ (Tf)g

∣∣∣∣ ≤M θ
1M

1−θ
0 ‖f‖Lp‖g‖Lq′ .

Nous allons maintenant introduire un paramètre d’interpolation z ∈ S, et faire
varier toutes les quantités ci-dessus en fonction de z. Etant données deux fonctions
simples f et g, on pose donc

fz(x) = |f(x)|p
(

1−z
p0

+ z
p1

)
f(x)

|f(x)|
,

gz(y) = |g(y)|
q′
(

1−z
q′0

+ z
q′1

)
g(y)

|g(y)|
,

avec la convention 0/0 = 0. Ces fonctions fz sont simples, en particulier dans tous
les espaces Lr, et il s’ensuit que Tfz ∈ Lq0 ∩ Lq1 pour tout z ; la fonction

φ : z 7−→
∫

(Tfz)gz

est donc bien définie. En décomposant fz et gz en combinaison linéaire de fonctions
indicatrices, on voit qu’en fait on peut écrire φ sous la forme

φ(z) =
∑

1≤k≤K

aλkz+µk

k , λ ∈ R, µ ∈ R;

en particulier φ est holomorphe et bornée dans S, et on peut appliquer le lemme des
trois droites :

|φ(θ)| ≤
(
sup
t∈R

|φ(it)|1−θ

)(
sup
t∈R

|φ(1 + it)|1−θ

)
.

Mais φ(θ) n’est autre que
∫
Tfg. Par ailleurs,∣∣∣∣∫ Tfit git

∣∣∣∣ ≤ ‖Tfit‖Lq0‖git‖Lq′0
≤ ‖T‖Lp0→Lq0‖f‖p/p0Lp ‖g‖q

′/q′0
Lq′ ,

et l’on peut faire une majoration similaire pour les z = 1 + it. La conclusion en
découle facilement. □
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Démonstration du théorème de Marcinkiewicz. On se contentera de dé-
montrer le “cas particulier”, qui est utile dans de nombreuses situations. La lectrice
pourra essayer de reconstituer la démonstration générale en adaptant la technique
utilisée ci-dessous ; ou consulter [Zygmund, tome II, chapitre XII, théorème 4.6].

Cette fois on va démontrer le théorème directement, sans passer par des fonctions
simples. La preuve fait intervenir deux idées principales :

- représenter les normes des fonctions en jeu au moyen de la taille de leurs
“ensembles de sur-niveau”, i.e. le lieu des points où ces fonctions sont plus grandes
qu’un certain paramètre t,

- décomposer la fonction en jeu en la somme de deux fonctions appartenant aux
espaces que l’on interpole, où les deux fonctions sont choisies indépendamment pour
chaque valeur du paramètre.

Écrivons donc
‖Tf‖L∞ ≤M1‖f‖L∞ , ‖Tf‖L1,∞ ≤M0‖f‖L1 .

La deuxième inégalité se réécrit
∀t > 0, t µ[{|Tf | > t}] ≤M0‖f‖L1 .

Sans perte de généralité on supposera queM1−θ
0 M θ

1 = 1 ; on peut toujours se ramener
à ce cas en multipliant T par une constante convenable.

On se souvient de la formule (25) :∫
|f |p = p

∫ +∞

0

µ[{|f | > t}]tp−1 dt.

De même, ∫
|Tf |p = p

∫ +∞

0

µ[{|Tf | > t}]tp−1 dt.

Pour tout t ≥ 0 on écrit alors
f = f

(t)
1 + f

(t)
2 , f

(t)
1 = f1|f |≤At, f

(t)
2 = f21|f |>At.

La borne L∞ → L∞ entraîne que pour tout t ≥ 0,
|Tf (t)

1 | ≤M1At.

En particulier,
µ[{|Tf | > t}] ≤ µ[{|Tf (t)

2 | > (1−M1A)t}].
En reportant cette inégalité dans la représentation de

∫
|Tf |p, on trouve∫

|Tf |p ≤ p

∫ +∞

0

µ[{|Tf (t)
2 > (1−M1A)t}]tp−1 dt

= (1−M1A)
−1p

∫ +∞

0

(
(1−M1A)tµ[{|Tf (t)

2 > (1−M1A)t}]
)
tp−2 dt

≤ (1−M1A)
−1pM0

∫ +∞

0

‖f (t)
2 ‖L1tp−2 dt = (1−M1A)

−1pM0

∫ +∞

0

∫
|f |1|f |>At t

p−2 dt.

On applique alors Fubini et un changement de variable évident pour réécrire le
dernier terme sous la forme

(1−M1A)
−1pM0

∫
|f |

(∫ |f |/A

0

tp−2 dt

)
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=
pM0

(p− 1)(1−M1A)Ap−1

∫
|f |p.

On pose M1A = λ, la constante apparaissant en facteur de
∫
|f |p est minimale

pour λ = 1/p′, et vaut cpM0M
p−1
1 , avec

cp =
pp+1

(p− 1)p
=

(
p1/p

p

p− 1

)p

,

que l’on majore en utilisant p1/p ≤ e1/e. La preuve est complète. □
Pour conclure cette section, mentionnons une variante intéressante du théorème

de Riesz–Thorin, où l’on s’autorise une dépendance de l’opérateur, est la suivante.
Convenons qu’une famille (Tz) définit une famille holomorphe d’opérateurs si la
fonction z 7−→ Tzf est holomorphe pour tout f simple. On peut alors changer, dans
l’énoncé du Théorème de Riesz–Thorin, l’opérateur T en une famille holomorphes
d’opérateurs Tz ; l’hypothèse de bornes Lp0 → Lq0 et Lp1 → Lq1 sur T est alors
remplacée par une hypothèse similaire sur T0 et T1 respectivement.

Théorème VIII-40 (théorème d’interpolation de Stein). Soient X et Y deux
espaces mesurés σ-finis, et p0, p1, q0, q1 des exposants compris entre 1 et ∞ au sens
large. Soit (Tz)z∈D une famille holomorphe d’opérateurs linéaires définis sur une
partie D du plan complexe incluant la bande S des nombres complexes dont la partie
réelle est comprise entre 0 et 1. On suppose que T0 est borné de Lp0(X) + Lq0(Y )
dans Lp1(X) +Lq1(Y ), tel que T1 est borné Lp0(X) → Lp1(Y ), et Lq0(X) → Lq1(Y ).
Alors,

Tθ est borné Lp(X) → Lq(Y ),

En outre, si on pose Mθ = ‖Tz‖Lpθ→Lqθ , alors
Mθ ≤M1−θ

0 M θ
1 .

La démonstration de cet énoncé dû à Elias Stein (élève d’Antoni Zygmund,
comme Marcienkiewicz) est similaire à celle du théorème de Riesz–Thorin.

Exemple VIII-41. Soit µ une mesure et w une fonction positive ; la famille
d’opérateurs

Tz : f 7−→ wzf

satisfait aux hypothèses du théorème. Le théorème d’interpolation de Stein de-
vient alors un théorème d’interpolation entre espaces de Lebesgue à poids.
Par exemple, si v est une fonction positive et si l’on définit

‖f‖Lp
κ
= ‖fvκ‖Lp ,

alors on a, pour tout opérateur linéaire S,
‖S‖Lpθ

κθ
→L

qθ
λθ

≤ ‖S‖1−θ
L
p0
κ0

→L
q0
λ0

‖S‖θ
L
p1
κ1

→L
q1
λ1

.

VIII-3*. Espace des fonctions mesurables
On va maintenant introduire une notion naturelle de convergence des fonctions

mesurables, ne présupposant aucune intégrabilité, et étudier ses liens avec la conver-
gence Lp. Sans être particulièrement difficile, cette section contient des notions
d’usage beaucoup moins fréquent que les autres de ce chapitre, et pourra être omise
en première lecture.
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VIII-3.1. Convergence dans L. Une première idée qui vient à l’esprit consiste
à utiliser la convergence presque partout, comme naturellement associée au cadre
de la théorie de la mesure. Cependant, cette notion présente de graves défauts : en
particulier, la convergence Lp (1 ≤ p < ∞) n’implique pas la convergence presque
partout. En outre, la convergence presque partout n’est pas associée à une métrique :
en effet, dans un espace métrique, si une suite (fn) a la propriété que toute sous-suite
extraite admet une sous-sous-suite convergeant vers un certain f , alors la suite fn
entière tend vers f (exercice). Or on a vu (Exemple IV-23(i)) que cet énoncé n’est
pas vrai pour la convergence presque partout.

La notion naturelle de convergence est en fait celle que nous venons d’invoquer
implicitement.

Définition VIII-42 (convergence au sens des fonctions mesurables). Soient X
et Y deux espace mesurés. On dit une famille (fn)n≥1 de fonctions mesurables de X
dans Y converge vers f si de toute sous-suite extraite (fn′) de (fn) on peut extraire
une sous-sous-suite extraite (fn′′) qui converge presque partout vers f .

Pour abréger, on pourra dire que fn converge “presque partout à extraction
près”. Cette notion a en commun avec la notion de convergence presque partout la
propriété de stabilité par composition : si fn : X → Y converge vers f et Φ est
n’importe quelle fonction mesurable de Y dans un autre espace mesurable Z, alors
Φ ◦ fn converge vers Φ ◦ f .

Contrairement à la convergence presque partout, la convergence presque partout
à extraction près est en général associée à une métrique. Pour se souvenir que cette
notion de convergence est plus faible que toutes les convergences Lp, on l’appellera
“convergence dans L”.

Proposition VIII-43 (convergence dans L et convergence en mesure). Soient
(X,A, µ) un espace mesuré σ−fini, (Y, d) un espace métrique, et soit φ une fonction
strictement positive partout sur X, d’intégrale convergente. Alors la formule

∆(f, g) :=

∫
X

d(f(x), g(x))

1 + d(f(x), g(x))
φ(x) dµ(x)

définit une distance sur l’espace L(X,µ;Y ) des fonctions mesurables de X dans Y ,
quotienté par la relation d’égalité µ-presque partout. On note cet espace L(X,µ) dans
le cas où Y est R muni de la distance euclidienne. Les trois assertions suivantes
sont équivalentes :

(i) ∆(fn, f) −→ 0 ;
(ii) de toute suite extraite (fn′) on peut extraire une suite extraite (fn′′) qui

converge presque partout vers f ;
(iii) fn converge vers f en mesure sur les parties finies, i.e. pour toute partie A

de mesure finie on a

∀ε > 0, µ
[
{x ∈ A; d(fn(x), f(x)) ≥ ε}

]
−−−→
n→∞

0.

Si Y est complet, l’espace L ainsi défini est un espace métrique complet. Si
Y = R, alors L1 ∩ L∞ est dense dans L.
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Remarque VIII-44. L’existence d’une fonction φ intégrable et strictement posi-
tive est garantie par l’hypothèse de σ-additivité : soit (Ak)k≥1 une famille d’ensembles
mesurables disjoints, de mesure finie, dont la réunion est X, on peut poser

φk =
∑
k≥1

1Ak

k2µ[Ak]
.

Définition VIII-45 (convergence en probabilité). Dans (X,A, µ) un espace de
probabilité, la convergence en mesure est aussi appelée convergence en probabilité.

En mots, la convergence en probabilité dit que la probabilité de dévier sensible-
ment de la limite tend vers 0.

Preuve de la Proposition VIII-43. Je donnerai la preuve uniquement dans
le cas où Y = R. Supposons que l’assertion (i) du théorème est vérifiée, et soit (fn′)
une suite extraite de (fn). La fonction positive intégrable φ(x)|fn′(x) − f(x)|/(1 +
|fn′(x) − f(x)|) converge vers 0 dans L1(X), on peut donc extraire une sous suite
n′′ pour laquelle cette expression converge vers 0 presque partout. Comme φ est
strictement positive partout, on en déduit que fn′′ converge presque partout vers f .
L’assertion (ii) est donc vraie.

Pour montrer que (ii) implique (i), on extrait une sous-suite n′ quelconque, et
de cette sous-suite on extrait une sous-sous-suite pour laquelle la convergence a lieu
presque partout, et on applique le théorème de convergence dominée à la famille
φ|fn′ − f |/(1 + |fn′ − f |), dominée par φ. On montre ainsi que ∆(fn′′ , f) −→ 0.
Comme la sous-suite extraite fn′ était arbitraire, et que ∆ définit une métrique, on
en déduit que ∆(fn, f) −→ 0.

Supposons de nouveau que l’assertion (i) du théorème soit vérifiée, et soit Bn,ε

l’ensemble des x ∈ X tels que |fn(x)− f(x)| ≥ ε : alors

∆(fn, f) ≥
ε

1 + ε

∫
Bn,ε

φdµ,

et donc ∫
Bn,ε

φdµ −−−→
n→∞

0.

Soit maintenant A une partie de mesure finie. Comme X est la réunion dénombrable
croissante des {φ ≥ 1/k, on peut trouver K = K(η) tel que

µ[{φ ≥ 1/K} ∩ A] ≥ µ[A]− η,

où η est arbitrairement petit. On a alors

µ[Bn,ε ∩ A] ≤ µ[Bn,ε ∩ A ∩ {φ ≥ 1/K}] + η ≤ K(η)

∫
Bn,ε

φdµ+ η.

A η et ε fixés, le premier terme du membre de droite tend vers 0 quand n → ∞ ;
comme η est arbitrairement petit, on conclut que

µ[Bn,ε ∩ A] −−−→
n→∞

0,

ce qui veut dire qu’il y a bien convergence en mesure sur toutes les parties de mesure
finie.
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Finalement, supposons l’assertion (iii) du théorème vérifiée, et prouvons l’asser-
tion (i). Pour tout ε > 0 on peut écrire

∆(fn, f) ≤
ε

1 + ε

∫
Bc

n,ε

φdµ+ µ[Bn,ε] ≤ ε

∫
φdµ+ µ[Bn,ε].

Le premier terme est arbitrairement petit quand ε → 0, et le deuxième tend vers 0
quand n→ ∞, ε étant fixé. On en déduit que ∆(fn, f) −→ 0.

Montrons maintenant la complétude de l’espace (L,∆). Soit (fn)n∈N une suite
de Cauchy pour ∆ ; Pour tout k ∈ N, on pose

Ak := {x; (k + 1)−2 ≤ φ(x) < k−2}.
La famille (1Ak

fn)n∈N est alors une suite de Cauchy. On pose δ(f, g) := |f − g|/(1 +
|f − g|). Quitte à extraire une sous-suite, on peut supposer que∫

Ak

∞∑
ℓ=1

δ(fn(x), fn−1(x)) dµ(x) < +∞.

Pour presque tout x ∈ Ak on a donc convergence de la série
∑
δ(fn(x), fn−1(x)), et

la suite (fn(x)) converge donc vers un nombre noté f(x) (on utilise ici la complétude
de (R, δ)). Par convergence dominée, on montre alors que∫

Ak

δ(fm(x), fn(x)) dµ(x) −−−→
n→∞

∫
Ak

δ(fm(x), f(x)) dµ(x).

Comme la suite (fn) est de Cauchy, le membre de gauche est arbitrairement petit
quand m est grand et n ≥ m. On conclut finalement que∫

Ak

δ(fm(x), f(x)) dµ(x) −−−→
m→∞

0,

ce qui est bien sûr équivalent à∫
Ak

φ δ(fm(x), f(x)) dµ(x) −−−→
m→∞

0.

On a donc, pour tout k0,∑
k≤k0

∫
φ δ(fm(x), f(x)) dµ(x) −−−→

m→∞
0;

et d’autre part, puisque φ ∈ L1(dµ),∑
k>k0

∫
φ δ(fm(x), f(x)) dµ(x) ≤

∑
k>k0

∫
φ −−−−→

k0→∞
0.

On conclut que ∫
φ δ(fm(x), f(x)) dµ(x) −−−→

m→∞
0.

Enfin, dans le cas Y = R, montrons que L1 ∩ L∞ est dense dans L. Soit f une
fonction mesurable à valeurs réelles, on pose

Ak :=
{
x ∈ X; |f(x)| ≤ k et φ(x) ≥ k−1

}
.

Puisque f est à valeurs réelles et φ strictement positive, les Ak forment une famille
croissante dont l’union est égale à X tout entier, donc ν[X \ Ak] −→ 0. Soit ε > 0
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arbitrairement petit, on choisit k tel que ν[X \ Ak] < ε. Alors, pour toute fonction
g ∈ L1(dµ), ∫

X\Ak

δ(f, g)φdµ ≤ ν[Ak] ≤ ε.

En particulier, ∆(f, f1Ak
) ≤ ε. La fonction f1Ak

est bornée par construction, et elle
est également intégrable puisque Ak est de mesure finie (à cause de l’intégrabilité de
φ). Ceci conclut l’argument. □

VIII-3.2. Lien avec les autres notions de convergence. La convergence
dans L est une notion plus faible que la convergence au sens Lp, mais elle lui est
intimement liée, comme le montre le théorème suivant, que je limiterai aux fonctions
à valeurs réelles.

Théorème VIII-46 (convergence dans L et dans Lp). Soit (fn)n∈N une suite de
fonctions mesurables à valeurs rélles sur un espace mesuré (X,µ) ; soit également f
une fonction mesurable à valeurs réelles. Alors

(i) Si fn −→ f dans Lp(X,µ) (0 ≤ p ≤ ∞), alors fn −→ f dans L(X, µ).
(ii) Si fn −→ f dans L(X,µ) et qu’il existe g ∈ Lp(µ) (0 < p < ∞) tel que

|fn| ≤ g pour tout n, alors fn −→ f dans Lp(X, µ).

Démonstration. L’assertion (i) est facile : pour toute sous-suite extraite n′,
on a fn′ −→ f dans Lp, et on peut donc trouver une sous-sous-suite pour laquelle il
y ait convergence presque partout.

Pour prouver l’assertion (ii), il suffit de montrer que pour toute sous-suite ar-
bitraire n′, on a convergence d’une sous-sous-suite fn′′ vers f dans Lp. On peut
supposer que fn′′ converge presque partout vers f . La conclusion découle alors du
théorème de convergence dominée, appliqué à la suite |fn′′ − f |p, que l’on peut ma-
jorer par la fonction intégrable max(2, 2p)|g|p. □

La condition de domination peut être remplacée par une condition plus faible
qui suppose seulement certaines bornes en moyenne. On va utiliser ici la notion
d’équi-intégrabilité, étudiée dans la section IV-4.5.

Théorème VIII-47. Soient (X,A, µ) un espace mesuré σ-fini, p ∈]0,+∞[, et
(fn)n∈N une suite de fonctions dans Lp(X,µ), convergeant dans L(X,µ) vers une
fonction mesurable f . On suppose que (|fn|p) est équi-intégrable et équi-intégrable à
l’infini. Alors fn converge vers f dans Lp(X,µ).

Remarque VIII-48. Dans le chapitre suivant, on retrouvera le cas particulier
p = 1 de ce théorème comme une conséquence du théorème de Schur.

Démonstration du Théorème VIII-47. Soit ε > 0 ; on sait par hypothèse
qu’il existe M1 > 0 et un ensemble A1 de mesure finie, tels que pour tout n,∫

|fn|>M1

|fn|p dµ+

∫
X\A1

|fn|p dµ ≤ ε.

Notons que cela impose bien sûr∫
|fn|p dµ ≤M1µ[A1] + ε;
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et par le lemme de Fatou on en déduit∫
|f |p dµ ≤ lim inf

n→∞

∫
|fn|p < +∞.

L’espace X étant σ-fini, on peut donc trouver M2 > 0 et un ensemble A2 de mesure
finie, tels que ∫

|f |>M2

|f |p dµ+

∫
X\A2

|f |p dµ ≤ ε.

On pose A := A1 ∪ A2, M := max(M1,M2).
On a alors∫
X\A

|fn − f |p dµ ≤ max(2, 2p)

(∫
X\A1

|fn|p dµ+

∫
X\A2

|f |p dµ
)

≤ max(2, 2p)ε.

La même majoration est valable sur l’ensemble des x pour lesquels |fn(x)| ≥ M ou
|f(x)| ≥M ; donc en particulier pour l’ensembles des x tels que |fn(x)−f(x)| ≥ 2M .
On conclut que∫

X

|fn − f |p dµ ≤
∫
A∩{|fn−f |≤2M}

|fn − f |p dµ+ 2max(2, 2p)ε.

On distingue alors deux cas.
Si p ≥ 1, on écrit∫
A∩{|fn−f |≤2M}

|fn − f |p dµ ≤ (2M)p−1(1 + 2M)

∫
A∩{|fn−f |≤2M}

|fn − f |
1 + |fn − f |

dµ,

et on conclut que∫
X

|fn − f |p dµ ≤ (2M)p−1(1 + 2M)∆(fn, f) + 2max(2, 2p)ε;

comme par hypothèse ∆(fn, f) −→ 0, on a bien la convergence de fn vers f dans
Lp.

Si en revanche 0 < p < 1, on écrit∫
A∩{|fn−f |≤2M}

|fn − f |p dµ ≤
(∫

A∩{|fn−f |≤2M}
|fn − f | dµ

)p

µ[A ∩ {|fn − f | ≤ 2M}]1−p

≤ (1 + 2M)1/p
(∫

A∩{|fn−f |≤2M}

|fn − f |
1 + |fn − f |

dµ

)p

µ[A]1−p.

On conclut que∫
X

|fn − f |p dµ ≤ (2M)p−1(1 + 2M)1/pµ[A]1−p∆(fn, f) + 2max(2, 2p)ε;

ce qui entraîne encore la convergence de fn vers f dans Lp. □

VIII-4. Espaces de mesures
Dans cette dernière section, nous allons étudier les mesures signées, qui consti-

tuent une généralisation des fonctions mesurables, et les mesures signées finies,
qui constituent une généralisation des fonctions sommables.
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VIII-4.1. Mesures signées. Commençons par un rappel (Proposition IV-7).
Si (X,A, µ) est un espace mesuré, et f une fonction positive mesurable sur X, on
peut définir sur X une nouvelle mesure, notée fµ, par la formule

(fµ)[A] =

∫
A

f dµ.

Le théorème de convergence monotone montre que fµ est bien σ-additive. La mesure
fµ détermine f uniquement, à un ensemble µ-négligeable près (en effet, si f > g
sur un ensemble non négligeable A, on a (fµ)[A] > (gµ)[A]). On voit donc que,
dès que l’on a fixé une mesure de référence µ, l’ensemble des fonctions mesurables
positives (modulo l’égalité µ-presque partout) s’identifie à une partie de l’ensemble
des mesures ; en ce sens, les mesures constituent une généralisation des fonctions
mesurables positives.

Une fonction mesurable quelconque peut toujours s’écrire comme différence de
deux fonctions positives : f = f+−f− ; en outre, f+ et f− sont “étrangères”, au sens
où elles ne sont jamais simultanément non nulles. Il est facile d’étendre cette notion
à des mesures :

Définition VIII-49 (mesures étrangères). Soit (X,A) un espace mesurable ; on
dit que deux mesures µ et ν sur X sont étrangères si elles sont concentrées sur
des ensembles mesurables disjoints ; en d’autres termes, s’il existe deux ensembles
mesurables A et B tels que A ∩ B = ∅, µ[X \ A] = 0, ν[X \B] = 0.

On peut maintenant définir la notion de mesure signée, comme une généralisation
du concept de fonction mesurable :

Définition VIII-50 (mesure signée). Soit (X,A) un espace mesurable. On ap-
pelle mesure signée sur X un couple µ = (µ+, µ−) de mesures étrangères sur X,
appelées respectivement partie positive et partie négative de µ. On notera formelle-
ment µ = µ+ − µ−. On note alors |µ| = µ+ + µ−.

On dira que µ est finie (ou bornée) si µ+ et µ− sont finies. On dira que µ est
σ-finie si µ+ et µ− le sont. On dira que µ est de Borel si µ+ et µ− le sont. On dira
que µ est régulière si µ+ et µ− le sont.

Remarque VIII-51. Si A est mesurable et (µ+[A], µ−[A]) 6= (+∞,+∞), on
peut définir sans ambiguïté la quantité

µ[A] := µ+[A]− µ−[A] ∈ R;
mais si µ+[A] = µ−[A] = +∞, la valeur de µ[A] n’est pas définie a priori. C’est
pourquoi l’écriture µ+ − µ− doit être considérée comme formelle.

Exemples VIII-52. Sur R, δ0 est une mesure qui n’est pas une fonction ; δ0− δ1
est une mesure signée ; δ0 − δ0 ne constitue pas une mesure signée au sens de la
définition précédente (les deux mesures ne sont pas étrangères) ; µ :=

∑
k≥0 δ2k −∑

k≥0 δ2k+1 est une mesure signée, mais on ne peut attribuer aucune valeur à µ[R].
VIII-4.2. Décomposition de Hahn. Soit µ = (µ+, µ−) une mesure signée

sur un ensemble mesurable (X,A). Comme nous l’avons remarqué, il est en général
impossible de définir µ comme une fonction A → [−∞,+∞], sauf si µ+ ou µ− est
finie. À partir de maintenant nous allons concentrer notre attention sur les mesures
signées finies. Le remarquable théorème de décomposition de Hahn montre que de
telles mesures sont caractérisées par la propriété de σ-additivité.



ESPACES DE LEBESGUE ET MESURES SIGNÉES 291

Définition VIII-53 (σ-additivité à valeurs réelles). Soit A une σ-algèbre de
parties d’un ensemble X, et soit µ : A → R une fonction d’ensembles. On dit que
µ est σ-additive si, pour toute suite (Ak)k∈N d’éléments deux à deux disjoints de A,
on a
(74) µ[∪Ak] =

∑
k∈N

µ[Ak],

où le membre de droite est défini comme la limite des sommes partielles
∑

1≤k≤ℓ µ[Ak].

Remarque VIII-54. Le membre de gauche de (74) est invariant par permutation
des Ak, donc le membre de droite aussi, ce qui veut dire que la série

∑
µ[Ak] est

commutativement convergente. Par un résultat classique d’analyse réelle, cette série
est forcément absolument convergente :

∑
|µ[Ak]| < +∞.

Théorème VIII-55 (théorème de décomposition de Hahn). Soit (X,A) un es-
pace mesurable ; alors on peut identifier

- d’une part, les fonctions µ : A → R, σ-additives ;
- d’autre part, les mesures signées finies (µ+, µ−) sur A ;

via la formule µ[A] = µ+[A]− µ−[A].
En outre, on a alors, pour tout A ∈ A,

(75)

|µ|[A] = µ+[A] + µ−[A] = sup

{∑
j∈N

|µ[Aj]|; Aj ∈ A, (Aj)j∈N partition de A
}
.

Remarque VIII-56. Tout le travail dans ce théorème consiste à décomposer
µ en sa partie positive et sa partie négative, d’où l’appellation “théorème de dé-
composition”. Bien noter que l’énoncé contient l’unicité de cette décomposition. Ce
résultat est dû au mathématicien autrichien Hans Hahn, grand spécialiste d’analyse
fonctionnelle, très actif dans l’entre-deux guerres.

Remarque VIII-57. La conclusion du Théorème VIII-55 est bien sûr en défaut
pour des fonctions σ-additives A → R ou même A → [0,+∞] (une mesure σ-additive
n’est pas pour autant finie !).

Démonstration. 1. Il est clair qu’une mesure signée finie définit une fonction
σ-additive d’ensembles ; c’est bien sûr la réciproque qui présente un intérêt.

2. Montrons maintenant l’unicité de la décomposition éventuelle. Soient µ+, µ−, ν+, ν−
des mesures finies vérifiant, au sens des fonctions σ-additives,

µ+ − µ− = ν+ − ν−,

et telles que (µ+, µ−) d’une part, (ν+, ν−) d’autre part, forment des couples étrangers.
Introduisons S(µ+) et S(µ−) des ensembles mesurables disjoints tels que µ+[X \
S(µ+)] = 0, µ−[X\S(µ−)] = 0, S(µ+)∩S(µ−) = ∅ ; et de même, des ensembles S(ν+)
et S(ν−) avec des propriétés similaires vis-à-vis de ν±. L’ensemble A := S(µ+)∩S(ν−)
vérifie

µ[A] = µ+[S(ν−)] = −ν−[S(µ+)];

la quantité µ[A] est donc à la fois positive et négative, et donc nulle. On en déduit
que µ+[S(ν−)] = 0 = ν−[S(µ+)] ; et de même, µ−[S(ν+)] = ν+[S(µ−)] = 0. Pour
tout A ⊂ S(ν+) on a donc µ[A] = ν+[A], mais aussi µ[A] = µ+[A]−µ−[A] = µ+[A] ;
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on conclut que µ+ et ν+ coïncident sur S(ν+), et donc en fait µ+ = ν+. De même,
µ− = ν−.

3. Définissons provisoirement |µ| par la formule de droite dans (75) : |µ|[A] =
sup

∑
|µ[Ai]|, où le supremum est pris sur toutes les partitions, finies ou dénom-

brable, de A en parties mesurables Ai. Vérifions que |µ| ainsi définie est une mesure.
Si (Ak)k∈N est une famille de parties mesurables disjointes, et si on se donne des par-
titions (Ak

j )j∈N de chaque Ak, on définit automatiquement une partition (Ak
j )k,j∈N

de A = ∪Ak. Donc
|µ|[A] ≥

∑
k∈N

|µ|[Ak].

Soit maintenant (Aj)j∈N une partition de A, et Ak
j = Ak ∩ Aj, de sorte que (Ak

j )j∈N
constitue une partition de Ak. Par σ-additivité de µ,∑

j∈N

|µ[Aj]| =
∑
j∈N

∣∣∣∑
k∈N

µ[Ak
j ]
∣∣∣ ≤∑

j∈N

∑
k∈N

|µ[Ak
j ]| =

∑
k∈N

∑
j∈N

|µ[Ak
j ]| ≤

∑
k∈N

|µ|[Ak];

en passant au supremum on obtient

|µ|[A] ≤
∑
k∈N

|µ|[Ak],

et on a bien la σ-additivité de |µ|.
4. L’étape suivante consiste à montrer que |µ| est une mesure finie. Si A est

un ensemble mesurable tel que |µ|[A] = +∞, alors on peut trouver une partition
(Aj)j∈N de A telle que ∑

j∈N

|µ[Aj]| ≥ 2|µ[A]|+ 3;

et donc on peut trouver J fini tel que∑
1≤j≤J

|µ[Aj]| ≥ 2(|µ[A]|+ 1).

En distinguant selon le signe des µ[Aj], on peut trouver une famille finie J d’indices
j tels que ∣∣∣∑

j∈J

µ[Aj]
∣∣∣ ≥ |µ[A]|+ 1.

Soit E = ∩{Aj; j ∈ J } ; on a donc E ⊂ A et |µ[E]| ≥ |µ[A]|+ 1 Il s’ensuit
|µ[A \ E]| = |µ[A]− µ[E]| ≥ |µ[E]| − |µ[A]| ≥ 1.

Par ailleurs, |µ| étant σ-additive, l’une au moins des deux quantités |µ|[E] et |µ|[A\E]
vaut +∞. Conclusion : on peut séparer A en deux parties, disons A′ et B, telles que
|µ|[A1] = +∞ et |µ[B]| ≥ 1.

Supposant par l’absurde que |µ|[X] = +∞, on peut appliquer ce résultat avec
A = X, et séparer X en deux parties disjointes A1 et B1 telles que |µ|[A1] = +∞ et
|µ[B1]| ≥ 1 ; puis réappliquer le résultat avec A = A1, et ainsi de suite. On construit
ainsi une famille de parties disjointes (Bk)k∈N telle que |µ[Bk]| ≥ 1. Ceci contredit la
σ-additivité puisque la série

∑
µ[Bk] ne converge pas. On conclut que |µ|[X] < +∞.

La définition de |µ| entraîne alors
µ[B] ≤ |µ|[B] ≤ |µ|[X] < +∞ :

la fonction µ est bornée.
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5. Une fois cette propriété acquise, il est facile de vérifier que µ vérifie des pro-
priétés de passage à la limite similaires à celles des mesures : pour toute famille
(Ak) croissante, en appliquant la relation de σ-additivité à la famille (Ak \Ak−1), on
obtient

µ[
⋃

Ak] = lim
k→∞

µ[Ak].

Enfin, en passant au complémentaire et en utilisant |µ[X]| < +∞, on voit que pour
toute famille (Ak) décroissante,

µ[
⋂

Ak] = lim
k→∞

µ[Ak].

6. Soit maintenant
M := sup

A∈A
µ[A] ≥ 0.

D’après l’étape 4, M < +∞. Le but est de montrer que ce supremum est atteint par
un ensemble mesurable A, et de montrer que µ+ est concentrée sur A. Si M = 0,
il suffit de poser S+ = ∅ ; nous supposerons donc M > 0. Soit (Ak)k∈N une suite de
parties mesurables vérifiant

µ[Ak] ≥
(
1− 1

2k

)
M.

Posons
A := lim supAk =

⋂
ℓ∈N

⋃
k≥ℓ

Ak.

La famille Cℓ :=
⋃

k≥ℓAk étant décroissante, on sait que µ[A] = limℓ→∞ µ[Cℓ].
D’autre part, en appliquant de manière répétée l’inégalité

µ[Ak ∪ B] = µ[Ak] + µ[B]− µ[Ak ∩ B] ≥ µ[Ak] + µ[B]−M ≥ µ[B]− 2−kM,

on voit que, pour tout m ≥ ℓ,

µ[Aℓ ∪ . . . ∪ Am] ≥ µ[Aℓ]−
m∑
k=ℓ

2−kM ≥ µ[Aℓ]− 2−(ℓ−1)M.

En passant à la limite quand m→ ∞, on obtient
µ[Cℓ] ≥ µ[Aℓ]− 2−(ℓ−1)M ≥ (1− 3 · 2−ℓ)M.

Il ne reste plus qu’à faire tendre ℓ vers l’infini pour obtenir
µ[A] ≥M ;

d’où µ[A] =M .
7. Posons S+ = A, S− = X \ A, de sorte que (S+, S−) réalise une partition de

X ; on va montrer que pour tout C ⊂ S+ on a µ[C] ≥ 0. Dans le cas contraire, on
aurait

µ[S+ \ C] = µ[S+]− µ[C] > µ[S+] =M,

ce qui contredirait la définition deM . De même, s’il existait C ⊂ S− tel que µ[C] > 0,
alors on aurait

µ[S+ ∪ C] = µ[S+] + µ[C] > µ[S+] =M,

ce qui est tout aussi impossible. On conclut que la restriction de µ aux parties
mesurables de S+ est positive, tandis que la restriction de µ aux parties mesurables
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de S− est négative. Il s’ensuit que (S+, µ) et (S−,−µ) sont deux espaces mesurés ;
on peut alors écrire µ comme différence de deux mesures :

µ[A] = µ[A ∩ S+]− (−µ[A ∩ S−]).

Les mesures µ+ := µ[ · ∩ S+] et µ− := −µ[ · ∩ S−] sont finies et étrangères, ce qui
achève la preuve de la décomposition.

8. Il reste seulement à montrer l’équivalence des formules de variation totale ;
pour le moment la notation |µ| désigne la formule de droite de (75), le problème est
de montrer que cela coïncide avec µ++µ−. Pour cela on note d’abord que pour tout
A ∈ A, |µ[A]| = |µ[A∩S+]+µ[A∩S−]| ≤ |µ[A∩S+]|+ |µ[A∩S−]| = µ+[A]+µ−[A] ;
en reportant cette inégalité dans la définition de |µ| on obtient |µ| ≤ µ+ + µ−. Pour
prouver l’inégalité inverse, on note que (A ∩ S+, A ∩ S−) réalise une partition de A,
de sorte que

µ+[A] + µ−[A] = |µ[A ∩ S+]|+ |µ[A ∩ S−]| ≤ |µ|[A].

□

Remarque VIII-58. La fin de la preuve montre a posteriori que dans le membre
de droite de la formule (75), on peut se limiter aux partitions à deux éléments.

Il sera utile dans la suite de traiter des mesures régulières. Pour faire cela, nous
utiliserons la proposition suivante :

Proposition VIII-59 (Reformulation de la régularité des mesures signées). Soit
(X,A) un espace mesurable et µ une mesure signée finie sur X ; soit (µ+, µ−) la
décomposition de Hahn de µ. Alors les trois propositions suivantes sont équivalentes :

(i) µ+ et µ− sont régulières ;
(ii) |µ| est régulière ;
(iii) pour tout A ∈ A et pour tout ε > 0 il existe un compact K et un ouvert O

tels que K ⊂ A ⊂ O et
(76) |µ[A]− µ[K]| ≤ ε, |µ[O]− µ[A]| ≤ ε.

Démonstration. L’implication (i) ⇒ (ii) est (presque) triviale, il suffit donc
de montrer (ii) ⇒ (iii) ⇒ (i). On notera S+ et S− des parties disjointes sur lesquelles
µ+ et µ− sont concentrées.

Supposons que (ii) est vérifiée, soit A un ensemble mesurable quelconque. Par
régularité de |µ|, on peut trouver une suite croissante de compacts (Kn)n∈N inclus
dans A, telle que |µ|[A \ Kn] −→ 0 ; et une suite décroissante d’ouverts (On)n∈N
contenant A, telle que |µ|[On \ A] −→ 0. Alors∣∣µ[On]− µ[A]

∣∣ = |µ[On \ A]| ≤ |µ|[On \ A] −→ 0,

donc µ[On] → µ[A], et de même µ[Kn] → µ[A]. La propriété (iii) est donc vérifiée.
Supposons maintenant (iii), et prouvons par exemple que µ+ est régulière. Soit

A un ensemble mesurable quelconque, et A′ = A∩S+. Par (76) on peut trouver une
suite de compacts (Kn)n∈N, inclus dans A′ et donc dans A, tels que

µ+[Kn] = µ[Kn] −→ µ[A′] = µ+[A
′] = µ+[A];

la mesure µ+ est donc intérieurement régulière.
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Pour montrer la régularité extérieure, on applique la régularité intérieure à B =
S+ \ A : on trouve ainsi une famille (Ln)n∈N de compacts inclus dans B, tels que
µ[Ln] = µ+[Ln] −→ µ+[B] = µ[B]. L’ouvert On = X \ Ln contient alors A, et on a
µ+[On] = µ+[X] \ µ+[Ln] −→ µ+[X] \ µ+[B] = µ+[X \B] = µ+[A ∪ S−] = µ+[A].

□
Le corollaire suivant est une conséquence immédiate du Théorème VIII-55 et de

la Proposition VIII-59 :

Corollaire VIII-60 (Théorème de Hahn pour les mesures régulières). Soit
(X,A) un espace mesurable ; alors on peut identifier

- d’une part, les fonctions µ : A → R, σ-additives, telles que pour tout A ∈ A il
existe des suites de compacts (Kn)n∈N et d’ouverts (On)n∈N vérifiant Kn ⊂ A ⊂ On

et
lim
n→∞

µ[Kn] = lim
n→∞

µ[On] = µ[A];

- d’autre part, les mesures signées finies régulières (µ+, µ−) sur A ;
via la formule µ[A] = µ+[A]− µ−[A].

En outre, µ est régulière si et seulement si |µ| est régulière.
VIII-4.3. Espace des mesures signées finies. Comme nous l’avons vu, le

théorème de Hahn identifie les mesures signées finies avec les fonctions σ-additives
d’ensembles à valeurs réelles. Il est clair que ce dernier espace est un espace vec-
toriel, ce qui n’était pas évident a priori pour les mesures signées finies. On peut
donc munir les mesures signées finies d’une structure naturelle d’espace vectoriel :
il devient possible d’ajouter ou de soustraire des mesures signées, ou de les multi-
plier par des nombres réels. L’écriture µ = µ+ − µ−, qui jusqu’ici était purement
formelle, peut maintenant s’interpréter, dans le cas où µ+ et µ− sont finies, comme
une soustraction au sens usuel dans un espace vectoriel.

Le Corollaire VIII-60 montre de même que les mesures signées finies régulières
constituent un sous-espace vectoriel de l’espace des mesures signées finies.

Ces résultats ouvrent la voie à un traitement “fonctionnel” des mesures signées.
La proposition suivante se démontre sans difficulté :

Proposition VIII-61 (inégalités élémentaires pour les mesures signées). Soient
(X,A) un espace mesurable, µ et ν deux mesures signées finies sur X, identifiées à
des fonctions σ-additives d’ensembles, à valeurs réelles ; alors

µ ≤ ν =⇒ µ+ ≤ ν+, µ− ≥ ν−;

∀α ≥ 0, (αµ)± = αµ±; ∀α < 0, (αµ)± = |α|µ∓;

(−µ)+ = µ−; | − µ| = |µ|;
(µ+ ν)± ≤ µ± + ν±; |µ+ ν| ≤ |µ|+ |ν|.

Pour mesurer la taille d’une mesure signée, un concept naturel est fourni par la
variation totale :

Définition VIII-62 (variation totale). Soient X un espace mesurable, et µ une
mesure signée sur X ; soient µ+ et µ− les parties positive et négative de µ. On appelle
variation totale de µ, et on note ‖µ‖VT(X) ou simplement ‖µ‖VT, la quantité positive

|µ|[X] = µ+[X] + µ−[X].
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Si A est une partie mesurable de X, on notera ‖µ‖VT(A) = |µ|[A].

Proposition VIII-63 (propriétés de la variation totale). Soient X un espace
mesurable et µ une mesure signée sur X. Alors

(i) A 7−→ ‖µ‖V T (A) est une fonction σ-additive d’ensembles, qui coïncide avec
|µ| ;

(ii) Pour toute partie mesurable A de X,
|µ[A]| ≤ ‖µ‖VT.

Plus généralement, pour toutes parties disjointes (Ak)k∈N,∑
k∈N

|µ[Ak]| ≤ ‖µ‖VT.

(iii) ‖µ‖VT = sup
|h|≤1

∫
h dµ, où le supremum est pris sur toutes les fonctions

mesurables sur X (majorées en valeur absolue par 1) ; on peut également restreindre
le supremum aux fonctions mesurables valant ±1.

(iv) ‖µ‖VT = inf
{
ν+[X] + ν−[X]; µ = ν+ − ν−

}
, où l’infimum est pris sur

tous les couples de mesures (ν+, ν−), non nécessairement étrangères, telles que µ =
ν+ − ν− ; en outre il y a égalité si et seulement si µ± = ν±.

Démonstration. L’énoncé (i) est évident. Pour obtenir (ii), il suffit d’écrire
|µ[A]| = |µ+[A]− µ−[A]| ≤ µ+[A] + µ−[A] ≤ µ+[X] + µ−[X].

Pour démontrer (iii), introduisons des ensembles disjoints S+ et S− tels que µ± soit
supportée par S±. Il est alors clair que, dès que |h| ≤ 1, on a∫

S+

h dµ =

∫
S+

h dµ+ ≤ µ+[S+] = µ+[X];

et de même ∫
S−

h dµ ≤ µ−[X].

On conclut que
∫
h dµ ≤ ‖µ‖VT. L’égalité est obtenue pour h = 1S+ − 1S− , ce qui

achève la preuve de (iii). Enfin, pour démontrer (iv) il suffit de démontrer que
µ = ν+ − ν− =⇒ ν+[S±] + ν−[S±] ≥ µ±[S±].

Démontrons par exemple ν+[S+] + ν−[S+] ≥ µ+[S+]. Puisque µ+[S+] = µ[S+] =
ν+[S+] − ν−[S+], cette inégalité se réduit à ν−[S+] ≥ −ν−[S+], ce qui est évident.
Le traitement des cas d’égalité ne s’effectue sans difficuté. □

Décrivons maintenant de manière un peu plus précise l’espace des mesures signées
finies :

Théorème VIII-64 (espace des mesures signées). Soit (X,A) un espace me-
surable. L’ensemble des mesures signées finies sur X, muni de la variation totale,
constitue un espace de Banach, que l’on note M(X). Pour toute mesure finie ν
sur X, l’espace L1(ν) s’identifie isométriquement à un sous-espace de M(X) via
l’injection f 7−→ fν : en particulier,

‖f‖L1(ν) = ‖fν‖VT.
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L’espace des mesures signées finies régulières sur X, muni de la variation totale,
est un sous-espace de Banach de M(X), que l’on notera Mreg(X).

Remarque VIII-65. Si X est polonais, Mreg(X) = M(X) en vertu du Théo-
rème II-62.

Démonstration. 1. Il est facile de vérifier que la variation totale définit bien
une norme, en utilisant la Proposition VIII-61.

2. Montrons maintenant que M(X) est complet : soit (µk)k∈N une famille de
mesures signées finies telles que

‖µk − µℓ‖VT −−−−→
k,ℓ→∞

0.

Pour toute partie A mesurable, on a, d’après la Proposition VIII-63(i),
|µk[A]− µℓ[A]| ≤ ‖µk − µℓ‖VT −−−−→

k,ℓ→∞
0.

Il s’ensuit que la suite (µk[A])k∈N est de Cauchy, et elle converge donc (par complé-
tude de R !) vers un nombre réel que nous noterons µ[A].

Montrons que l’application µ ainsi définie est une mesure signée. Par le théorème
de Hahn, il suffit de vérifier que c’est une fonction σ-additive ; pour cela on se
donne une famille dénombrable d’ensembles Aj disjoints, et on écrit la relation de
σ-additivité pour µk :

µk[
⋃

Aj] =
∑
j

µk[Aj].

On peut passer à la limite quand ℓ → ∞ dans le premier terme ; pour passer à la
limite dans le deuxième, et donc prouver la σ-additivité de µ, il suffit d’établir∑

j

|µℓ[Aj]− µ[Aj]| −−−→
ℓ→∞

0.

Mais, les Aj étant disjoints, on a, pour tout k ≥ ℓ, grâce à la Proposition VIII-63(ii),∑
j

|µℓ[Aj]− µk[Aj]| ≤ ‖µℓ − µk‖VT,

et le membre de droite converge vers 0 quand ℓ→ ∞, uniformément en k. En faisant
tendre d’abord k vers l’infini, puis ℓ, on obtient le résultat souhaité.

À ce stade nous savons qu’il existe une mesure signée µ telle que pour tout A
mesurable, µk[A] converge vers µ[A] quand k → ∞. Pour prouver la complétude, il
reste à montrer que ‖µk − µ‖VT tend vers 0. Soit h une fonction mesurable valant
±1 sur X, et ε(k) := supℓ≥k ‖µk − µℓ‖VT. On a, d’après la Proposition VIII-63(ii),∫

h dµk −
∫
h dµℓ ≤ ε(k).

La fonction h est de la forme 1A − 1B ; on peut donc passer à la limite dans
∫
h dµℓ

quand ℓ→ ∞, et on trouve ∫
h dµk −

∫
h dµ ≤ ε(k).

En prenant le supremum sur h et en appliquant la Proposition VIII-63(ii) encore,
on conclut que ‖µk − µ‖VT ≤ ε(k), ce qui conclut l’argument.
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3. Vérifions maintenant l’identité

‖f‖L1(dν) = ‖fν‖VT

pour toute mesure finie ν. Pour cela il suffit de noter que f+ν et f−ν constituent
la décomposition de Hahn de la mesure signée fν ; en utilisant la définition de la
variation totale on trouve donc

‖fν‖VT = f+ν[X] + f−ν[X] =

∫
f+ dν +

∫
f− dν =

∫
(f+ + f−) dν =

∫
|f | dν.

4. Comme on l’a déjà remarqué, le Corollaire VIII-60 montre que Mreg(X) soit
un sous-espace vectoriel de M(X). Supposons maintenant que µk est une suite de
mesures régulières finies, convergeant vers µ en variation totale, et montrons que µ
est régulière. Soit ε > 0, et soit k tel que ‖µk − µ‖ ≤ ε/2. Comme µk est régulière,
on peut trouver un ouvert O contenant A, et un compact K inclus dans A, tels que
|µk[O \ A]| ≤ ε/2, |µk[A \K]| ≤ ε/2. On écrit alors

|µ[O \ A]| ≤ ‖µk − µ‖VT + |µk[O \ A]| ≤ ε,

et de même
|µ[A \K]| ≤ ‖µk − µ‖VT − |µk[A \K]| ≤ ε.

La propriété (iii) de la Proposition VIII-59 est donc satisfaite, ce qui prouve la
régularité de µ. □

VIII-4.4. Théorème de Riesz pour les mesures signées. Comme nous
l’avons vu au chapitre III, les mesures peuvent être introduites soit à partir du
concept de σ-additivité, soit comme formes linéaires sur des espaces de fonctions
continues, le théorème de Riesz garantissant l’équivalence de ces deux points de vue
dans le cas localement compact. Il en va de même des mesures signées : nous les
avons introduites comme différence de deux mesures, mais on aurait aussi pu les
introduire à partir du point de vue des formes linéaires. C’est le contenu de l’énoncé
suivant.

Théorème VIII-66 (théorème de Riesz pour des mesures signées). Soit X un
espace topologique séparé, localement compact. Alors on peut identifier (mettre en
correspondance bijective et isométrique)

- d’une part, les formes linéaires Λ continues sur l’espace Cc(X) des fonctions
continues sur X à support compact, muni de la norme de la convergence uniforme ;

- ou, de manière équivalente, les formes linéaires Λ continues sur l’espace C0(X)
des fonctions continues sur X tendant vers 0 à l’infini, muni de la norme de la
convergence uniforme ;

- d’autre part, les mesures de Borel signées, régulières et finies µ sur X ; c’est-
à-dire de la forme µ+ − µ−, où µ+ et µ− sont des mesures de Borel régulières finies
étrangères sur X ;
via les formules, valables pour toute fonction f ∈ C0(X) et tout ouvert O,

Λf =

∫
f dµ :=

∫
f dµ+ −

∫
f dµ−
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et

µ[O] = sup
{
Λf ; f ≥ 0, f ∈ C0(X), Spt (f) ⊂ O

}
+ inf

{
Λf ; f ≤ 0, f ∈ C0(X), Spt (f) ⊂ O

}
.

En bref,
C0(X)∗ =Mreg(X),

où C0(X) est muni de la norme uniforme et Mreg(X) de la norme de la variation
totale. En particulier

‖µ‖VT = sup

{∫
X

f dµ; |f | ≤ 1, f ∈ Cc(X)

}
= sup

{∫
X

f dµ; |f | ≤ 1, f ∈ C0(X)

}
.

Remarque VIII-67. Si X est un espace topologique séparé compact, alors
on peut bien sûr remplacer l’espace Cc(X) dans l’énoncé ci-dessus par C(X). En
revanche, si X n’est pas compact, le théorème n’affirme rien sur le dual de Cb(X),
et il est en fait impossible d’identifier Cb(X)∗ à M(X). En effet, sous hypothèse
de l’axiome du choix, on peut identifier Cb(X)∗ à l’espace des fonctions d’ensemble
finiment additives régulières, et montrer si X est non compact que cet espace est
strictement plus grand que M(X) [Dunford–Schwarz, IV.6].

Exemple VIII-68. Fixons un espace localement compact non compact, vérifiant
aux hypothèses du Théorème II-64 (de sorte que toute mesure borélienne finie sur
les compacts est automatiquement régulière) ; par exemple X = Rn. Notons Cℓ(X)
l’espace de Banach des fonctions continues admettant une limite à l’infini. La fonc-
tionnelle lim∞ (limite en l’infini) est linéaire continue, et (si l’on admet l’axiome
du choix) se prolonge par Hahn–Banach en une application L, linéaire continue sur
Cb(X), et non nulle. L’application L ne peut être représentée par aucune mesure
de Borel : comme L(f) = 0 pour tout f ∈ Cc(X), cette mesure ne pourrait être
que la mesure nulle. En fait, L est représentée par une fonction (finiment) additive
d’ensembles ; noter que cette fonction viole de manière évidente les hypothèses de la
Proposition II-60, en fait L est “concentrée à l’infini”.

Preuve du Théorème VIII-66. 1. Soit d’abord µ = µ+ − µ− une mesure
signée finie sur X ; alors, pour toute fonction f ∈ Cc(X),∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ+ +

∫
|f | dµ− ≤ C‖f‖∞,

où C = µ+[X] + µ−[X]. La fonctionnelle f 7−→
∫
f dµ est donc bien une forme

linéaire continue sur Cc(X).
2. Réciproquement, soit Λ une forme linéaire continue sur Cc(X) ; pour tout

f ∈ Cc(X), f ≥ 0 on pose

Φ(f) := sup
{
〈Λ, h〉; h ∈ Cc(X); 0 ≤ h ≤ f

}
.

La fonctionnelle Φ, définie sur l’ensemble des fonctions continues positives à support
compact, est positive et croissante (f ≤ g =⇒ Φ(f) ≤ Φ(g)) ; montrons qu’elle est
sur-additive. Soient f1 et f2 deux fonctions continues positives à support compact,
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soit ε > 0 et soient h1, h2 deux fonctions continues à support compact telles que
pour i = 1, 2,

0 ≤ hi ≤ fi, Λhi ≥ Φ(fi)− ε.

Alors h := h1 + h2 est une fonction continue à support compact telle que 0 ≤ h ≤
f1 + f2, et on a

Λh = Λh1 + Λh2 ≥ Φ(f1) + Φ(f2)− 2ε.

En passant au supremum sur tous les h admissibles, on obtient
Φ(f1 + f2) ≥ Φ(f1) + Φ(f2)− 2ε.

En faisant finalement tendre ε vers 0, on conclut à la sur-additivité de Φ. On peut
alors appliquer la Remarque III-64 (v) suivant l’énoncé du Théorème de Riesz III-
63 pour conclure que Φ se représente par une mesure (positive) de Borel presque
régulière, que nous noterons µ+.

3. Montrons maintenant que µ+ est finie. Si 0 ≤ h ≤ f , alors bien sûr ‖h‖∞ ≤
‖f‖∞, et par continuité de Λ il existe C > 0, indépendant de f et h, tel que Λh ≤
C‖f‖∞. En passant au supremum, on obtient Φ(f) ≤ C‖f‖∞, soit∫

f dµ+ ≤ C‖f‖∞.

Pour tout compact K ⊂ X, on peut trouver une fonction f , continue à support
compact, qui soit comprise entre 0 et 1, identiquement égale à 1 surK ; en appliquant
l’inégalité précédente à une telle fonction, on obtient

µ+[K] ≤ C.

Par ailleurs, X étant ouvert et µ+ étant pré-régulière, on a

µ+[X] = sup
{
µ+[K]; K compact

}
;

ce qui prouve µ+[X] ≤ C. On conclut que µ+ est finie. Par la Remarque III-64 (iii)
suivant l’énoncé du Théorème III-63 (de Riesz), µ+ est régulière.

4. Il est maintenant facile de conclure la preuve : la mesure µ+ construite précé-
demment définit une forme linéaire continue sur Cc(X), et il est clair que

Λ ≤ µ+.

La forme linéaire µ+ − Λ est donc une forme linéaire positive sur Cc(X), et une
nouvelle application du Théorème de Riesz nous permet de la représenter par une
mesure de Borel pré-régulière, que nous noterons µ−. On montre, de même que
précédemment, que µ− est finie et régulière. La forme linéaire Λ peut donc s’écrire
sous la forme µ+ − µ−, où µ+ et µ− sont des mesures de Borel finies régulières.

5. Il est évident que

‖µ‖VT ≥ sup

{∫
X

f dµ; |f | ≤ 1, f ∈ C0(X)

}
≥ sup

{∫
X

f dµ; |f | ≤ 1, f ∈ Cc(X)

}
.

Pour conclure la démonstration, il suffit donc d’établir

‖µ‖VT ≤ sup

{∫
X

f dµ; |f | ≤ 1, f ∈ Cc(X)

}
.
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Pour cela, on décompose µ en parties positive et négative, et on utilise la régularité de
µ+ et µ− pour trouver des ensembles compacts K+ et K− avec µ±[K±] ≥ µ±[X]− ε.
Les ensembles compacts K+ et K− étant disjoints, on peut trouver des ouverts O+

et O− tels que K± ⊂ O± et O+ ∩ O− = ∅ (Cf. paragraphe II-3.3). Par le lemme
d’Urysohn, on peut trouver φ+ continue à valeurs dans [0, 1], identiquement égale à
1 sur K+ et à support compact dans O+ ; et de même φ− continue à valeurs dans
[0, 1], identiquement égale à 1 sur K− et à support compact dans O−. On pose alors
f = φ+ − φ−, de sorte que∫

f dµ ≥ µ+[K+] + µ−[K−]− ‖µ‖VT(X \ (K+ ∪K−))

≥ (µ+[X]− ε) + (µ−[X]− ε)− 2ε = ‖µ‖VT − 4ε.

On conclut en faisant tendre ε vers 0. □
VIII-4.5. Représentation duale de la variation totale. Comme corollaire

du Théorème VIII-66 (Théorème de Riesz pour les mesures signées), nous avons
obtenu une représentation duale de la variation totale :

‖µ‖VT = sup

{∫
X

f dµ; |f | ≤ 1, f ∈ C0(X)

}
(77)

= sup

{∫
X

f dµ; |f | ≤ 1, f ∈ Cc(X)

}
.(78)

Mais cette formule n’a été établie que dans le cas où X est localement compact, et en
fait elle peut facilement être en défaut dans des espaces non localement compacts.
Pourtant, sous des hypothèses très générales elle demeure vraie, pourvu que l’on
remplace C0(X) par C(X) (ou de manière équivalente par Cb(X), puisqu’on impose
|f | ≤ 1 de toute façon).

Proposition VIII-69 (représentation faible de la variation totale). Soit X un
espace métrique et µ une mesure (de Borel) signée sur X, régulière. Alors

‖µ‖VT = sup

{∫
X

f dµ; |f | ≤ 1, f ∈ Cb(X)

}
.

En particulier, cette formule est automatiquement vérifiée si µ est finie et X est un
espace polonais.

Remarque VIII-70. En dépit de cette proposition, le dual de Cb(X) est a priori
plus gros que Mreg(X).

Démonstration. La première partie de l’énoncé implique la deuxième puisque
toute mesure finie sur un espace polonais est régulière (Théorème II-62). D’autre
part il est clair que

∫
φdµ ≤ ‖µ‖VT pour tout φ continu à valeurs dans [−1, 1] ; il

suffit donc de prouver que ‖µ‖VT ≤ sup{
∫
φdµ}, où le supremum est pris sur les

fonctions continues à valeurs dans [−1, 1].
Soient S+ et S− des ensembles disjoints tels que ‖µ‖VT = µ+[S+] + µ−[S−].

Comme µ est régulière, pour tout ε > 0 on peut trouver des compacts K+ ⊂ S+ et
K− ⊂ S− (bien sûr disjoints) tels que

‖µ‖VT ≤ µ+[K+] + µ−[K−] + ε;

en particulier, la variation totale de µ sur le complémentaire de K+∪K− est au plus
ε.
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Sur chaque compact K±, on peut appliquer le théorème de Riesz : par exemple

µ+[K+] = ‖µ+‖VT(K+) = sup
{∫

φdµ+; φ ∈ C(K+), ‖φ‖ ≤ 1
}
.

On peut donc trouver φ± (continue sur K± et à valeurs dans [−1, 1]) tels que

µ±[K±] ≤
∫
K±

φ± dµ± + ε.

(Quitte à remplacer φ± par sa partie positive, on peut supposer que ces fonctions
sont positives, donc à valeurs dans [0, 1].) Soit φ définie sur K+ ∪K−, qui vaut φ+

sur K+ et −φ− sur K− : on a alors

‖µ‖VT ≤
∫
K+∪K−

φdµ+ 3ε.

Par le Théorème d’extension de Tietze–Urysohn (rappelé dans la sous-section II-3.3),
on peut prolonger φ en une fonction continue sur X, toujours notée φ, à valeurs dans
[−1, 1]. On a alors∫

K+∪K−

φdµ ≤
∫
X

φdµ+ ‖µ‖VT(X\(K+∪K−)) ≤
∫
X

φdµ+ ε.

On conclut que

‖µ‖VT ≤
∫
X

φdµ+ 4ε,

et on achève l’argument en faisant tendre ε vers 0. □

VIII-4.6. Espace des mesures de Radon. Auparavant nous avons concentré
notre attention sur les mesures signées finies. Les mesures de Radon constituent une
classe particulière de mesures non signées, d’usage courant en analyse, en relation
avec la théorie des distributions. Elles sont nommées en hommage au mathématicien
autrichien Johannes Radon, pionnier de la théorie de la mesure abstraite (et décou-
vreur de la “transformée de Radon” très populaire dans les technologies d’imagerie).
Avant d’introduire cette classe de mesures, notons que sa définition même varie de
manière assez importante d’un auteur à l’autre.

Définition VIII-71 (mesures de Radon). Soient X un espace localement com-
pact, muni de sa tribu borélienne, et Ω un ouvert de X ; on appelle mesure de Radon
sur Ω une mesure signée, localement finie (i.e. finie sur tout compact de Ω) et
régulière. On notera Mloc(Ω) l’espace de ces mesures.

Autrement dit, les mesures de Radon sont “localement” des mesures finies régu-
lières, mais leur variation totale peut être infinie. Ces mesures sont assez naturelles
en analyse ; si l’on munit Cc(Ω) d’une topologie adéquate, dite topologie inductive,
en englobant tous les supports compacts possibles par une suite croissante d’ouverts,
alors Cc(Ω) est un espace complet (contrairement à ce qui se passe pour la topologie
uniforme), et il s’avère que (Cc(Ω))

∗ = Mloc(Ω) (c’est bien sûr un avatar du théo-
rème de Riesz). En d’autres termes, les mesures de Radon s’identifient alors au dual
de l’espace des fonctions continues à support compact. C’est ce que traduit l’énoncé
suivant [Schwartz] (non démontré dans ce cours) :
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Théorème VIII-72 (mesures de Radon comme formes linéaires). Soit X un
espace topologique séparé, localement compact, dans lequel tout ouvert est union
dénombrable de compacts. Pour tout compact K ⊂ X, on note CK(X) l’espace des
fonctions continues dans X, dont le support est contenu dans K. Alors l’espace
des mesures de Radon s’identifie à l’espace des formes linéaires sur Cc(X) dont la
restriction à CK(X) est continue, pour tout compact K ⊂ X.

VIII-4.7. Convergence dans M(X). On reviendra sur ce sujet dans le cha-
pitre suivant, mais dressons dès maintenant la liste des trois notions de convergence
couramment utilisées dans M(X) : on distingue

• la convergence en variation totale :
µk −−→

VT
µ si ‖µk − µ‖VT −−−→

k→∞
0.

Cette notion est très rigide : par exemple, δxk
converge vers δx en variation totale

seulement si xk est égal à x pour k assez grand !
• la convergence faible-étoile :

µk −−→
w−∗

µ si ∀φ ∈ Cc(X),

∫
φdµk −−−→

k→∞

∫
φdµ.

La terminologie de convergence faible-étoile n’est licite que dans le cas où X est
un espace localement compact et si l’on se restreint à des mesures régulières, de
sorte que l’on peut appliquer le Théorème de Riesz. Notons que l’on peut remplacer
l’espace Cc(X) par C0(X), et que cette notion est en général sans intérêt dans un
espace non localement compact (il se peut que Cc(X) = {0}, par exemple si X est
un espace de Banach de dimension infinie, auquel cas la définition de convergence
faible-∗ devient vide...).

• la convergence faible, ou convergence étroite :

µk −→
w
µ si ∀φ ∈ Cb(X),

∫
φdµk −−−→

k→∞

∫
φdµ.

Cette notion est bien plus faible de la convergence en variation totale, mais plus forte
(un peu plus forte en dimension finie, beaucoup plus forte en dimension infinie) que
la convergence faible-étoile. Elle est très populaire parmi les probabilistes, quand les
µk sont des mesures de probabilité.
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