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Avant-Propos

Entre 2003 et 2008 j’ai enseigné a 'Ecole normale supérieure de Lyon un cours
de licence intitulé “Intégration et Analyse de Fourier”; puis a partir de 2025 a
I’'Unversité Rennes I un cours intitulé “Intégrale de Lebesgue” Le second tour de
piste a été I'occasion, avec une vingtaine d’années de recul, de reprendre et améliorer
le jeu de notes incompletes issues du premier tour.

Sans chercher a étre un ouvrage de référence, I'ouvrage constitue cependant une
synthese ambitieuse puisqu’il entreméle trois courants de pensée scientifiques ma-
jeurs, résonnant bien au-dela de la pensée mathématique : le calcul intégral, 'ana-
lyse harmonique et l'analyse fonctionnelle. L’analyse harmonique, ou analyse en
fréquences, quantifie la régularité au moyen du calcul intégral, et I'analyse fonction-
nelle est née avec les espaces d’intégration avant de se développer dans ’analyse
de la régularité : ce sont donc des domaines fortement interconnectés, au regard de
I’histoire comme du présent.

Comme toujours en sciences, ces théories ont été des ceuvres collectives, influen-
cées par les autres développements scientifiques et méme philosophiques, pleines
d’aller-retour complexes; mais trois mathématiciens en particulier en sont devenus
les figures emblématiques : Joseph Fourier (1768-1830) a fondé I'analyse en fré-
quences, Henri Lebesgue (1875-1941) a établi la théorie moderne de I'intégration,
Stefan Banach (1892-1945) incarne le nouveau vent d’analyse fonctionnelle abstraite
qui a soufflé de I'Europe de 'est au mitan du vingtiéme siecle. Nés dans des mi-
lieux modestes, orphelins de pére, ou de mere, ou des deux, ces trois la ne sont pas
partis gatés par le sort, et pourtant leurs noms résonnent aujourd’hui avec la plus
grande force dans 'océan agité des idées et des techniques. Le traité de Fourier sur
I’équation de la chaleur (1811), la note de Lebesgue sur lintégration (1901), I'ou-
vrage de Banach sur les opérations linéaires (1932) sont des jalons majeurs dans
I’histoire des sciences. Et n’importe ou dans le monde, quand on parle de “mesure
de Lebesgue”, “analyse de Fourier” ou “espaces de Banach” cela évoque des champs
gigantesques, pleins de glorieux accomplissements — et, pour les deux derniers, de
problémes ouverts. La puissance visionnaire de ces pionniers justifie que j'évoque
leurs “Poemes mathématiques” — une expression employée par Lord Kelvin, le plus
puissant physicien de son temps, pour qualifier I'ceuvre de Fourier.

Les théories de Lebesgue, Fourier et Banach ne sont pas seulement faites de défi-
nitions et théorémes, ce sont aussi des méthodes et des points de vue, avec lesquelles
toute analyste doit se familiariser. Tous les problemes mathématiques que j’ai ren-
contrés dans ma vie de chercheur faisaient intervenir une combinaison de ces trois
visions. Pour les présenter dans cet ouvrage, j’'ai longuement remanié les présenta-
tions et les preuves. Un premier défi était de rassembler de facon cohérente les bases
de trois théories souvent dispersées, et dont j’ai moi-méme appris les fondamentaux
dans les excellents ouvrages de Gramain, Brezis, Rudin et Korner. Le second défi
était d’aller suffisamment loin pour couvrir tous les outils, parfois subtils, utiles a la
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pratique mathématique courante, et dans le bon niveau de généarlité, sans sacrifier
a la pédagogie. Enfin, par cohérence avec mes propres choix, je souhaitais que le
tout flt assemblé sans recours a ’axiome du choix — ne serait-ce que parce que cet
axiome, du moins dans sa version générale, est inutile pour développer ces sujets, et
plus généralement a l’essentiel de ’analyse.

La bibliographie est volontairement réduite a un petit nombre d’ouvrages et
articles : ceux que j’ai moi-méme utilisés régulierement au cours de ma carriere.
Quelques points de repéere historiques seront fournis a différents endroits du traité.

Je remercie ceux qui m’ont aidé, au long des années, a la rédaction de ces notes
par leurs commentaires, rectifications et aides ponctuelles, en particulier Luigi Am-
brosio, Guillaume Aubrun, Haim Brézis, Nassif Ghoussoub, Etienne Ghys, Baptiste
Huguet, Francois Japiot, Sébastien Martineau, Julien Melleray, Quentin Mérigot,
Forte Shinko, Jean-Claude Sikorav.



Choix de présentation

Ce bref chapitre est destiné aux lectrices déja familieres avec la matiere enseignée
et qui souhaiteraient savoir les choix pédagogiques de ce cours. Il peut étre omis sans
conséquence.

Touit au long de l'ouvrage, la lectrice est encouragée a se méfier de 'axiome
du choix, et a éviter son usage. Aucun des théoremes du cours ne l'utilise. Toute
lanalyse classique peut se construire sans la forme forte de l'axiome du choiz. Un
bref chapitre préliminaire est consacré a une mise au point sur ce sujet.

Il existe deux grands cadres pour développer la théorie de la mesure : celui des
espaces polonais (métriques séparables complets) et celui des espaces localement
compacts. Le premier choix est le cadre pertinent pour la théorie des probabilités
[Billingsley, Dudley, Parthasarathy]|, le second est privilégié par les admirateurs des
espaces topologiques [Bourbaki, Halmos, Rudin|. Sans surprise, j’ai choisi le point
de vue polonais, beaucoup plus important pour les applications, tout en gardant
pourtant une place pour quelques énoncés emblématiques dans le cadre localement
compact non métrique. Les démonstrations seront completes dans le cas métrique, et
seulement esquissées dans le cas non métrique (par exemple le théoreme de Tychonov
et le lemme d’Urysohn non métriques seront admis).

La régularité des mesures est abordée des le premier chapitre, de méme que di-
verses propriétés reliant topologie et théorie de la mesure. Des théoremes d’extension
a la Carathéodory sont présentés dans la foulée. J’ai pris soin d’énoncer une version
du Théoreme de Carathéodory qui soit suffisamment générale pour étre utilisable
dans le théoreme d’existence de la mesure produit, dans celui de I'existence de la
mesure de Lebesgue, mais aussi dans le Théoreme de représentation de Riesz. En
effet, les démonstrations classiques du Théor eme de Riesz, soit reprennent en fait
des arguments du Théoreme de Carathéodory, soit s’appuient explicitement sur la
forme classique de ce dernier mais doivent alors y ajouter de délicats ingrédients
supplémentaires ; la présentation adoptée ici évite cet écueil.

La linéarité de I'intégrale de Lebesgue est d’ordinaire établie comme corollaire du
Théoreme de convergence monotone ; cette approche est économe, mais a I'inconvé-
nient pédagogique de commencer a traiter des propriétés de I'intégrale par passage a
la limite, avant de parler de la propriété plus fondamentale (au cahier des charges de
toute notion d’intégrale!) de linéarité. J’ai donc dans un premier temps établ la li-
néarité par un argument qui copie la preuve du Théoréme de convergence monotone,
et juste apres j’ai fait le lien avec 'approche de Riesz, basée sur les formes linéaires.
La discussion duThéoréme de convergence monotone est reprise par la suite, dans
un nouveau chapitre consacré aux propriétés de l'intégrale.

Une place importante a été accordée au théoreme d’Egorov, qui en pratique
se révele souvent plus maniable que le théoreme de convergence dominée. En fait,
comme rappelé dans ces notes, on pourrait choisir le théoreme d’Egorov comme
point de départ de la théorie des passages a la limite; mais il est plus naturel de
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réserver ce role au théoreme de convergence monotone, pour son analogie formelle
avec la propriété d’additivité dénombrable.

Les liens entre théorie de la mesure et logique axiomatique d'une part, théorie de
la mesure et théorie des probabilités d’autre part, sont esquissés. Cela dit, je présente
et démontre les principaux résultats techniques qui sont utiles en probabilités, y
compris les subtils théoremes d’existence de Kolmogorov et de Ionescu Tulcea, ou la
loi du 0-1 de Hewitt et Savage (et celles de Kolmogorov et de Borel).

Je ne recommande pas la complétion de Lebesgue, qui n’apporte de justifications
qu’a la marge (sauf peut-étre dans la théorie des processus stochastiques), et au prix
d’une augmentation considérable de la tribu. Ne pas compléter demande un peu
d’attention aux négligeables (qui ne sont plus des ensembles de mesure nulle, mais
des parties incluses dans des ensembles de mesure nulle). L’opération de complétion
est donc présentée mais non recommandée en général. Ce choix est similaire a celui
de Carlen et Loss dans leur traité d’analyse.

L’étude des tribus et mesures produits (dans le cadre d’un produit fini ou infini)
aurait pu étre exposée des le début du cours, puisque le concept d’intégrale n’est
pas, strictement parlant, nécessaire a leur introduction. Cependant, j’ai suivi l'usage
qui consiste a ne pas séparer cette étude du théoreme de Fubini, aussi parce que la
construction est facilitée par le concept de fonction mesurable. Pour compenser cette
faiblesse de plan, j’ai annoncé des le début les rudiments sur les tribus produits, et
le résultat d’existence de mesure produit des apres le théoreme de Carathéodory,
avec dans un cas particulier une démonstration qui annonce également le théoreme
d’existence de Kolmogorov.

Apres ce passage en revue des résultats majeurs, un chapitre d’approfondisse-
ment, plus avancé, est consacré a une introduction a la théorie descriptive des en-
sembles ; vifs remerciements a Julien Melleray et a Forte Shinko pour m’avoir pa-
tiemment permis de me retrouver dans le jardin foisonnant que constitue ce sujet. Le
chapitre se termine par un exposé sur la sélection mesurable, incluant la preuve des
théoremes de sélection dans les ensembles a coupes dénombrables, a coupes ouvertes
et a coupes compactes. Pour la premiere fois en version cours, un argument rela-
tivement élémentaire est présenté pour le théoreme de Lusin—Novikov de sélection
mesurable dans les sections dénombrables, suivant un travail tres récent de Shinko.

Ensuite un chapitre spécifique est consacré a la mesure de Lebesgue dans 1’espace
euclidien. La théorie de Riemann y est rappelée et les liens avec celle de Lebesgue
sont explorés. L’intégrale de Riemann ne doit pas étre sous-estimée, c’est le plus
souvent elle qui permet d’effectuer les calculs pratiques. Ce chapitre accueille aussi
une discussion assez précise sur la mesurabilité et la non-mesurabilité, en rapport
avec les paradoxes de Banach—Tarski et ’axiome du choix.

Les mesures de Hausdorff sont absentes de la plupart des traités introductifs
(& lexception notable de [Billingsley]). Mais l'importance de ce concept dans de
nombreuses branches des sciences, et la popularité du concept de mesure fractale ou
de dimension fractale, motivent amplement leur étude des ce niveau.

L’analyse fonctionnelle est développée dans les espaces de Banach, avec des hy-
potheses systématiques de séparabilité ou de dénombrabilité. Ainsi, le théoreme de
Hahn—Banach n’est démontré que dans le cadre des espaces vectoriels normés sé-
parables — un cadre “restreint” mais suffisant pour toutes les applications que j’en
connais, et encore une fois cela évite le recours a ’axiome du choix dans sa version
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forte. On pourra voir dans ce choix une régression assumée : par endroits, la pré-
sentation s’apparente plus au traitement originel de Banach, dans les années 1930,
qu’a la théorie des espaces vectoriels topologiques développée dans les années 1950
et 1960.

L’uniforme convexité des espaces de Lebesgue LP (p > 1) est démontrée a partir
des inégalités de Hanner plutot que des inégalités de Clarkson ; on obtient ainsi des
estimations essentiellement optimales du module de convexité. Je propose au passage
une nouvelle démonstration tres simple des inégalités de Hanner, par application
directe de I'inégalité de Jensen.

Dans le chapitre d’analyse fonctionnelle, j’ai également inclus et démontré des
énoncés de compacité dont je sais par expérience que la démonstration est difficile
a trouver dans les ouvrages de référence, malgré leur importance. Outre le classique
Théoreme de compacité de Prokhorov dans I'espace des mesures, j’ai donc inclus les
théoremes de compacité de Dunford—Pettis et de Schur, qui ont trait a la compacité
faible L'. Le critére de compacité pour des mesures signées (une question pourtant
naturelle) semble n’étre traité que dans les ouvrages pointus de Bogachev (merci
a Luigi Ambrosio pour cette référence); j’en ai extrait une version simplifiée qui
couvre le cadre des espaces métriques localement compacts.

L’analyse hilbertienne est d’abord traitée comme un cas particulier de I’analyse
de Banach, avant de faire 'objet d’un chapitre d’approfondissement spécifique.

L’analyse harmonique est introduite en méme temps que l'analyse par convolu-
tion, et dans le cadre des groupes localement compacts, métrisables et o-compacts.
C’est dans ce contexte que sont énoncés les grands résultats comme le Théoreme
de Pontryagin ou celui de Haar. Cet entre-deux, plus général que celui des espaces
modeles et plus restreint que celui des groupes topologiques localement compacts,
m’a semblé le bon dosage pour couvrir les problemes que I'on rencontre d’ordinaire
en analyse.

L’analyse de Fourier dans les espaces modeles, avec son cortege de points de vue
et ses identités merveilleuses, fait ensuite 'objet d’un chapitre spécifique d’appro-
fondissement.

L’approximation est 1'un des piliers de I'analyse, et toutes les techniques de ce
cours (Lebesgue, Fourier, Banach, Hilbert) viennent avec leur point de vue en la
matiere. Un chapitre est dédié a cette question fondamentale, sans aucune prétention
d’exhaustivité.

La fonction maximale de Hardy-Littlewood n’est pas toujours introduite dans
les cours de théorie de la mesure (mais elle est bien traitée dans celui de Rudin), et
j’ai souhaité lui donner une place encore plus visible dans un chapitre spécifique qui
prépare la discussion de la désintégration.

Le chapitre sur la désintégration referme le mouvement ouvert par 'intégration.
Il traite aussi bien du Théoréeme de Radon—Nikodym (comme il est d’usage) que
du probleme plus général de désintégration de la mesure (beaucoup moins traité et
d’ordinaire réservé aux ouvrages de probabilité avancée). J’ai choisi des conventions
faisant apparaitre Radon—Nikodym comme un cas particulier de cette désintégration
plus générale. Ce chapitre continue avec des énoncés de reconstruction de la den-
sité de Radon—Nikodym dans des espaces localement compacts; on y trouve aussi
bien le théoréeme classique de densité de Lebesgue (reconstruction ponctuelle), que
des énoncés légérement moins précis mais plus simples de reconstruction L!. Les
probabilités conditionnelles y trouvent aussi leur place.
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La théorie de Brunn—Minkowski, et les inégalités géométriques, au confluent de
I’analyse et de la géométrie, sont d’habitude réservés aux ouvrages spécialisés ; mais
il s’agit de matériaux importants, en ligne directe avec le probleme historique de
I'isopérimétrie, dont tout le monde devrait avoir des notions, ne serait-ce que pour
la culture générale ; cela justifiait aussi un chapitre spécifique.

Le dernier chapitre est un chapitre d’ouverture : moins axé sur la rigueur et
la généralité, il présente des théories, problemes et applications issues des analyses
de Lebesgue, Fourier et Banach. Il pourra étre consulté pour la culture scientifique
comme pour les techniques qui y sont exposées.



Notations et conventions

Outre des notations tres classiques, j'utiliserai les conventions suivantes :

Logique et axiomatique :

A\ B : complémentaire de B dans A

P(X) : ensemble des parties de X

14 : fonction indicatrice de A; 14(z) =1siz € A, O0six ¢ A

proj : la projection; si (z,y) € X x Y, alors projy(z,y) = x.

Si P est une propriété dépendant d’une variable x, { P} pourra désigner {x; P(x)}
(par exemple {f = 0} désignera le lieu d’annulation de f).

Ensembles :

N : 'ensemble des nombres entiers naturels non nuls : N = {1,2,3,...}
Ny : 'ensemble des nombres entiers naturels ou nuls : Ny = {0,1,2,3,...}
7. : 'ensemble des entiers positifs ou négatifs

R : ’ensemble des nombres réels

C : 'ensemble des nombres complexes

ensemble dénombrable = ensemble fini ou en bijection avec N

Calculs dans R" :
(x,y) : produit scalaire de z et y
|z| : norme euclidienne du vecteur x (valeur absolue si n = 1)

Fonctions :
f+ : partie positive de f, i.e. max(f,0)
f- : partie négative de f, i.e. max(—f,0)

Topologie :

A : fermeture topologique de A

Int(A) : intérieur topologique de A

B,(x) = B(z,r) : boule ouverte de centre z, de rayon r

B,j(x) = Blx,r] : boule fermée de centre z, de rayon r

d(x, A) : distance de x a A, i.e. inf{d(x,y); y € A}

osc,(f) : oscillation de f en x, i.e. la limite du diametre de f(B,(z)) quand r — 0

Notations de théorie de la mesure :

1* : mesure extérieure associée a la fonction d’ensembles p
o(F) : tribu engendrée par F

fuA @ tribu image de A par f

fxp : mesure image de p par f

A ® B : tribu produit des tribus A et B

i ® v mesure produit (tensoriel) des mesures u et v
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C(Ay,...,Ax) : cylindre de base Ay, ..., Ay
Si p est une mesure sur R, j'abregerai souvent u[a, b]] en u[a, b], pl[a, b[] en ula, b,
etc.

Convexité :
®* : transformée de Legendre de la fonction &
P’ : exposant conjugué de p: p' =p/(p—1)

Espaces fonctionnels :

C(X,R) = C(X) : espace des fonctions continues de X dans R

Cy(X,R) = Cy(X) : espace des fonctions continues bornées

Co(X,R) = Cp(X) : espace des fonctions continues tendant vers 0 a 'infini

C.(X,R) = C.(X) : espace des fonctions continues a support compact

LP(X,du) : espace de Lebesgue des fonctions p-sommables sur (X, u)

(Je ne distingue pas typographiquement entre 1'espace des fonctions définies par-
tout, et celui des fonctions définies presque partout)

| flloo : supremum essentiel de |f]

Calcul différentiel :

VT : matrice Jacobienne de T : R" — R™ (gradient de 7" si m = 1)
V2f : matrice Hessienne de f

Af : Laplacien de f (trace de V2f)

“la lectrice” = “le lecteur ou la lectrice” (méme convention que Korner)

Je désignerai les références par le nom de leur auteur, suivi le cas échéant d’un
numéro : par exemple [Falconerl], [Falconer2] pour désigner les deux ouvrages de
Falconer mentionnés dans la bibliographie en fin d’ouvrage.



Mise au point axiomatique

L’analyse classique, comme ’essentiel de I’édifice mathématique, repose sur les
axiomes de Ernst Zermelo et Abraham Adolf Fraenkel, soit le systeme de Zermelo—
Fraenkel (ZF), qui permet de définir et manipuler des ensembles,; de les comparer
et de les mettre en correspondance avec des propriétés, de construire les entiers, et
partant les rationnels et les réels, et tout ce qui s’ensuit. Personne n’a jamais réussi
a démontrer que ZF est exempt de contradiction, mais c¢’est un acte de foi dont
s’accommodent toutes les sciences mathématiques a ce jour (méme si quelques non-
croyants existent, comme le prouve le fait que le grand théoricien Edward Nelson a
sérieusement cru trouver une absurdité dans ces axiomes, avant de se rétracter).

Il y a cependant débat pour un autre axiome, 'axiome du choix, ajouté a ZF
pour former 'axiomatique ZFC. Cet axiome dit que Pour toute famille d’ensembles
non vides, il existe une fonction de choix, c’est a dire une fagcon de choisir un élément
dans chacun des membres de la famille. Autrement dit, si (A;)zcx est une famille
d’ensembles,; tous non vides, indexée par ’ensemble X', alors il existe une application
f qui a tout x € X associe f(z) € A,. Autrement dit encore : Si tous les A, sont
non vides, alors leur produit est non vide.

On peut se représenter les A, de facon imagée comme des arbres, chacun pousse
au point x et chacun a au moins une feuille, on veut cueillir une collection mathé-
matique de feuilles, exactement une pour chaque arbre.

FIGURE

Ainsi présenté, ’axiome semble naturel. Il pose pourtant de nombreux problémes.
D’abord, il implique le principe de bon ordre, et lui est méme équivalent : Tout
ensemble peut étre muni d’un bon ordre, ¢’est a dire un ordre total et strict dans lequel
toute partie non vide admet un élément minimal (comme dans N ou toute partie
non vide admet un plus petit élément); I'idée que 'on puisse ordonner ainsi tous
les éléments de R défie I'imagination. L’axiome du choix est également équivalent
au plus obscur Lemme de Zorn : Tout ensemble partiellement ordonné, dans lequel
toute chaine totalement ordonnée admet au moins un majorant, possede au moins
un élément mazximal. Selon une célebre plaisanterie du mathématicien Jerry Bona,
“I’axiome du choix est évidemment vrai, le principe de bon ordre évidemment faux,
et qui peut dire ce qu’il en est du lemme de Zorn ?” (évidemment une blague puisque
les trois énoncés sont équivalents)

Ensuite, I'axiome du choix est “hautement non constructif”, car il n’y a aucune
indication, en pratique, de la recette que l'on pourrait suivre pour construire la
fonction f. Par définition, dire qu’un ensemble est non vide, c’est qu’il contient au
moins un élément et alors on peut le choisir; face a une collection finie d’ensembles
non vides, on applique ce raisonnement pour chacun des ensembles considérés. Mais
si la collection est infinie, on ne peut réitérer le raisonnement une infinité de fois, on
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a besoin d’un axiome supplémentaire pour effectuer cette infinité de choix, et plus
I’ensemble X est de grande cardinalité, plus 'acte de foi est exigeant.

Enfin I’'axiome du choix implique des paradoxes choquants, comme on le discutera
avec Banach-Tarski; le petit ouvrage de Wagon présente tres bien ces questions.

Mais si I'on s’interdit tout axiome du choix pour des ensembles infinis, on se
heurte rapidement & d’autres paradoxes choquants; et bien des raisonnements par
récurrence, pourtant naturels, cessent d’étre valables. On est ainsi amené a demander
au minimum qu’'un produit dénombrable d’ensembles non vides soit non vide (axiome
du choix dénombrable). Mais cela n’est pas encore tout a fait suffisant pour mettre
en forme les raisonnements habituels par récurrence : la bonne hypothese, introduite
par le mathématicien allemand-suisse Paul Bernays en 1942, est 'axiome du choix
dépendant : Si X est un ensemble non vide, et pour tout z € X on se donne une
partie non vide F(x) de X, alors il existe une suite (z,),en € XY telle que pour
tout n, Tpi1 € F(zy,).

Voici une reformulation commode. Soit (A, ),eny une famille dénombrable d’en-
sembles non vides; pour tout n et tous zi,...,x,_1 dans A; X ... X A,_1 on se
donne une partie F,,(x1,22,...,2,-1) C A,. On suppose que z; € Fi(z1,...,2;1)
pour tout ¢ < n implique F,(z1,...2,_1) non vide. Alors on peut trouver une fonc-
tion f définie sur N, telle que f(n) € F,(f(1), f(2),..., f(n — 1)) pour tout n € N.
Autrement dit : Si a chaque étape on peut choisir un élément de A,, en fonction des
choix précédents, alors il existe une suite faite de tels choix successifs.

Tout en évitant les paradoxes, la théorie résultante, ZF+CD (Zermelo—Fraenkel
avec Choix Dépendant) permet de construire toute l’analyse réelle classique, y com-
pris la théorie de la mesure, la théorie des équations aux dérivées partielles, la théorie
des probabilités, le calcul des variations, la géométrie différentielle, I’analyse non lisse
moderne, 'analyse fonctionnelle dans les espaces de Banach séparables, etc. C’est
le cadre que j'ai moi-méme adopté a partir du milieu des années 2000 pour tous
mes articles et ouvrages, et que je recommande vivement. Qu’on aime ou pas les
raisonnements non constructifs, le simple fait que 'on puisse se passer de l’axiome
du choiz incite a ne pas l'utiliser.

Et donc, cet ouvrage n’utilise pas ’axiome du choix, mais seulement
P’axiome du choix dépendant.

Comme la plupart des ouvrages de référence utilisent 'axiome du choix complet
(ZFC), certains de leurs énoncés deviennent indémontrables dans ZF+CD; mais
comme on le verra dans le présent cours, cela ne présente aucune gravité et n’entrave
en rien nos objectifs et applications.

Pour la lectrice, ne pas utiliser 'axiome du choix rend certains énoncés un peu
plus exigeants, mais ne complique en rien les démonstrations, au contraire. Utiliser
ZF+CD veut dire que l'on s’autorise tous les raisonnements intuitifs faisant inter-
venir des suites avec choix successifs ; en pratique on n’y pensera méme pas — alors
que l'usage intelligent du lemme de Zorn est subtil, voire obscur.

D’autres axiomes sont parfois ajoutés a ZF : axiomes de grand cardinal en parti-
culier. Ils n’offrent pas d’intérét particulier pour le présent cours, mais seront parfois
cités pour expliquer tel ou tel contre-exemple.
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Introduction : Apercu historique et motivation

Commencons par une présentation a grands traits de la théorie de l'intégration a
travers les ages, et ses plus célebres contributeurs. J'insisterai plus particulierement
sur quelques concepts et destins.

I-1. D’Archimede a Lebesgue

Dans I'histoire des sciences et des concepts, I'intégration précede de beaucoup
la dérivation. La quantité de corde nécessaire a une cloture, de petits pavés pour
quarrer une mosaique, de métal pour fondre une piece de ferronnerie, demandaient
des calculs additifs sur des longueurs, aires et volumes, en lien avec les mesures phy-
siques. Les longueurs et les aires sont déja présentes dans les trés anciens théoremes
de I’Egypte et de la Mésopotamie anciennes : théoreme de Pythagore, nombre 7,
formules d’Héron d’Alexandrie, calculs de volumes de polyedres... Les Grecs anciens
connaissaient aussi la solution du probléme isopérimétrique, d’ailleurs présente
dans la légende de Didon d’Enée : & périmetre donné, c’est le cercle qui a la plus
grande surface (et dans un demi-espace, c’est le demi-cercle).

Cette tradition culmine avec Archimede, le grand génie des sciences de I’ Anti-
quité. Il était si fier de I'un de ses calculs d’aire qu’il en a fait graver le croquis sur sa
tombe : une sphere inscrite dans un cylindre, dont la hauteur est égale au diametre,
rappelant que I'aire de la spheére (47 R?, si R est le rayon) est aussi la surface latérale
du cylindre, ou encore le double de la surface des disques en haut et en bas. Ce méme
dessin a d’ailleurs été reproduit au revers de la médaille Fields!

C’est aussi a Archimede que 'on doit la plus ancienne évocation du tres impor-
tant probleme de passage a la limite dans une suite de calculs intégraux. Il s’agit
d’approcher 7 comme limite du périmetre de polygones réguliers quand le nombre de
cOtés augmente. Il en tire une valeur approchée de 7 a 0,01% pres (via un polygone
a 96 cotés) et la formule de l'aire du disque. Quelque temps plus tard, Zénodore
s’appuie sur les raisonnements d’Archimede pour démontrer des énoncés de nature
isopérimétrique : a nombre de cOtés et périmetre fixés, ce sont les polygones réguliers
qui ont la plus grande surface; et a surface fixée, c’est la sphere qui enclot le plus
grand volume.

Les techniques de I’Antiquité sont reprises et amplifiées par les mathématiciens
du monde arabo-perse, qui dominent la pensée scientifique du Moyen-Age. Au 9e
siecle, Thabit ibn Qurra (Thabet) propose une méthode de calcul d’aire proche de
la sommation en tranches, avec épaisseur variables, qui sera la base de l'intégrale de
Riemann.

A T'époque de la grande renaissance mathématique, au début du 17e siecle, les
précurseurs du calcul intégral comme Bonaventura Cavalieri, Gilles Personne de
Roberval, Evangelista Torricelli, Isaac Barrow, René Descartes, Pierre de Fermat,
Blaise Pascal rivaliserent d’ingéniosité pour mettre au point des méthodes générales
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et calculer les longueurs et aires de courbes notables. La cycloide alors fascinait
les scientifiques. Galilée détermina expérimentalement (au poids!) que l'aire sous
le graphe en vaut 3mR2, ce que Roberval fut le premier & démontrer (R le rayon
de la roue qui tourne pour engendrer la cycloide). Christopher Wren prouva que
la longueur du graphe est de 87 R. Pascal en fit un défi sous le pseudonyme de
Dettonville. La mode était aux calculs explicites et ingénieux.

C’est sous la plume de Pascal que 'on trouve la plus ancienne trace d’un signe
intégral : un S allongé, S comme somme ou summa, notation qui fut reprise par
Leibniz et connut une extraordinaire popularité. Moi-méme, j’ai écrit ce symbole
des centaines de milliers de fois dans ma carriére, et il s’est si bien incrusté dans
mon cerveau que sa forme s’impose machinalement a mon esprit des que je réfléchis
a un raisonnement...

Les calculs d’aires, de longueurs et de volumes se développerent au cours des
siecles. Des que le calcul différentiel fut établi, on identifia la recherche de primitives
comme une méthode de calcul d’intégrale. L’intégration joue un réle majeur dans la
théorie de la gravitation universelle d’Isaac Newton. Elle apparait a d’innombrables
reprises dans les travaux de Leonhard Euler, y compris dans ses célebres fonctions
Beta et Gamma. L’heure est alors toujours a la recherche de relations et d’identités
remarquables.

Un jour de 1800, le génie allemand Carl Friedrich Gauss calcule la moyenne
arithmétique-géométrique de 1 et v/2... avec 18 décimales ! Pour rappel, cette moyenne
s’obtient en partant des deux nombres 1 et v/2 & étape 1, et & chaque nouvelle étape
on calcule les moyennes arithmétique et géométrique des deux nombres de 'étape
précédente. Pressentant quelque chose d’intéressant dans ce nombre, Gauss joue
avec... et se convainc numériquement que c’est exactement 27/L, ou L est la lon-
gueur de la lemniscate de Bernoulli, courbe d’équation polaire p = /cos(26). C’est
une magnifique relation, qu’il mettra quelques mois a démontrer en la mettant en
correspondance aussi avec les intégrales d’Euler. Encore et toujours des relations
exactes pour des courbes particulieres... Mais c’est fascinant de se dire que Gauss
connaissait par cceur la longueur de la lemniscate !

Une grande mutation s’accomplit dans ’analyse tout au long du dix-neuvieme
siecle : le passage du particulier au général, du lisse au non-lisse. Cauchy, puis
Weierstrass reprennent l’analyse sur ses bases; Cantor d’eveloppera la théorie des
ensembles et des cardinaux ; Poincaré initiera la théorie et la classification des équa-
tions différentielles générales. La fonction de Weiestrass (1872), continue mais nulle
part différentiable, est emblématique de ce nouvel état d’esprit ou les constructions
reposent sur 'axiomatique plutdt que sur les formules. Dans ce vaste mouvement,
deux contributions a la théorie de I'intégration sont particulierement importantes :
celles de Joseph Fourier (1811) et Bernhard Riemann (1854).

Né en 1768 a Auxerre, Joseph Fourier est le douzieme enfant d’un peére tailleur.
Orphelin a neuf ans, il manifeste des talents prodigieux en mathématique, mais
sa basse extraction I'empéche de les développer et il se destine a la religion. La
Révolution francaise lui offre 'opportunité de reprendre les sciences, tout en menant
aussi une carriere dans la politique et 'administration. Un temps emprisonné dans les
convulsions de la Terreur, il échapppe de peu a la mort, enseigne dans des institutions
d’enseignement supérieur, entre a I’Académie des sciences, participe activement a
Pexpédition d’Egypte, et devient sous Napoléon le second préfet de I'Isére, ou il
se révele extraordinairement actif. Coicidence ou pas, lui qui était légendairement
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frileux — plus couvert en plein été qu'un explorateur des régions polaires, nous dit
un collégue dans son éloge funebre — se passionna pour la modélisation de la chaleur,
le grand ceuvre de sa vie. Ce n’était pas le seul de ses centres d’intérét puisqu’il fut
également, avec un siecle d’avance, un pionnier de la programmation linéaire.

Les contributions de Fourier a la modélisation de la chaleur lui valent le titre de
pere de la physique mathématique [Dhombres|. On lui doit les premieres discussions
claires des échanges de chaleur par diffusion, convection et par effet de serre. Il
établit ’équation de la chaleur par raisonnement phénoménologique, détermina ce
que nous appelons maintenant les fonctions propres, et montra comment exprimer
n’importe quelle fonction dans ce que nous nommons maintenant séries et intégrales
de Fourier, grace aux formules intégrales

~

e = [ e s

C’est un acte fondateur pour I’étude des équations aux dérivées partielles linéaires,
mais aussi le premier lien entre régularité et intégration, et les prémices de I’analyse
fonctionnelle. Son mémoire, soumis en 1811 avec la devise Et ignem requnt numeri
(“méme le feu est régi par les nombres”), paru en 1822 apres bien des déboires
politico-universitaires, est un jalon important dans I’histoire des sciences. C’est la
naissance de 'analyse de Fourier qui révolutionnera les sciences et les techniques,
aujourd’hui 'un des piliers de toute 'industrie numérique.

Quant a Bernhard Riemann, c’est un fils de pasteur allemand, prodigieuse-
ment doué ; exactement comme son maitre Gauss, il se destine a la théologie, avant
d’étre séduit par la beauté mathématique. Timide et fragile, peu doué pour les af-
faires humaines, il plane haut au-dessus de ses contemporains. Sa carriére ne dure
qu’une dizaine d’années, mais ’ensemble des concepts nommés en son honneur donne
le vertige : surfaces de Riemann, sphere de Riemann, géométrie riemannienne, cour-
bure de Riemann, fonction zéta de Riemann, Hypotheése de Riemann, probleme de
Riemann... et bien stir 'intégrale de Riemann, qui permet d’intégrer nombre de
fonctions, régulieres ou non. La mort de Riemann dans sa quarantieme année contri-
bue a en faire un personnage romantique inspirant, objet d’une forme de dévotion,
au point que des intellectuels et artistes se recueillent a ’occasion sur sa tombe.

Apres Riemann, I'intégration est solidement définie et prend toute sa part dans
le formidable développement de I'analyse réelle et complexe, et bien siir de 'analyse
fréquentielle a la Fourier. Mais dés la fin du 19e siecle, les limitations de la théo-
rie de Riemann sont apparentes et il devient nécessaire de la généraliser. Thomas
Joannes Stieltjes, Camille Jordan, William Young font des propositions, mais c¢’est
finalement un groupe de jeunes mathématiciens francais, pasionné par la description
des ensembles et des fonctions, qui décroche le gros lot : René Baire, Emile Borel
et Henri Lebesgue. Et au sein de ce groupe, c’est Lebesgue qui aura ’honneur de
donner a I'intégration sa forme moderne.

Né dans une modeste famille picarde touchée par le malheur et la maladie, fils
d’un ouvrier typographe d’'une mere institutrice, Henri Lebesgue n’a que trois ans
quand la tuberculose emporte son pere et ses deux sceurs, et le laisse invalide. Il ma-
nifeste de vrais dons pour les sciences et sa mere se démene pour qu’il puisse suivre
des études dans les meilleurs établissements. A I'Ecole normale supérieure, il retrou-
vera d’autres jeunes passionnés comme Baire et Borel, issus de milieux modestes
mais accédant a la recherche internationale.
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Une génération apres le contre-exemple de Weierstrass, I’heure est aux fonctions
irrégulieres, un concept qui va dominer toute la science du 20e siecle. Dans quelques
années, d’ailleurs, Louis Bachelier en fera la base de son étude mathématique des
cours de la bourse, et Albert Einstein et Marian Smoluchowski feront le lien entre les
trajectoires hautement chaotiques du mouvement brownien, et la théorie atomique
de Ludwig Boltzmann. Aux yeux de la jeune garde, l'irrégulier est la regle et non
I’exception. Pour protester contre la théorie traditionnelle, lisse, des surfaces déve-
loppables (surfaces isométriques au plan euclidien), le jeune Lebesgue froisse son
mouchoir et constate a haute voix que le résultat ne satisfait pas les conclusions des
théoremes du cours!

Bien plus exigeante sur la rigueur, cette nouvelle génération apprend a manier
avec virtuosité les concepts de la théorie des ensembles et de la topologie naissante
— ouverts, fermés, continuité, opérations dénombrables. Pour mesurer un ensemble,
Baire inaugure la voie topologique (intersections d’ouverts et unions de fermés).
Borel et Lebesgue, quant a eux, attaquent la voie métrique (recouvrement par des
boules et des pavés), qui s’avere bien plus efficace. Leur démarche aboutit aux deux
concepts fondamentaux sur lesquels est bati 1’édifice moderne : mesure de Borel
(1895) et intégrale de Lebesgue (1901). La note fondatrice de Lebesgue aux
Comptes rendus de I’Académie des sciences, développée dans le Cours Peccot, est un
acte fondateur pour I’ensemble de la communauté scientifique qui se réappropriera
cet outil.

A dire vrai, il est difficile de déméler les mérites respectifs de Borel et Lebesgue,
d’autant que la coopération enthousiaste de leurs jeunes années laissera la place a
d’ameres querelles de priorité, envenimées par la grande déprime de la guerre, et
par 'inégalité considérable de carrieres. En effet, Borel a tous les honneurs de la
société, allié a des personnalités influentes (Appell, Painlevé), et menant une car-
riere universitaire et politique qui le verra maire, député et ministre, et militant
de la cause européenne; évoluant au cceur de la vie intellectuelle de son temps, il
dirige I'Ecole normale supérieure, fonde 'Institut Henri Poincaré et aura une réelle
influence en France sur la recherche industrielle, sur le développement des probabi-
lités, des statistiques, des sciences de la décision — alors que Lebesgue, méprisant les
mondanités, mene une carriere bien plus modeste et laborieuse. Baire pour sa part
voit son parcours prématurément interrompu par la maladie et finira sa vie dans la
détresse matérielle et psychologique.

La théorie de Borel et Lebesgue est restée remarquablement stable depuis : si ’on
compare la note de Lebesgue de 1901 a un cours moderne d’intégration, on reconnait
les mémes angles d’approche et les mémes architectures de raisonnements. En effet,
cette théorie a tenu toutes les promesses : elle a facilement accueilli dans son écrin
trois siecles d’analyse des infiniment petits, de calcul des probabilités, d’analyse des
variations — dont bien stir I'analyse fréquentielle de Fourier.

C’est tout naturellement que la nouvelle théorie integre aussi les travaux menés
a la fin du 19e siecle sur les volumes et les surfaces des solides convexes, dans la
veine du probléme isopérimétrique, par les chercheurs du monde germanique : le
Suisse Jakob Steiner (reconnu en son temps comme le plus universel des géometres),
I’Allemand Hermann Brunn et le Juif polonais-lithuanien-russe-allemand Hermann
Minkowski (génie profond et original, camarade proche de David Hilbert, également
pere de la géométrie de 'espace-temps relativiste).
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I-2. Le nouveau découpage en tranches

Le jeune Lebesgue était connu pour son style imagé et son humour, et la citation
que voici I'illustre bien.

Je dois payer une certaine somme ; je fouille dans mes poches et j'en sors des
pieces et des billets de différentes valeurs. Je les verse a mon créancier dans [’ordre
ot elles se présentent jusqu’a atteindre le total de ma dette. C’est lintégrale de
Riemann. Mais je peux opérer autrement. Ayant sorti tout mon argent, je réunis les
billets de méme valeur, les piéces semblables, et j'effectue le paiement en donnant
ensemble les signes monétaires de méme valeur. C’est mon intégrale.

Ainsi présentée, I'idée de départ de Lebesgue semble tres simple. Comme dans
le cas de l'intégrale de Riemann, il s’agit d’approcher 'aire sous le graphe de la
fonction par une union de rectangles. Mais ces rectangles sont définis de maniere
tres différente : Riemann en fait un découpage en tranches verticales, et Lebesgue
en tranches horizontales. Pour Riemann ce sont les variations de la fonction sur son
domaine de définition qui comptent, pour Lebesgue ce sont les variations des valeurs.
Dans le cas de Riemann, la base (le co6té horizontal du rectangle) est toute simple
(un petit segment, disons) et la fonction définit la hauteur (le cdté vertical); pour
Lebesgue, au contraire la hauteur est toute simple et c’est la fonction qui définit
la base; en fait cette base peut étre tourmentée, de sorte que plusieurs rectangles
partagent un méme coté vertical. C’est ici que l'intégrale de Lebesgue va gagner
toute sa complexité : alors que dans l'intégrale de Riemann, une brique élémentaire
est un simple rectangle, dans celle de Lebesgue, il pourra s’agir de plusieurs ou méme
d’une infinité de rectangles.

FIGURE 1. Procédé de Riemann vs. procédé de Lebesgue
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I-3. Forces et faiblesses de ’intégrale de Lebesgue
Extréme généralité

Le cadre classique le plus simple pour définir une intégrale est celui des fonctions
en escalier sur un intervalle [a,b], ou sa complétion pour la topologie de la conver-
gence uniforme, 'espace des fonctions réglées (admettant une limite finie a droite
et a gauche). La théorie de Riemann permet d’atteindre une plus grande généralité,
mais Riemann lui-méme a conscience que les conditions & imposer sur les fonctions
sont encore relativement fortes. Il démontre en effet qu'une fonction f : [a,b] — R
est intégrable si et seulement si, pour tout o > 0 donné, on peut choisir une dé-
composition de [a,b] en sous-intervalles suffisamment fins pour que la somme des
longueurs des sous-intervalles sur lesquels 1'oscillation de la fonction dépasse a soit
arbitrairement petite [Kahane, p. 64]. L’idée de Lebesgue n’est pas tres loin...

De fait, Lebesgue montre qu'une fonction f : [a,b] — R est Riemann-intégrable
si et seulement si ’ensemble de ses points de discontinuité est de mesure nulle, au
sens ou on peut l'inclure dans une union d’intervalles ouverts dont la somme des
longueurs est arbitrairement petite.

Ces conditions peuvent sembler assez faibles, puisqu’elles autorisent par exemple
une fonction qui ne serait discontinue qu’en une quantité dénombrable de points.
Mais il est facile de construire des fonctions bornées “naturelles” ne remplissant pas
ces conditions : le contre-exemple qui vient tout de suite a 'esprit est la fonction
indicatrice de QQ, ou sa restriction a un segment. Plus généralement, un ensemble
est mesurable au sens de Riemann (c’est a dire, sa fonction indicatrice est inté-
grable) si et seulement si sa frontiere est de mesure nulle. Or dans de nombreux
problemes d’analyse, on rencontre des fonctions dont les discontinuités ne peuvent
étre négligées, et des ensembles dont la frontiere est “étalée”.

Mais dans la théorie de Lebesgue, la classe des fonctions intégrables est beaucoup
plus grande. En fait, comme Robert Solovay le démontrera en 1970, il est impossible
de construire (sauf a utiliser ’axiome du choix dans sa version compléte) une fonction
bornée non intégrable, ou un ensemble non mesurable. Cette grande généralité est
I'un des plus grands avantages de la théorie de Lebesgue.

L’exemple de la fonction indicatrice de Q N [0, 1] est révélateur : bien que dis-
continue partout, cette fonction est tres facile a décrire en fonction de ses valeurs.
Dans la théorie de Riemann, on tenterait vainement de découper le segment [0, 1]
en tout petits intervalles ou cette fonction ne varie guere; dans celle de Lebesgue,
on partage [0, 1] en seulement deux morceaux qui sont assez complexes (totalement
discontinus) mais sur chacun desquels la fonction est effectivement constante.

De facon similaire, quand on s’intéresse a l’analyse de Fourier, le cadre de Borel
et Lebesgue apporte une extraordinaire généralité : en fait, comme le montreront
Lennart Carleson (1966) et Richard Hunt (1968), toute fonction p-sommable au sens
de Lebesgue (1 < p < 00) est la limite de sa série de Fourier en dehors d’un ensemble
de mesure de Lebesgue nulle.

Solution du probléeme des primitives

C’est par ce probleme que Lebesgue motive sa construction dans sa note de 1901.
L’intégrale de Riemann permet d’intégrer des fonctions discontinues, mais ne permet
pas d’intégrer n’importe quelle fonction dérivée, méme bornée! Si donc f est une
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fonction continue sur [a, b] et dérivable sur |a, b], il n’est pas garanti que 'identité

1) 1) - / I

ait un sens. En fait, au début du siecle, divers auteurs (Volterra, Képcke, Brodén,
Schoenflies) construisent des classes de fonctions dérivables, dont la dérivée est bor-
née mais non Riemann-intégrable [Hawkins, pp. 57 et 108-110].

Au contraire, dans la théorie de Lebesgue, la dérivation et l'intégration de-
viennent des opérations inverses, sous des hypotheses simples. C’est ainsi que 'iden-
tité (1) est automatiquement vérifiée dés que f est continue sur [a,b] et dérivable
sur ]a, b[, de dérivée bornée.

Insensibilité a la topologie

Dans l'intégrale de Riemann, un role particulier est joué par les propriétés de
régularité, en un sens tres lache, des fonctions que 'on veut intégrer (variation
importante au voisinage d’un point...) On a déja mentionné, par exemple, des critéres
d’intégrabilité faisant intervenir ’ensemble des points de discontinuité. La topologie
de 'espace de définition des fonctions (en l'occurrence la droite réelle) intervient
donc. Cela se reflete sur les généralisations abstraites : pour adapter la construction
de Riemann a des espaces plus généraux, on est tout de suite amené a faire des
hypothéses de nature topologique assez fortes.

Au contraire, comme le comprend le mathématicien autrichien Johann Radon
vers 1913, 'intégrale construite par Lebesgue peut étre adaptée a un cadre extréme-
ment général, sans qu’aucune hypothese topologique ne soit faite sur ’espace d’inté-
gration, et I’expérience montre que l'on peut construire ainsi des théories maniables.
Le cas échéant, cet espace pourra méme étre un espace fonctionnel de dimension infi-
nie. En 1921 un exemple spectaculaire et d’importance considérable est fourni par le
mathématicien Norbert Wiener (américain d’origine juive polonaise, enfant prodige
et pere de la cybernétique, par ailleurs militant de la paix et de la cause animale).
Wiener construit une mesure sur lespace C([0, 1], R?) des fonctions continues sur
[0,1] & valeurs dans R?; bien siir ¢’est un espace de dimension infinie, séparable mais
pas localement compact. Cette mesure de Wiener est une mesure “gaussienne”,
d’importance capitale en probabilités et en physique ou elle modélise le mouvement
brownien.

Fluidité du passage a la limite

Peut-on échanger les opérations limite et intégrale ? C’est un probleme classique,
déja en germe dans Archimede, et source de milliers d’exercices dans le cadre de
I'intégrale de Riemann. Mais dans la théorie de Riemann on ne peut méme pas
formuler le probléme de maniere suffisamment générale, car une limite de fonctions
Riemann-intégrables n’est pas forcément Riemann-intégrable, méme si ces fonctions
sont uniformément bornées! Pour s’en convaincre, on peut noter que la fonction
indicatrice de [0, 1] N @, non intégrable au sens de Riemann, est limite de limites de
fonctions continues puisque

lo(z) = lim lim [cos(2mnlx)]™

n—o0 M—o0

Cela ne dit pas si une limite de fonctions continues peut ne pas étre Riemann-
intégrable invalide, mais cela invalide, par I'absurde, 'hypothese que la classe des
fonctions Riemann-intégrable est fermée sous I'action de la limite.
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Au contraire, I'intégrabilité au sens de Lebesgue est effectivement stable par pas-
sage a la limite dans de nombreuses situations, et pour lequel I’échange intégrale-
limite est presque automatique, sous des hypotheses simples et faciles a vérifier. Il
suffit par exemple que ces fonctions soient définies sur un intervalle fixé et unifor-
mément bornées. Ce bon comportement par rapport aux limites trouve un intérét
méme dans le cadre des fonctions Riemann-intégrables! Pour s’en convaincre, on
pourra méditer sur ’exercice suivant :

Soit (fn)nen une suite de fonctions continues [a,b] — [0, 1], convergeant ponc-
tuellement (simplement) vers 0. Alors fj fn— 0.

Cet énoncé a bien slir un sens dans le cadre de l'intégrale de Riemann, pourtant
sa démonstration au moyen d’outils classiques est délicate (I’hypothése naturelle
dans cette théorie est la convergence uniforme et non la convergence simple) ; alors
que la théorie de Lebesgue résout le probléeme sans douleur !

Mauvais traitement des compensations

Pour puissante qu’elle soit, la théorie de Lebesgue est impuissante a traiter la
“semi-convergence” des intégrales, c’est-a-dire les situations ot une fonction f se
trouve étre intégrable du fait de compensations entre valeurs positives et négatives,
alors que sa valeur absolue | f| n’est pas intégrable. D’autres théories sont plus habiles
a tirer parti des compensations : ainsi les intégrales M (intégrale de Denjoy-Perron)
ou M? présentées dans [Zygmund, T.2, pp.83-91].

Pourquoi alors ces théories alternatives ne se sont-elles pas imposées face a celle
de Lebesgue?

D’une part, parce que dans I'immense majorité des applications, le mauvais trai-
tement des intégrales semi-convergentes s’avere sans gravité : il s’agit en fait de si-
tuations relativement exceptionnelles, que 'on peut traiter a la main. D’autre part,
parce que ces théories alternatives sont moins souples que l'intégrale de Lebesgue,
et plus exigeantes sur la topologie de 1'espace de départ.

Difficuté de calcul

Par nature, les tranches sont beaucoup moins explicites dans la théorie de Le-
besgue que dans celle de Riemann; de sorte que c’est cette derniere théorie qui
prévaut dans le domaine de I'analyse numérique, et en général des calculs explicites.
Cela n’ameéne pas a abandonner l'intégrale de Lebesgue pour les applications, mais
a travailler en va-et-vient entre les deux notions : on profite de la nature construc-
tive de l'intégrale de Riemann, de la généralité et de la fluidité de 'intégrale de
Lebesgue, et on passe de I'une a I'autre en utilisant leur compatibilité, c’est a dire
le fait que l'intégrale de Lebesgue se ramene a l'intégrale de Riemann dans la classe
des fonctions Riemann-intégrables.

I-4. Un grand édifice

Une fois les fondations établies, de nombreux mathématiciens perfectionnent et
généralisent la théorie de Borel et Lebesgue au cours du vingtieme siecle, en par-
ticulier (par ordre chronologique approximatif) Beppo Levi, Pierre Fatou, Guido
Fubini, Leonida Tonelli, Dimitri Egorov, Mikhail Souslin, Constantin Carathéo-
dory, Giuseppe Vitali, Nikolai Nikolaievitch Lusin, Johann Radon, Frigyes et Marcel
Riesz, Ernst Sigismund Fischer, Felix Hausdorff, Andrei Nikolaievich Kolmogorov,
et Abram Samoilovitch Besicovitch.
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Mais ce sont aussi de nouveaux points de vue et théories qui émergent. L’his-
toire de la théorie de la mesure est associée au développement de la théorie des
probabilités, a celui de I’analyse harmonique moderne et méme a celui de la logique
axiomatique.

Pour commencer, la généralité de I'intégrale de Lebesgue et sa stabilité par pas-
sage a la limite en font un cadre idéal pour formaliser les espaces de fonctions, des
espaces géométriques dans lesquels chaque point est une fonction. C’est la naissance
de I'analyse fonctionnelle, qui vise a soutenir I’étude des fonctions par des raison-
nements de nature géométrique, analytique ou synthétique se tenant dans des espaces
de fonctions. L’idée était déja en germe dans Fourier ; mais ce sont des disciples de
Lebesgue, 'Ecole mathématique de Lwéw (aujourd’hui Lviv en Ukraine), qui
vont la mettre au point.

L’école de Lwow désigne un groupe de plusieurs dizaines de mathématiciens polo-
nais travaillant dans I’entre-deux guerres a Lwow, également en collaboration étroite
avec leurs compatriotes de Cracovie et Varsovie. L’acte fondateur du groupe est la
rencontre fortuite, a I'université de Cracovie, entre I’enseignant Hugo Steinhaus et
I’étudiant Stefan Banach, qui discutait avec son camarade Otto Nikodym précisé-
ment sur la mesure de Lebesgue. C’était le point de départ d’une série de recherches
qui ont placé la Pologne au plus haut niveau de ’analyse fonctionnelle avant que son
école soit écrasée par la Seconde Guerre mondiale, prise en étau entre les machoires
allemande et russe.

Parmi eux, le plus brillant, reconnu par tous comme le chef de file, était le
phénomene Stefan Banach. Né en 1892 a Cracovie dans une famille pauvre, aban-
donné par sa mere a sa naissance, il poursuit des études supérieures dans la Pologne
tout juste indépendante et devient en 1919 I'un des fondateurs de la Société ma-
thématique de Pologne. Gagnant rapidement ses galons de résolveur de probleme,
il devient au sein du groupe de Lwéw le plus ardent animateur d'un joyeux sémi-
naire qui se tient au Café écossais et ou I’on enchaine problemes de mathématique et
boissons. En 1924 il publie avec Alfred Tarski ce que 'on appelle désormais le para-
doxe de Banach-Tarski; en 1927 les théoremes de Hahn-Banach (avec Hans Hahn)
et Banach—Steinhaus (avec Hugo Steinhaus). Puis en 1932 qu’il publie son grand
ceuvre, Théorie des opérations linéaires, ouvrage majeur de I'histoire mathématique
ou 'analyse fonctionnelle est développée selon une forme toujours d’actualité. Dans
le méme temps, sous I'impulsion en particulier de Kazimierz Kuratowski, Alfred
Tarski et Wactaw Sierpinski, ce groupe développe la théorie de la mesure dans les
espaces métriques séparables complets, avec une profondeur telle qu’on les appelle
depuis “espaces polonais”.

Dans la foulée, en 1933 le mathématicien russe Andrei Nikolaievich Kolmogorov
publie son ouvrage Fondations de la théorie des probabilités : il y montre que la
théorie de Lebesgue est un parfait écrin pour refonder tout le calcul des probabili-
tés, initié au 17e siecle par Pascal et Fermat, et perfectionné ensuite par les Daniel
et Jacob Bernoulli, Abraham De Moivre, Pierre-Simon de Laplace, Henri Poincaré,
etc. Le mathématicien polonais Stanislaw Ulam, également de I'Ecole de Lwéw (plus
tard I'un des peéres de la Bombe H) était arrivé aux mémes conclusions que Kolmo-
gorov; et le terrain avait bien str été préparé par la découverte de la mesure de
Wiener. Aujourd’hui encore, 'axiomatique probabiliste est restée la méme que celle
de Kolmogorov, basée sur la théorie de la mesure de Borel et Lebesgue.



24 INTRODUCTIONI (1" janvier 2026)

Presque en méme temps, le Frangais Jean Leray (en 1933, dans le cas particu-
lier des équations de Navier—Stokes incompressibles) et le Russe Serguei Lvovitch
Sobolev (en 1935) utilisent la théorie de Lebesgue pour donner un sens aux dérivées
partielles de fonctions non nécessairement différentiables. L’idée est d’exploiter la
formule d’intégration par parties

of _ Iy
/amjgodx— /faxjda:

pour définir 0;f comme fonctionnelle linéaire sur 'espace des fonctions ¢ conti-
ntiment différentiables et a support compact. L’objectif est de construire ainsi, via
l’intégration, des solutions généralisées d’équations aux dérivées partielles. Cette ap-
proche est trés naturelle du point de vue physique (en témoigne le fait que James
Clerk Maxwell I'avait utilisée a I'occasion en théorie cinétique des gaz des les années
1860). Leray raconte que le vieillissant Lebesgue avait voulu le dissuader de se lan-
cer dans des recherches aussi ardues... mais son article est entré dans I’histoire. Ces
travaux annoncent la théorie des distributions de Laurent Schwartz, cadre concep-
tuel utilisé aujourd’hui presque universellement dans le domaine des équations aux
dérivées partielles.

Simultanément a ’étude par Leray de Navier—Stokes incompressible, ’analyste
suédois Torsten Carleman exploite toute la puissance de I'intégration de Lebesgue
pour effectuer la premiere étude mathématique de ’équation de Boltzmann (en
I'occurrence, pour un gaz spatialement homogene de sphéres dures).

Il se sera donc écoulé exactement une génération entre la découverte de I'intégrale
de Lebesgue, et la naissance de trois grandes branches qui s’appuient dessus : analyse
fonctionnelle (Banach), théorie moderne des probabilités (Kolmogorov), solutions
généralisées des équations de la physique mathématique (Leray, Sobolev, Carleman).

A cette liste on peut ajouter une quatriéme branche qui s’est développée vers
I'intérieur de la théorie ensembliste de Borel et Lebesgue, pour décrire la nature et
la structure des ensembles mesurables, sous I'influence des écoles russe et polonaise :
c’est la théorie descriptive des ensembles. Les initiateurs en sont deux mathémati-
ciens russes influencés par 1’école frangaise de Darboux, Borel, Hadamard, Poincaré :
il s’agit de Dimitri Egorov et son éleve Nikolai Nikolaevitch Luzin. (Tous deux se-
ront persécutés pour leurs convictions religieuses, I'un mourra d'une greve de la
faim, l'autre sera la cible d’un violent proces politico-scientifique qui aurait pu lui
étre fatal.) C’est en 1930 que Luzin publie en francais le premier traité consacré a
ce sujet : Lecons sur les ensembles analytiques et leurs applications.

Par-dessus la guerre est passée, marquant tous nos protagonistes. Banach s’ac-
commode de l'occupation soviétique, mais apres l'invasion nazie en est réduit a
héberger des poux pour les recherches médicales... il meurt d’un cancer du poumon
juste apres la fin de la guerre. Kolmogorov (re)devient une véritable institution dans
son pays, et 'un des mathématiciens les plus féconds du 20e siecle pour ses travaux
en probabilité, mécanique, théorie de la complexité. Egalement en Russie, Sobolev
est impliqué dans le programme atomique soviétique et travaille au développement
universitaire de la Sibérie. Apres avoir été fait prisonnier, Leray devient un pionnier
de la toplogie algébrique et 'une des figures tutélaires de la mathématique fran-
caise. Quant a Carleman, adhérent aux idées racistes propagées par les mouvements
fascistes, il termine sa carriere dans l'isolement.
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Apres guerre commence une nouvelle période mathématique, sous l'effet des
forces puissantes qui accélerent le progres scientifique : grands programmes de re-
cherche nationaux, guerre froide, essor des grandes universités américaines, course a
I’espace, essor de I'informatique, recherche industrielle, grands programmes d’équi-
pement civils et militaires, etc. Toutes les branches mathématiques se développent
a grande vitesse. C’est le cas en particulier pour celles qui sont directement liées a
I'intégration : équations aux dérivées partielles, systemes dynamiques, analyse nu-
mérique, analyse fonctionnelle, analyse harmonique, calcul des variations, théorie
géométrique de la mesure, analyse convexe, analyse non lisse dans ’espace euclidien
et dans les espaces métriques... A travers ces sujets en plein essor, l'intégration de
Lebesgue devient ainsi I'un des piliers de tout I’édifice mathématique moderne.

Parmi ces directions variées, ’analyse harmonique a été significativement trans-
formée avec la théorie des ondelettes, qui renouvelle la théorie de Fourier. Initiée
par l'intuition révolutionnaire de l'ingénieur francais Jean Morlet dans les années
80, cette théorie s’est développée en un corpus complet allant des applications les
plus terre a terre (la motivation initiale était la prospective pétroliere) au cceur de
I’analyse réelle. Deux "maitres ondelettistes” en particulier ont engrangé quantité de
récompenses internationales au 21e siecle : le francais Yves Meyer et la belge Ingrid
Daubechies (hélas elle n’est que la premiére femme citée dans cette histoire, dont la
prédominance masculine reflete des biais de genre et stéréotypes qui ont imprégné
nos sociétés depuis des siecles! mais elle est une protagoniste majeure, et fut méme
présidente de I'Union mathématique internationale).

Impossible de boucler ce tour d’horizon sommaire sans mentionner que la logique
également a été durablement influencée par I’analyse de Borel et Lebesgue. On a déja
mentionné les noms du logicien polonais Alfred Tarski (paradoxe de Banach—Tarski,
1924) ; apres-guerre, ce sera I’Américain Richard Solovay (théoréme de Solovay sur
les ensembles mesurables, 1970). Ainsi la théorie de 'intégration s’est-elle retrouvée
a jouer un role transversal et universel en mathématique, depuis les couches les plus
théoriques jusqu’aux plus appliquées.






CHAPITRE 1I

Mesures

Ce chapitre est consacré aux mesures, selon le point de vue ensembliste de Borel :
une mesure sur un ensemble X est une fonction o-additive d’ensembles, définie sur
une tribu A de parties de X, dites parties mesurables; le triplet (X, A, ) est appelé
espace mesuré (section II-1). Apres leur définition abstraite, une liste d’exemples est
présentée (section I1-2.

Les mesures qui nous intéresseront le plus sont les mesures boréliennes, sur la
tribu engendrée par la topologie ; pour aller plus loin nous aurons besoin de quelques
rappels de topologie (section II-3).

Viennent alors les notions majeures qui constituent le coeur du chapitre : (a) sous
des hypotheses minimales, les mesures boréliennes sont réguliéres, c’est a dire qu’on
peut bien approcher les ensembles, au sens de la mesure, soit par des ouverts soit par
des compacts (section I1-4); (b) on peut définir le support d’une mesure et qualifier
sa concentration ou sa diffusivité; (c) de puissants théorémes permettent d’étendre
de fagon unique des mesures définies seulement sur des parties simples (théoremes
d’extension de Carathéodory et de Kolmogorov, section II-6, la démonstration du
théoreme de Kolmogorov étant remise au Chapitre IV), (d) on peut compléter les
espaces de mesure en ajoutant, si on le souhaite, les ensembles négligeables.

Cette théorie générale est appliquée a la droite réelle pour obtenir la mesure
originelle de Lebesgue sur la droite réelle et sur ’espace euclidien (section ?77).

Je terminerai par 1’étude de recouvrements par de petites boules (section I1-8),
une technique dont la pertinence sera démontrée bien plus tard, dans le Chapitre 77?.

Seule les sections II-1 et II-2 sont indispensables a la compréhension de la suite
du cours, car elle présentent les concepts clés et les exemples majeurs.

II-1. Espaces mesurables et mesurés

En quéte de définition

4

Les notions d’“intégrale” et de “volume” vont de pair. Si I'on sait intégrer des
fonctions, alors on peut définir le volume d’un ensemble A comme l'intégrale de I'in-
dicatrice de A. Et réciproquement, si I’on sait définir les volumes des ensembles, alors
on peut définir 'intégrale d’une fonction en additionnant les volumes des “petites
tranches superposées” sous le graphe de la fonction.

FIGURE de découpage en tranches

En d’autres termes, une bonne théorie d’intégration doit mener aux deux iden-
tités liées

vol(A) = / 1y

[1= [ votsz o



28 CHAPITRE II (1" janvier 2026)

ou {f >t} est 'ensemble des x tels que f(x) >t, et f est supposée positive.

La théorie d’intégration de Lebesgue se développe sur le concept de mesure,
introduit par Borel quelques années avant les travaux de Lebesgue pour quantifier les
tailles des ensembles. En fonction du contexte, on peut penser a une mesure comme
a un volume, ou une surface, ou une longueur, ou quelque chose d’autre. Dans tout
ce chapitre, on se concentrera donc sur la mesure des ensembles, et ce n’est que dans
le chapitre suivant qu’on considerera l'autre versant, celui des fonctions.

Avant de préciser la définition d'une mesure, cherchons a établir un cahier des
charges. On souhaite définir une mesure comme une fonction p qui associe a un
ensemble A une “masse” positive (finie ou infinie), notée u[A] (ma convention) ou
1(A).

C’est bien le minimum d’imposer qu’'une telle fonction soit additive : si A et B
sont disjoints, alors la mesure de A U B doit étre la somme des mesures de A et de
B. Cette relation fondamentale implique les regles de calcul habituel des longueurs,
des surfaces ou des volumes : par exemple,

- si A C B, on peut appliquer la relation d’additivité a B = (B \ A) U A et
trouver que
pulB] = plA] + p[B\ A] = p[A];
la mesure p est donc une fonction croissante d’ensembles ;

- en utilisant les identités AUB = (A\ B)UB et A= (A\ B)U (AN B), on
obtient facilement la formule d’usage courant

(2) plANB] <oo = p[AUB] = plA] + p[B] — u[AN B].

Enfin, en pratique on connaitra la valeur de p sur certains ensembles particuliers,
ou bien on imposera certaines propriétés d’invariance. Par exemple, pour définir le
volume usuel dans R3 il est naturel de demander que le volume d’un pavé soit égal
au produit des longueurs de ses cotés (volume euclidien), et d’imposer que le volume
soit invariant par rotation et translation, ou plus généralement par isométrie.

Ce cahier des charges parait raisonnable, et on aimerait le prendre pour base
de notre étude. Le théoréme suivant (qui découle des travaux de Banach, Tarski et
Solovay) pourra donc apparaitre comme un choc décourageant : Il est impossible
de démontrer ['existence d’une fonction d’ensembles p: P(R3) — [0, +o0| additive,
invariante par rotation et translation, telle que u[[0,1]%] = 1.

Une fois le choc passé, il n’est pas tres difficile de trouver un remede. Au lieu de
définir une mesure comme une fonction sur P(X), 'ensemble de toutes les parties
d'un ensemble X, on va la définir sur un sous-ensemble de P(X), constitué de
parties que I'on appelle “mesurables”. On aura alors des relations du type de (2),
mais seulement quand on reste dans la classe des parties mesurables. La mesure p
n’est pas définie sur les parties non mesurables, 1’expression u[A] n’a méme pas de
sens si A n’est pas mesurable.

Nous sommes donc menés a nous intéresser aux classes de parties stables par
union, intersection, soustraction : on les appellera des algeébres. Les algebres sont
le cadre naturel sur lequel définir des fonctions additives d’ensembles.

Définir les mesures sur des algebres donne beaucoup moins de contraintes, donc
beaucoup plus de flexibilité. Mais alors on en a méme trop ; méme pour des situations
toutes naturelles, dans I'espace euclidien par exemple, on manque de bons résultats
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d’unicité, et il n’y a pas de consensus sur leur utilisation [Dudley, p 112]. En outre il
est difficile, dans ce cadre, de démontrer les passages a la limite que 1’on rencontre
sans cesse dans les intégrations, et qui passionnaient déja Archimede.

Le remede proposé par Borel et Lebesgue, aussi bien pour donner plus de rigidité
a la théorie, que pour traiter plus facilement les passages a la limite, consiste a
imposer dés la définition que ces mesures soient non seulement additives, mais aussi
dénombrablement additives. Autrement dit, on requiert que la mesure d’une union
dénombrable de parties disjointes (au sens fort, c’est a dire deux a deux disjointes)
soit égale a la somme des mesures de toutes les parties.

Pourquoi s’arréter en si bon chemin et ne pas imposer cette relation d’additivité
pour une union quelconque de parties, pas forcément dénombrable ? En fait, une telle
théorie serait tout simplement triviale. Par exemple, supposons que la mesure des
singletons soit nulle ; comme un ensemble est 1'union de ses éléments, tout ensemble
serait alors de mesure nulle.

De facon remarquable, entre I’additivité pour les unions finies qui est trop lache,
et I’'additivité pour les unions quelconques, qui est triviale, il y a une ligne de créte
qui chemine a merveille, c’est 'additivité dénombrable. Pour lui donner sens, il va
falloir renforcer la définition des algebres, en imposant de plus la stabilité par les
opérations ensemblistes dénombrables; c’est ce que l'on appelle les o-algebres, ou
tribus.

I1-1.1. Algebres.

DEFINITION II-1 (Algebre). Soit X un ensemble quelconque, et soit P(X) l'en-
semble de toutes les parties de X. Un sous-ensemble A de P(X) est appelé une
algébre (ou algebre de parties de X ) si

(i) D e A;

() Ac A= X \AecA;

(tii) A, Be A= AUB € A.

REMARQUE II-2. D’autres variantes équivalentes de ces trois axiomes sont pos-
sibles. Par exemple, a titre d’exercice on pourra vérifier que la réunion des axiomes
(i)-(iii) ci-dessus est équivalente a la réunion des quatre axiomes suivants : (i’)
0, X € A, (ii’) Si A,B € A, alors AUB € A, (iii") Si A,B € A, alors AN B € A,
(iv')) Si A,B € A, alors A\ B € A.

REMARQUE II-3. Une algebre est automatiquement stable par union finie, inter-
section finie, différence et différence symétrique. (Pour rappel, la différence de deux
ensembles A et B est A\ B, tandis que leur différence symétrique est (A\ B)U(B\A).)
En somme, une algebre est un ensemble de parties dans lequel on peut effectuer
toutes les opérations ensemblistes classiques.

EXEMPLES I1-4. (i) Algebres triviales. Si X est un ensemble quelconque,
alors on peut toujours définir la plus petite algebre de parties de X, savoir
{0, X} ; et la plus grande, qui est tout simplement P(X). Ni I'une, ni 'autre
ne sont fort intéressantes, on les appelle souvent triviales.

(ii) Algebre engendrée par une partie. Si A C X, la plus petite algebre contenant
Aest {0, X, A, X\ A}.

(iii) Algebres associées a des partitions. Si X est un ensemble quelconque, on
appelle partition II de X une collection finie de parties non vides, deux a
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deux disjointes, dont la réunion est X tout entier. Si Il est une partition de
X, alors I’ensemble A de toutes les réunions finies d’éléments de II constitue
une algebre de parties de X. Son cardinal est 27! ot #7 est le cardinal de II.
C’est bien sir une généralisation de (ii), qui correspond & une partition en 2
éléments. On peut montrer que toute algebre finie est associée a une partition :
pour cela, on identifie les éléments de II comme les éléments minimaux de A.

(iv) Algebres associées a des familles stables par intersection. Une famille F
est dite stable par intersection si I'intersection de deux membres A et B de
F est elle-méme un élément de F (en conséquence de quoi l'intersection d’'un
nombre fini arbitraire d’éléments de F est également un élément de F). Soit
X un ensemble quelconque, et soit F une famille de parties de X, qui (a) est
stable par intersection, (b) contient X et (c) telle que le complémentaire de
tout élément de F est une union finie d’éléments de F ; alors I’ensemble A
de toutes les unions finies d’éléments de F est une algebre de parties de X
(exercice).

(v) Algebre engendrée par les pavés. C’est un cas particulier de (iv). On se donne
(Xk)1<k<rk une famille finie d’ensembles et pour chaque X} on se donne une
algebre Ay de parties de Xj;. On pose X = [[ X, le probleme est de définir
une algebre “naturelle” sur X. Pour cela on considere la famille F formée des
pavés, i.e. les P = [] Ay, ou chaque Ay est un élément de Aj. La famille F
est alors stable par intersection, et le complémentaire d’un pavé peut s’écrire
comme une union finie de pavés : par exemple, pour X = 2 on a

(X1 x Xo) \ (A1 x Ag) =(X1\ A1) x (X2 \ A2)
U (Xl \ A1> X A2 U A1 X (XQ \ Ag)

D’apres (iv), on sait alors que l’ensemble des unions finies de pavés forme
une algebre de parties de X : voir l'illustration sur la figure 1, dans I'espace
produit X = R2.

FI1GURE 1. La différence symétrique de deux pavés est une union finie
de pavés

(vi) Algebre engendrée par les cylindres. C’est encore un cas particulier de
(iv), et une généralisation de (v), d’une importance considérable en théorie
des probabilités. 1l s’agit de définir une algebre naturelle sur un produit infini
d’ensembles dont chacun est muni d sa propre algebre. Je vais commencer par
considérer le cas simple d’un produit dénombrable d’ensembles finis X}, munis
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~

= 2 =

FIGURE 2. Deux membres de I'algebre engendrée par les pavés dans
R xR

de leur algebre P(X}). (Le choix “trivial” ou chaque X}, est I'espace {0, 1} est
déja hautement non-trivial!) L’espace X = [ X} est donc I'espace des suites
(zr)ken telles que z, € Xy pour tout k, et on va alors définir un cylindre
élémentaire comme une partie de X qui “ne dépend que d’un nombre fini de
coordonnées” : pour tout K et tout choix de (ai,...,ax) € X7 X ... x Xk,
on posera donc

C’K(al,...,aK) :{(EEX; Vk € {1,...,K}, xk:ak}.

On vérifie facilement (exercice) que la famille de ces cylindres est stable par
intersection, et que le complémentaire d'un cylindre élémentaire est une union
finie de cylindres élémentaires. Par (iv), on sait donc que 1’ensemble des unions
finies de cylindres élémentaires forme une algebre.

Cette construction se généralise comme suit au cas ou l’ensemble des
indices n’est pas forcément dénombrable, et ou les X, ne sont pas forcé-
ments finis. Soit (X¢)ier une famille d’ensembles, indexée par un ensemble
T quelconque; pour chaque X; on se donne une algebre A; de parties de
X;. Pour tout entier K et tout choix de (¢,...,tx) dans T, pour tout
j €{l,...,K} on choisit Ay, dans A;, et on définit le cylindre élémentaire
Cr,oti)(Atys ., Ay ) par la formule

C(tl,...,tK)(At17 e ,AtK) = {.T € HXt, Vj € {1, .. .,K}, l'tj € Atj} .

teT

Ici la base du cylindre C' dans les variables (¢1,...,tx) est Ay X ... X Ay
L’ensemble des unions finies de cylindres élémentaires est alors une algebre.

EXERCICE II-5. Soit X = {a,b, c} un ensemble a 3 éléments. Déterminer toutes
les algebres de parties de X.

I1-1.2. Sigma-algebres. Les algebres sont stables par toutes les opérations en-
semblistes classiques (union, intersection, différence) appliquées a des familles finies
de parties; pour les g-algebres c’est la méme chose, mais appliquées a des familles
dénombrables. (Pour mémoire, j’appelle “dénombrable” un ensemble qui est soit fini,
soit en bijection avec N ; d’autres auteurs appellent “dénombrable” un ensemble qui
est en bijection avec N; c’est une question de convention sans importance.)
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DEFINITION 1I-6 (o-algeébre). Soit X wun ensemble quelconque, et soit P(X)
Iensemble de toutes les parties de X. Un sous-ensemble A de P(X) est appelé une
o-algébre (ou o-algébre de parties, ou tribu) si

(i) e A;

(i) Ac A= X\AcA;

(iii) [Vk €N, Ay € A= | J Av € A.
keN

REMARQUE II-7. Une o-algebre est une algebre : on le voit en prenant A; = A,
Ay = B, A, = () pour tout k > 3. Une o-algébre est automatiquement stable par
intersection dénombrable, comme on le voit en passant aux complémentaires
dans (iii). En fait une o-algebre est le cadre

EXEMPLE II-8. Les algebres triviales sont aussi des o-algebres. Toute algebre
finie est une o-algebre; c’est le cas en particulier de celles qui sont associées a une
partition.

EXEMPLE II-9. L’ensemble des unions finies d’intervalles de R est une algebre,

mais ce n’est pas une o-algebre. Idem pour ’ensemble des unions finies de pavés de
R2.

EXERCICE II-10. Soit X un ensemble infini. Montrer que ’ensemble des parties
finies ou cofinies (cofini = dont le complémentaire est fini) est une algebre, mais pas
une o-algebre.

REMARQUE II-11. La lectrice familiere avec la topologie aura remarqué une
certaine analogie entre la notion de g-algebre et celle de topologie. Rappelons que,
par définition, une topologie sur un ensemble quelconque X est un sous-ensemble
O de parties de X tel que (i) 0,X € O, (ii) 0,0, € O = O, N0y € O,
(iii) Vi,0; € O = UO; € O. Noter que dans (iii), la famille I indexant les O;
est arbitraire (pas nécessairement dénombrable). Autrement dit, une topologie est
stable par intersection finie et union quelconque, alors qu'une g-algebre est stable
par intersection dénombrable et union dénombrable — et passage au complémentaire.

Les éléments de O sont appelés des ouverts, et leurs complémentaires sont appelés
des fermés. L’exemple le plus important de topologie est la topologie définie par une
distance : on définit un ouvert comme une union de boules ouvertes. Des rappels
plus détaillés seront effectués dans la section II-3.

Dans la suite, je privilégierai la dénomination de “tribu” pour désigner les o-
algebres.

DEFINITION I1-12 (espace mesurable). On appelle espace mesurable un couple
(X, A), ou A C P(X) est une o-algébre. Les éléments de A seront alors appelés
parties mesurables ou ensembles mesurables.

Par abus de langage, on dira souvent que X est un espace mesurable. Bien sir,
cette terminologie n’a de sens que si 1’on fait référence implicite a une certaine tribu :
apres tout, n’importe quel espace X est mesurable quand on le munit d’une tribu
triviale.

Considérer des o-algebres plutot que des algebres est séduisant car on obtient
ainsi des familles riches qui se comportent bien vis-a-vis des unions infinies, limites,
etc. Mais en pratique, les tribus ne seront pas explicites; on ne les maniera pas
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directement, on préférera les voir comme des “limites”, dont le comportement est
dicté par une famille “dense” beaucoup plus simple, et on travaillera seulement sur
cette derniere famille. Cela n’a de sens que si la tribu est completement déterminée
par cette fameuse famille; c’est I'objet du concept qui suit, a la fois élémentaire et
fondamental a la théorie.

PROPOSITION II-13 (tribu engendrée par une famille). Soit X un ensemble quel-
conque, et soit F un sous-ensemble quelconque de P(X). L’intersection de toutes
les o-algebres contenant F est une o-algebre, et c’est la plus petite qui contienne F.
On Uappelle tribu engendrée par F et on la notera o(F).

La démonstration de cette proposition est laissée en exercice. (Ne pas oublier de
montrer que 'intersection apparaissant dans I’énoncé n’est pas vide.)

EXERCICE II-14. Soit F une famille de parties d'un ensemble X, stable par
passage au complémentaire. Montrer que o(F) est la plus petite classe contenant F
qui soit stable par intersection dénombrable et union dénombrable. Indication : Si
A est une classe vérifiant les propriétés précédentes, on pourra montrer que {A €

A; X\Ae A} Do(F).

EXEMPLE II-15 (Tribu engendrée par les intervalles). Tout ouvert de R peut
s’écrire comme union disjointe dénombrable d’intervalles ouverts, qui sont ses compo-
santes connexes (cette union est dénombrable car chacun de ces intervalles contient
au moins un rationnel). La c-algebre engendrée par les intervalles ouverts de R
contient donc tous les ensembles ouverts, et c’est par conséquent la o-algebre engen-
drée par les ouverts de R ; on I'appelle tribu borélienne ou tribu des boréliens
de R. Elle contient tous les ouverts, donc tous les fermés, mais aussi les unions dé-
nombrables d’ensembles ouverts ou fermés, les unions dénombrables d’intersections
dénombrables d'unions dénombrables d’intersections dénombrables d’ensembles ou-
verts ou fermés, etc. — et plus encore.

Cette richesse est donc a la fois une force et une faiblesse : il est en pratique
impossible de “décrire” ce qu’est un ensemble borélien “générique” dans R. On peut
se les représenter par le procédé itératif suivant, transfini, c’est a dire qu’il fait in-
tervenir des cardinaux plus grands que celui de N (d’habitude noté Ng). A Détape 0,
on consideére les ouverts et les fermés. A I’étape 1, les unions dénombrables d’inter-
sections dénombrables d’ouverts et de fermés. A 'étape j, les unions dénombrables
d’intersections dénombrables des ensembles apparaissant a 1’étape j — 1. Et 1'on
continue... une infinité de fois; en fait, on s’arréte des que 'on atteint un ordinal
non dénombrable.

C’est d'une complexité insaisissable... Pourtant, la tribu borélienne réelle n’est
pas si peuplée : elle a “seulement” la puissance du continu, son cardinal est ¢ = 2%, la
puissance du continu (qui est au moins égal a W le premier cardinal strictement plus
grand que N ; I'égalité entre c et N; étant le plus célebre des problémes indécidables).
Au sens de la théorie des ensembles, la tribu borélienne est aussi peuplée que la droite
réelle, et il n’y a donc “pas plus” de boréliens que d’ouverts — alors que I’ensemble
des parties de R est phénoménalement plus grand, de cardinal 2¢. Les boréliens, bien
que treés complexes, gardent une certaine régularité, bien plus (“infiniment plus”) que
des parties quelconques de R.

Voici les exemples les plus importants de tribus :
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ExEmPLES 11-16. (i) Tribu induite par restriction : Soit (X,.A) un es-
pace mesurable, et Y € A. Alors I’ensemble des éléments de A qui sont inclus
dans A définit une tribu de parties de A, appelé tout naturellement la res-
triction de A a A.

(ii) Tribu borélienne abstraite : soit X un espace topologique abstrait (i.e.
quelconque). On définit sa tribu borélienne B(X) comme la o-algebre engen-
drée par les ouverts de X. C’est également, bien siir, la o-algeébre engendrée
par les fermés de X. Et par 'Exercice 1I-14, c’est la plus petite classe stable
par union et intersection dénombrable qui contienne les ouverts et les fermés.

(iii) Tribu borélienne réelle : Dans le cas ot X = R", on peut trouver de
nombreuses familles génératrices beaucoup plus restreintes que la collection
de tous les ouverts ou tous les fermés. Par exemple :

- les pavés fermés [ [ [ax, bx] ;

- les pavés ouverts [ [ |ag, bi;

- les pavés semi-ouverts [ [ [ax, bi;

- les cubes fermés [] [ax, ar + ¢] (ou ouverts, ou semi-ouverts) ;

- les cubes dyadiques fermés [] [ms27%, (my +1)27%], my, £, € N (ou
ouverts, ou semi-ouverts) ;

- les boules ouvertes (ou fermées) dans R™.

En dimension n = 1, toutes ces familles se ramenent a une seule : la famille

des intervalles de R.

(iv) Tribu produit : Cette construction suit celle de I'Exemple II-4(v). Soient
X et Y deux espaces mesurables, avec leurs tribus respectives A et B. On
appelle pavé mesurable un ensemble de la forme AxB,ou A € Aet B € B. La
tribu engendrée par les pavés mesurables est appelée tribu produit, et notée
A ® B. Cette construction se généralise facilement au produit d’'un nombre
fini d’espaces mesurables. La tribu produit est facile a définir, mais on ne
peut guere la décrire explicitement : elle contient les pavés, les intersections
dénombrables d’unions dénombrables de pavés, etc.

(v) Tribu cylindrique : Si maintenant X = [[ X} est un produit infini (dé-
nombrable ou non) d’espaces X; dont chacun est muni d’une tribu A, alors
on peut munir X de la tribu engendrée par les cylindres élémentaires, sui-
vant la construction de I'Exemple II-4(vi). Il s’agit en fait de la généralisation
naturelle du concept de tribu produit. C’est la tribu classique que l'on uti-
lise d’ordinaire sur un produit infini. Ce n’est pas la seule tribu possible, et
certaines constructions alternatives font ’objet de recherches récentes (contri-
butions de Boris Tsirelson, par exemple) ; mais la tribu cylindrique est bien
celle que 'on utilise dans la quasi-totalité des cas.

EXEMPLE II-17 (Boréliens de R). Soit R = [—o00, +00] la droite réelle complétée,
c’est a dire a laquelle on adjoint —oo et +00. On en fait un espace topologique en
considérant la topologie engendrée par tous les intervalles ouverts et par {—oo} et
{+00}. Alors les boréliens de R sont engendrés par les intervalles de la forme [a, +00]
(a € R), ou par les intervalles de la forme |a, +00]; ce sont aussi les boréliens de R
auxquels on s’autorise a adjoindre —oo ou +00.



MESURES 35

DEMONSTRATION. |Preuve de 'Exemple 11-17] Vérifions-le par exemple pour la
famille F des intervalles [a, +00]. On a {+00} = Nyen[n, +o0], donc {+o0} € o(F).
Le complémentaire de [a,+00] est [—oo,a| donc tous les intervalles de la forme
[—00, b appartiennent aussi a o (F). C’est donc aussi le cas de { —oo0} = Nyen[—00, n|.
De méme pour un intervalle ]a, b[ puisqu’il peut s’écrire Upen[a+ 1/n,b[. Donc o(F)
contient les unions dénombrables d’intervalles ouverts, c’est a dire les ouverts de R ;
et comme il contient aussi {—oo} et {+o0}, par adjonction o(F) contient tous les
ouverts de R, et donc tous les boréliens de R, ce qui conclut la preuve. O

EXEMPLE II-18. Considérons X = {0, 1}, out chaque facteur est muni de la tribu
triviale. Alors les singletons sont mesurables pour la tribu cylindrique. En effet, si
x € {0, 1} alors {z} = NC}, ot

Cr={y {01}, Vj<k y=u}.

Mais aussi, tout sous-ensemble dénombrable de {0, 1} est mesurable. Ou encore,
par exemple, si on se donne a € [0, 1], I'ensemble des (z,),en tels que le nombre
moyen d’occurrences de 0 dans (,)1<n<n tende vers a (c’est a dire les (2,)nen tels
que N7 '#{j € {1,...,N}; z; = 0} = a quand N — o0) est encore mesurable,
de méme que tous les autres ensembles auxquels vous pourrez penser. En fait, on
peut montrer qu’il est impossible de décrire une partie de {0, 1} qui ne soit pas
mesurable pour la tribu cylindrique.

REMARQUE II-19. La construction de la tribu produit est tres similaire a celle
de la topologie produit, qui sera rappelée dans la section II-3.4. Ces constructions
abstraites sont tres simples, mais cachent certaines subtilités, que nous aurons 1'oc-
casion de retrouver en étudiant I'intégrale sur les espaces produits, au Chapitre IV.
Pour se donner une idée des problémes proprement vertigineux que 1’on peut ren-
contrer, la lectrice peut se poser la question suivante. Etant donnés X et Y deux
espaces topologiques, munis de leur tribu borélienne, il existe deux tribus naturelles
sur X x Y : la tribu borélienne (pour la topologie produit), et la tribu produit (des
tribus boréliennes). Ces deux tribus coincident-elles 7

EXERCICE II-20. Démontrer I'assertion faite dans I’Exemple II-16(ii), selon la-
quelle la tribu borélienne de R™ est engendrée par les pavés ouverts bornés. Il suffit
bien str de vérifier que tout ouvert appartient a la tribu 7 engendrée par les pavés
ouverts. On pourra montrer successivement que

- T contient les pavés ouverts non bornés;

- T contient les pavés fermés ;

- T contient les pavés semi-ouverts ;

- T contient les ouverts.

On pourra noter que tout ouvert s’écrit comme une réunion dénombrable dis-
jointe de pavés (obtenus en considérant des maillages de plus en plus fins, par
exemple).

EXERCICE II-21. Soient m,n € N. En utilisant le résultat de ’exercice I11-20,
montrer que B(R™) ® B(R™) = B(R™ x R").

I1-1.3. Mesures. Les tribus sont le cadre naturel pour définir les mesures,
introduites par Borel : ce sont des fonctions d’ensembles vérifiant I'axiome de o-
additivité.
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FiGURE 3. Approximation d’un ouvert de R™ par une union de petits pavés

DEFINITION 11-22. Soit (X, A) un espace mesurable. On appelle mesure (ou
mesure o-additive, ou mesure positive) sur X une application p définie sur A, d
valeurs dans [0, +o0], telles que

(i) ul] = 0

(ii) Pour toute famille dénombrable (Ay)ren d’ensembles mesurables disjoints,
(3) plU A =D ulAd.
keN keN

Le triplet (X, A, p) est alors appelé un espace mesuré.

REMARQUES II-23. La somme apparaissant au membre de droite de (3) converge
toujours dans [0, +00]. A la place de 'axiome u[f] = 0, on aurait pu imposer que
p n'est pas identiquement +oco; en effet, cela impose a = u[f)] < +o00, mais alors
en choisissant A, = () pour tout k, on a a = oo - a, d'ot a = 0. Bien siir, les
mesures vérifient toutes les regles habituelles des fonctions additives d’ensembles,
comme discuté en début de chapitre; en particulier, une mesure 1 est une fonction
croissante d’ensembles, et pour toutes parties mesurables A, B,

AN Bl < oo = plAU B] = u[A] + u[B] — u[AN B].

REMARQUE II-24. Dans la définition on a imposé que les A, soient disjoints;
par la on entend deuzr a deuz disjoints, c’est a dire que pour tous 7,7 € N on a
A; N A; = (. L’exercice suivant aborde le cas d’ensembles non disjoints.

EXERCICE 1I-25. Soit  une mesure. Montrer que pour toute famille dénombrable

(Ag) de parties mesurables,
U] < 3 a4

keN keN
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Pourquoi I'inégalité doit-elle étre en général stricte ?

Si (X, A, 1) est un espace mesuré, par abus de notation, on dira souvent que
(X, 1) est un espace mesuré, la tribu A étant alors implicite; ou méme que X est
un espace mesuré, la tribu A et la mesure p étant alors implicites.

Notons tout de suite certaines opérations simples qui peuvent étre effectuées sur
les mesures :

PROPOSITION I1-26 (Opérations sur les mesures). (i) Si uy et s sont des mesures
définies sur le méme espace mesurable, alors py + o est une mesure.

(ii) Si p est une mesure et o un nombre réel positif, alors au est une mesure.

(iii) Si (X, A, ) est un espace mesuré, et Y une partie mesurable de X, alors p
induit sur'Y une mesure par restriction a la tribu des parties mesurables de X qui
sont incluses dans Y. Cette mesure v, restriction de p a'Y, est notée

v=ply 0w v=ply.
(1v) Si (fn)nen est une suite croissante de mesures définie sur un méme espace

mesurable (c’est a dire : pour tout A et pour tout n, p,[A] < pni1[A]), alors lim p,
est une mesure.

EXERCICE II-27. Démontrer la propriété (iv) ci-dessus, et montrer par un contre-
exemple que la conclusion est en général fausse pour une suite décroissante.

Grace aux axiomes des g-algebres, les propriétés exprimées en termes d’unions
disjointes peuvent étre reformulées en termes d’unions croissantes, ou d’intersections
décroissantes. Rappelons qu’une suite (Ag)reny d’ensembles est dite croissante si on
a A C Agy1 pour tout k, et décroissante si on a A1 C Ay pour tout k.

PROPOSITION 11-28. Soit (X, A, 1) un espace mesure.
(i) Soit (Ag)ren une famille croissante de parties mesurables, alors

Ay) = Tim p[Ag] = sup p[Ay].
u[gN ] = m a4 = sup ulA]

(ii) Soit (Ag)ken une famille décroissante de parties mesurables, l'un au moins
des Ay €tant de mesure finie. Alors

" [’QN Ap] = lim p[Ay] = inf p[Ay].

DEMONSTRATION. Démontrons (i). Si u[A,] tend vers l'infini quand ¢ — oo,
alors forcément p[UAx] = oo, et I'assertion est vraie. Dans le cas contraire, la suite
croissante u[A,] converge vers une limite finie quand ¢ — oco. On écrit alors UA
comme réunion disjointe de By = Ay et des B; = A; \ B,_, pour 1 < j < k. Par
o-additivité,

UUAL] = nlAg) + > plBy).
j>1
La série de droite est donc convergente, et

plAo] + ) pulB)) = lim (M[Ao] + ) M[Bj]) = Jim p[A].

j>1 1<j<e
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Pour démontrer (ii), supposons sans perte de généralité que Ag est de mesure
finie ; alors p définit par restriction une mesure sur Ay, et on peut appliquer la partie
(i) de la proposition a la famille croissante (Ag \ Ayg). O

EXERCICE 11-29. Montrer que la propriété (i) est en fait équivalente a I’axiome
de o-additivité. Trouver un contre-exemple a la propriété (ii) si ’on ne suppose pas
que l'un des Ay est de mesure finie. (On pourra utiliser la fonction “cardinal” sur
N.) Faire I’analogie avec un contre-exemple classique de topologie montrant qu’une
intersection décroissante de fermés peut étre vide.

Je conclurai cette section avec une liste de mesures importantes. Attention : si
la construction des o-algebres est souvent un exercice facile grace a la notion de
tribu engendrée, la construction des mesures peut poser des problemes bien plus
considérables. Dans la liste ci-dessous, les deux premiers exemples sont faciles a
construire, mais les suivants sont beaucoup plus subtils; pour I'instant, j’admettrai
leur existence, et ce n’est que dans la suite du chapitre que viendront les outils
puissants qui permettent de les réaliser.

II-2. Quelques mesures célebres

(i) L’exemple non trivial le plus simple d’une mesure est ce que I’on appelle une
masse de Dirac : soit X un espace mesurable, et x un point de X, on note
0, la mesure définie par

5,[A] = 1 siz€eA,
U)o six g A

Autrement dit §,[A] = 14(x). On peut se représenter cette mesure comme une
“masse ponctuelle” située au point xy. Cette mesure est nommée en ’honneur
de Paul Dirac, grand théoricien de la physique quantique, qui la maniait dans
de nombreux calculs formels. Malgré sa simplicité, la masse de Dirac peut
étre considérée est une sorte de “brique élémentaire” des mesures : de larges
classes de mesures peuvent en effet étre “approchées” par des combinaisons
de masses de Dirac. On peut les interpréter comme les points extrémaux de
I’espace convexe des mesures de probabilité; et toute mesure peut étre vue
comme une combinaison convexe de masses de Dirac.

(ii) La mesure de comptage n’est autre que la fonction “cardinal”, & valeurs
dans NU {4o00}. C’est aussi ) 05

(iii) La mesure de Lebesgue )\, dans R” est la mesure de référence naturelle
dans un cadre euclidien. Elle correspond aux notions habituelles de longueur
(n = 1), surface (n = 2) ou volume (n = 3), et les généralise en toute
dimension. On peut la définir en spécifiant le volume des pavés, ou celui
des boules, selon les formules vues précédemment. Par exemple on peut dire
que ), est I'unique mesure borélienne telle que p[[],[a;, b:]] = [T,(b: — a;).
(Attention, a ce stade je n’ai prouv’e ni 'existence ni l'unicité, et cele n’a rien
d’évident ; j’approfondirai la construction de la mesure de Lebesgue dans la
section II-8, puis dans le chapitre VI.)

(iv) Les mesures a densité : Soit f une fonction continue par morceaux, po-
sitive, des variables x1, ..., x,; cela induit sur R™ une unique mesure p telle
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que pour tout pavé P = [[[a;, bi],

by b
,LL[P]:/ flz, . x,)dey .. day,.

n

On verra plus tard que I'on peut aussi considérer des fonctions f bien moins
régulieres.

(iv) Les mesures de Hausdorff permettent de définir des notions de “volume d-
dimensionnel” dans un espace de dimension n : longueur d’une courbe tracée
dans R3, etc. A chaque dimension d > 0 (entiere ou non) est associée une
mesure de Hausdorff; quand d n’est pas entier on parle souvent de mesure
fractale. La mesure de Hausdorff n-dimensionnelle dans R"™ coincide avec la
mesure de Lebesgue, ce qui n’est pas évident a priori; quant a la mesure de
Hausdorff 0-dimensionnelle, ce n’est autre que la mesure de comptage. Les
mesures de Hausdorff se définissent naturellement dans des espaces métriques
arbitraires et pas seulement dans R".

(v) La mesure de Haar est une autre généralisation de la mesure de Lebesgue;
on la construit sur un groupe topologique localement compact (on reviendra
sur ces concepts). La mesure de Haar est caractérisée par certaines propriétés,
dont la principale est l'invariance vis-a-vis de 'action du groupe (disons action
a gauche) c’est-a-dire I'action des translations 7, :  —— (a.x). Par exemple,
la mesure de Haar sur le groupe localement compact R™ n’est autre que
la mesure de Lebesgue. Un autre exemple est le tore R"/Z"™, que 'on peut
identifier a [0,1["; il s’agit d’'un groupe compact, et sa mesure de Haar est
encore la (restriction de la) mesure de Lebesgue.

(vi) La mesure de volume, sur une variété riemannienne (M, g) de classe C?
(se reporter a un cours de géométrie différentielle pour ces notions!), est
encore une autre généralisation de la mesure de Lebesgue. On peut la définir
comme la mesure de Hausdorff n-dimensionnelle, ou n est la dimension de la
variété, dans l'espace métrique (M, d), ot d est la distance géodésique associée
a g. De fagon équivalente, on peut écrire vol (dz) = y/det gdz' ... dz" dans
une carte. Si M est une sous-variété de codimension 1 dans R"*! on peut
utiliser encore une autre définition équivalente : pour X C M on consideére
X, ={z € R"™d(z, X) < ¢} pour € > 0, et on définit vol [X] comme la
limite de | X.|/e quand € — 0, ou | X.| est la mesure (n + 1)-dimensionnelle
de X..

(vii) La mesure de Wiener, définie sur X = C([0, 7], R?) (muni de la topologie
de la convergence uniforme), ot d € N et T" > 0 est fixé. Cette mesure
est intimement liée au mouvement brownien, qui gouverne les trajectoires
tres chaotiques de petites particules dans un fluide. On peut la comprendre
intuitivement ainsi : soit une particule partant d’'un point donné (l'origine)
et décrivant une trajectoire brownienne, observée sur l'intervalle de temps
[0,T7]; alors la probabilité pour que la trajectoire de cette particule possede
une certaine propriété (P) est la mesure (de Wiener) de I'ensemble de tous
les chemins qui possedent cette propriété. La mesure de Wiener est I'unique
mesure de Borel W sur X qui vérifie la condition cylindrique suivante : Pour
tout K € N et toute suite strictement croissante (1, ..., tx) dans (0, 7], pour
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tous pavés P, ..., Px dans R?,

W[{z e X; a(t) € Pr,.... altx) € Pi}]

1* | |z — 2 [T — wra ]
= dxl.../ deeXp{—< + +...+—> )
/Pl P 2ty 2(ty — 1) 2(tg —trx—1)
La construction de cette mesure en 1921 par Norbert Wiener marquait ’aboutisse-
ment d’'une démarche sur 'intégration en dimension infinie entamée quelques années
plus tot par René Gateaux et Paul Lévy. La mesure de Wiener a été I'un des pre-

miers grands succes de la théorie de Lebesgue appliquée a des espaces de dimension
infinie.

11-3. Rappels de topologie

Dans la section II-1, les concepts topologiques ne jouaient aucun role, sauf pour
la définition des tribus et mesures de Borel. Mais dans toute la suite du cours, on
maniera des mesures de Borel de fagon plus subtile, et la topologie s’invitera avec
insistance. Pour préparer cela, je vais brievement passer en revue les notions utiles;
la lectrice pourra compléter elle-méme les démonstrations, ou bien les retrouver dans
les ouvrages d’introduction a la topologie.

Préliminaires
Soit X un ensemble quelconque ; on le munit d’une topologie en lui associant une
famille O de parties de X, appelées ouverts, telles que
(i) Pensemble vide et X sont des ouverts,

(ii) l'intersection de deux ouverts est un ouvert,
(iii) la réunion d’une famille quelconque d’ouverts est un ouvert.

L’intersection d’un nombre fini d’ouverts, une union quelconque d’ouverts sont
donc des ouverts. On peut se représenter un ouvert comme un ensemble qui “entoure”
chacun de ses points ; ou encore, comme un ensemble dont aucun point n’est frontiere.

Le complémentaire d’un ouvert est appelé fermé. L’ensemble vide, 'espace X
tout entier, 'union d’un nombre fini de fermés, une intersection quelconque de fermés
sont fermés.

Si une partie V' contient un ouvert contenant un élément z, on dit que V est
voisinage de .

On dit qu'un espace topologique X est séparé (terminologie anglo-saxonne :
espace de Hausdorff) si, étant donnés deux éléments distincts = et y de X, on peut
toujours leur trouver des voisinages disjoints.

Soit F une famille de parties de X. L’intersection de toutes les topologies sur X
contenant F est une topologie, et c’est la plus petite qui fasse de tous les éléments
de F des ouverts. On I'appelle topologie engendrée par F.

Un ensemble A C X étant donné, on définit 'adhérence A de A comme le plus
petit fermé contenant A, c’est-a-dire 'intersection de tous les fermés contenant A ;
et l'intérieur de A, Int(A), comme le plus grand ouvert contenu dans A, c¢’est-a-dire
I'union de tous les ouverts contenus dans A. La frontiére de A est A\ Int(A); il est
commode pour l'intuition de se représenter l'adhérence de A comme “A avec toute
sa frontiere”.

Une partie A est dite dense dans X si A = X.
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Si X est un espace topologique, un sous-ensemble arbitraire A de X devient lui-
méme un espace topologique si on le munit de la topologie définie par les intersections
de A avec les ouverts de X. Cette topologie est dite topologie induite.

On dit qu’une suite (x,),en converge vers x € X si, pour tout voisinage V' de
x on peut trouver N € N tel que n > N = x,, € V. En d’autres termes, pour
n assez grand, x, est confiné dans n’importe quel voisinage de = fixé a priori. On
dit alors que x est la limite de la suite (x,) et on note x,, — x. On appelle valeur
d’adhérence de (x,) tout x € X qui peut étre obtenu comme limite d'une suite
extraite (2x(n))nen-

Etant donnés deux espaces topologiques X et Y, on dit qu'une fonction f : X —
Y est continue si f71(O) est un ouvert de X, pour tout ouvert O de Y. Si X n’est
pas a priori muni d'une topologie, on appelle topologie engendrée par f la plus petite
topologie qui rende f continue : c’est 'ensemble de toutes les images réciproques
d’ouverts de Y par f.

Un espace topologique X est dit connexe si on ne peut le séparer en deux
ouverts disjoints non vides. Un espace topologique arbitraire étant donné, on peut
toujours le décomposer en composantes connexes, qui sont les plus grands (au sens
de l'inclusion, vue comme ordre partiel) ensembles connexes contenus dans X. Un
point z € X est dit isolé si le singleton {z} est un ouvert, ou de maniere équivalente
si sa composante connexe est réduite a lui-méme.

La notion de voisinage est une abstraction extréme de la notion de “proximité” :
des voisinages emboités autour d’un point x, définissent les points qui sont de plus en
plus proches de x. Une fonction est continue si elle préserve la proximité. Quant aux
composantes connexes, ce sont en quelque sorte les parcelles disjointes de 1’espace,
telles que 'on puisse se déplacer “contintiment” a l'intérieur d’'une méme parcelle,
sans pouvoir passer de parcelle en parcelle.

Les topologies que 'on rencontre le plus souvent sont celles qui sont engendrées
par une métrique; elles font 'objet de la section suivante.

De maniere générale, de nombreuses métriques peuvent étre associées a une
méme topologie (elles sont alors dites équivalentes du point de vue topologique) ;
par exemple, il suffit de remplacer une distance d par g(d), ou g est n’importe quelle
fonction strictement croissante; ce qui laisse penser que le concept de topologie est
plus satisfaisant que celui de métrique.

Cependant,

(a) en général, une topologie abstraite non métrique peut présenter des propriétés
“pathologiques” du point de vue de I'analyse;

(b) une métrique permet de quantifier la notion de “proximité” (la distance donne
une valeur), ce qui est précieux dans bien des problemes pratiques;

(c) en analyse, on peut (presque) toujours se ramener a des topologies métriques.
Tous les problémes que j’ai jamais rencontrés, que ce soit en physique mathématique,
en probabilité, en géométrie différentielle, et en tout cas en théorie de la mesure,
peuvent se formuler en n’utilisant que des topologies métriques. Cela n’est pas vrai
dans d’autres domaines mathématiques : par exemple, la topologie de Zariski, tres
utile en géométrie algébrique, est résolument non métrique. Mais dans un cours
d’intégration, il est tout a fait légitime de se restreindre aux topologies métriques.
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11-3.1. Espaces métriques. Soit X un ensemble quelconque; on dit qu’une
application d : X x X — R, est une métrique, ou distance, si elle satisfait aux deux
axiomes

(i) Va,y,z € X, d(z,2) <d(z,y) +d(y, 2);
(ii) [d(z,y) =0] <= x=y.

On appelle espace métrique un couple (X, d), ol d est une distance sur ’en-
semble X. Par abus de langage, on dira souvent que X est un espace métrique, la
distance d étant alors implicite.

Un exemple tres particulier est la topologie triviale, ou toutes les parties de
X sont ouvertes; elle correspond a la métrique triviale d(z,y) = 1,,.

Soient (X, d) un espace métrique, x € X et r > 0. On définit la boule ouverte
B.(x) = B(x,r), centrée en x et de rayon r, et la boule fermée B, (z) = Bz, 1],
par les formules

Bux) = {y€ X; d(w,y) <v};  By(x)={y € X; dlz,y) <r}.

Si (X,d) est un espace métrique, on introduit une topologie séparée sur X en
définissant les ouverts comme les unions de boules ouvertes. On a alors les propriétés
suivantes :

- les boules ouvertes sont ouvertes, les boules fermées sont fermées ;
- V est voisinage de z si et seulement si il existe 7 > 0 tel que B,.(z) C V;
- O est ouvert si et seulement si il est voisinage de tous ses points;;

- f(X,d) = (X',d") définie entre deux espaces métriques est continue si et
seulement si

VeeX Ve>0 36>0; YyeX  dzy <éd=d(f(z),f(y) <e

Les suites sont souvent d’une aide précieuse dans les espaces métriques ; plusieurs
des propriétés mentionnées précédemment admettent des caractérisations simples en
termes de suites convergentes. Ainsi,

- une suite (z,),en & valeurs dans X converge vers © € X si et seulement si
d(x,,x) — 0 quand n — oo}

- 'adhérence d'un ensemble A C X est I'ensemble de toutes les limites de suites
a valeurs dans A; en particulier, un ensemble F' est fermé si et seulement si il est
stable par passage a la limite : les assertions z,, € F, x, — x € X impliquent
r e F;

- une fonction f définie entre espaces métriques est continue si et seulement si
elle préserve les limites : f(z,) — f(x) dés que z,, = z,.

Si A est une partie d'un espace métrique (X, d) et z € X, on pose d(z, A) =
inf{d(z,y); y € A} : c’est la distance de x a A. L’adhérence de A est I'ensemble des
points qui sont a distance nulle de A ; en particulier, si F' est un fermé, les assertions
d(z,F) =0 et x € F sont équivalentes.

11-3.2. Régularité des espaces topologiques. La zoologie des espaces topo-
logiques est tres riche; les propriétés d’usage le plus courant sont la séparabilité, la
compacité et la complétude.

Un espace topologique X est dit séparable s’il admet une famille dénombrable
dense. Dire qu'un espace métrique X est séparable revient a dire qu’il existe une
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famille (xy)gen, telle que pour tout x € X il existe une application n — k(n), définie
de N dans N, telle que x,) — .

Une suite (z,)neny dans un espace métrique (X, d) est une suite de Cauchy si
d(xm, x,) —> 0 quand (m,n) — oo ; en d’autres termes,

Ve>0 INeN; n,m >N = d(x,, x,) < €.

Un espace métrique (X, d) est dit complet si toute suite de Cauchy dans X converge.

Un espace topologique X séparé est dit compact si, de tout recouvrement de X
par une famille d’ouverts (O;);er, on peut extraire un sous-recouvrement fini, i.e. il
existe une famille finie J C I telle que X C U;c;0;. Si X est un espace topologique
séparé et K une partie de X, on dit que K est un compact de X si la topologie
induite par X sur K en fait un espace topologique compact.

Si X est un espace topologique séparé, et A un sous-ensemble de X, on dit que
A est précompact ' si son adhérence A est compacte.

Un espace métrique (X, d) étant donné, on appelle diamétre de X le supremum
de d sur X x X ; I'espace X est dit borné si son diametre est fini.

Les propriétés suivantes se prouvent sans difficulté :
- un espace compact est fermé ; une partie fermée d’'un compact est compacte ;

- 'union de deux compacts est un compact, et le produit de deux compacts aussi;
plus généralement, une union finie de compacts et un produit fini de compacts sont
des compacts (on parlera plus tard des produits infinis) ;

- I'image par une fonction continue d'un compact est un compact ; en particulier,
une fonction continue sur un compact, a valeurs dans R, est bornée et atteint ses
bornes ;

- 81 K et K5 sont deux compacts dans un espace métrique (X, d), alors il existe
xr1 € K et x5 € K tels que

d(zy,22) = inf{d(yb?h), y1 € Ky, s € KQ}

(en effet la fonction distance atteint son infimum sur le compact K; X Kj);
- un espace métrique compact est complet et borné;

- un espace métrique (X, d) est compact si et seulement si toute suite (x,)nen
dans X admet une valeur d’adhérence (théoreme de Bolzano—Weierstrass) ;

- une fonction f continue entre un espace métrique compact (X, d) et un espace
métrique (Y, d') est automatiquement uniformément continue : pour tout € > 0
il existe 6 > 0 tel que

Ve,ye X d(z,y) <6 = d(f(2), fly)) <e.

On peut alors définir le module de continuité de f par

my(8) = sup{d'(f(x), f(y)); d(w,y) <3} ;

c’est une fonction croissante, continue, vérifiant m¢(0) = 0.

1. Jadopte ici la terminologie anglo-saxonne (precompact) au lieu de la terminologie frangaise
courante “relativement compact”. En francais on réserve d’habitude le terme “précompact” pour
ce qui sera appelé plus loin “totalement borné”. La différence est minime : en effet, dans un espace
métrique séparable complet, il est équivalent de dire qu’une partie est relativement compacte, ou
qu’elle est totalement bornée; Cf. le Théoreme I1-39.
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EXEMPLES II-30. Une partie finie est compacte. Une partie bornée et fermée de
R™ ou de n’importe quelle variété de dimension finie, est compacte. L’espace R”
tout entier est complet mais pas compact.

Intuitivement, une partie compacte est une partie “petite” au sens imagé o,
quand on cherche a 'explorer (au moyen des valeurs d’une suite, par exemple), on
revient toujours sur ses pas (il existe un x pres duquel on revient une infinité de fois
arbitrairement pres). La topologie moderne s’est développée sur la base des concepts
d’ouvert et de compact.

Les définitions suivantes introduisent les hypotheses de régularité les plus utilisées
en théorie de la mesure.

DEFINITION II-31 (o-compacité). Un espace topologique X est dit o-compact s’il
est union dénombrable de compacts.

DEFINITION I1-32 (compacité locale). Un espace topologique X est dit locale-
ment compact si tout x € X admet un voisinage compact.

DEFINITION I1-33 (espace polonais). Un espace topologique X est dit polonais
st c’est un espace métrique séparable et complet.

REMARQUE II-34. Un espace polonais localement compact est automatiquement
o-compact (exercice).

EXEMPLE II-35. L’espace R", et plus généralement n’importe quelle variété rie-
mannienne lisse compléte de dimension finie (munie de sa distance géodésique), sont
tous localement compacts, o-compacts et polonais. En revanche, C'([0, 1], R") (muni
de la norme du supremum), est polonais mais n’est ni localement compact, ni o-
compact ; en fait tous les compacts y sont d’intérieur vide.

REMARQUE II-36. Les spécialistes de théorie de la mesure moderne utilisent des
notions plus fines : espaces de Lusin, espaces de Suslin, etc., dont les espaces polonais
sont des cas particuliers.

11-3.3. Théoremes d’extension et de séparation. Voici maintenant quelques
théoremes d’extension qui nous serviront dans la suite du cours :

- Si (X, d) et (Y,d') sont des espaces métriques complets, et f est une application
uniformément continue sur une partie A de X, a valeurs dans Y, alors elle admet
un unique prolongement continu de A dans Y. Ce prolongement peut se définir par
l'identité f(limx,) = lim f(z,).

- Si (X,d) est un espace métrique et Fy, F; sont deux fermés disjoints de X,
alors la fonction f valant 0 sur Fj et 1 sur F; admet un prolongement continu a X
tout entier, a valeurs dans [0, 1]. Pour le voir, il suffit de poser

d(il?, F())
f(x) =
d(ZL‘, F()) + d(I, Fl)
(Si Fo (resp. Fi) est vide, on pose f =1 (resp. f = 0).) Bien stir, on en déduit que
pour tous ag, a; réels distincts, une fonction qui vaut ag sur Fy et a; sur F; admet
un prolongement continu a valeurs dans [ag, a;].

- Si (X,d) est un espace métrique et A un ensemble quelconque de X, alors
toute fonction lipschitzienne f : A — R admet un prolongement lipschitzien a X
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tout entier (a priori non unique). Pour le voir, il suffit de poser
= inf |d .
f(w) = inf [d(@,y) + f(y)]

- Si (X, d) est un espace métrique et F' est un fermé de X, alors toute fonction
continue f : F' — R admet un prolongement continu (a priori non unique) a X tout
entier, vérifiant supy f = supp f, infx f = infp f. C’est le Théoréme d’extension
de Tietze—Urysohn, dont je vai esquisser la démonstration.

PREUVE DU THEOREME DE TIETZE-URYSOHN. En décomposant f en f, et
f—, on se ramene au cas ou f est a valeurs positives.

Si f est bornée, on peut sans perte de généralité supposer que f est a valeurs
dans [0,1]. On construit alors une série d’approximations continues a f, comme
suit. On introduit d’abord une fonction g; continue, a valeurs dans [0, 1/2], qui vaut
identiquement 0 sur le fermé {f = 0} et identiquement 1/2 sur le fermé {f > 1/2}.
On aalors 0 < f — g3 < 1/2 sur F. On introduit ensuite go, a valeurs dans [0, 1/4],
identiquement égale a 0 sur le fermé {f — g1} = 0 et identiquement égale & 1/4 sur
le fermé {f — g1} > 1/4;0onaalors 0 < f—g; —go < 1/4 sur F.

Par récurrence, on construit ainsi une suite de fonctions (g, )nen telle que |g,| <
27" et [f—(g1+ ...+ gn)| < 27" sur F. Cette série converge uniformément dans X
tout entier vers une fonction continue g, qui coincide avec f sur F. _

Si maintenant f est non bornée, on applique le résultat précédent a f := f/(1+
f), construisant ainsi une fonction continue g sur X, a valeurs dans [0, 1]. L’ensemble
F' := {g = 1} est un fermé disjoint de F, on peut donc trouver une fonction h
continue, a valeurs dans [0, 1], valant 0 sur F” et 1 sur F'; la fonction hg est alors a
valeurs dans [0, 1[, et g := (hg)/(hg — 1) est une extension continue de f. O

Enfin, voici pour conclure un résultat utile de séparation : soient Fy et F; des
fermés disjoints dans un espace métrique ; alors on peut trouver des ouverts disjoints
Oy et O tels que Fy C Og, F1 C O;. En effet, on sait construire une fonction continue
f a valeurs dans [0, 1], valant 0 sur Fjy et 1 sur F7 ; il suffit de poser Oy = {z; f(z) <

1/3}, Or = {a; f(x) > 2/3}.

I1-3.4. Espaces produits. Si (X;)ier est une famille d’espaces topologiques,
indexée par un ensemble quelconque, considérons leur produit cartésien X = [[ X, :
c’est I'ensemble des fonctions x définies sur T, telles que z(t) € X; pour tout t.
Dans cet ensemble on peut définir les cylindres : si A;, est une partie de X, , pour
1<k <K, alors

C(tlv"'vtK)(At17 T 7AtK) = {x € X7 xtk € Atk}

On peut alors définir la topologie produit comme la topologie engendrée par les
ouverts cylindriques, i.e. les ouverts de la forme C(O,,..., Oy, ), chaque Oy, étant
un ouvert de X, .

Si ’ensemble T est quelconque, la topologie produit est en général non métrique;
un exemple typique est [0,1]%Y. En revanche, un produit dénombrable d’espaces
métriques reste un espace métrique. Précisons un peu les choses. Soit (X, dx)ren
une famille dénombrable d’espaces métriques, et X = [[ Xj. La topologie produit
sur X est engendrée par les cylindres de la forme C(Ay, ..., A,), ou chaque A; est
un ouvert de X;. Dire qu’une suite (wk)keN d’éléments de X converge vers x € X
revient donc a dire que pour tout indice 4, la suite (z¥)ren converge vers x; quand
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k — oo. Il est alors facile de vérifier que X est un espace métrique quand on le munit
de la distance : )
. i i, v }
dx(@,y) Szlellg {2 L+ di(zi, vi) |
(Noter que la distance d;/(1 + d;) est topologiquement équivalente a d;, tout en
étant automatiquement bornée.) En pratique, la convergence dans I'espace X est la
“convergence composante par composante”.

THEOREME I1-37 (produits dénombrables d’espaces métriques). Soit (X, di.)ren
une famille dénombrable d’espaces métriques, et soit X = [[ Xx, muni de la topologie
produit. Alors

(i) Si chaque Xy, est compact, alors X est compact ;

(ii) Si chaque Xy est polonais, alors X est polonais.

REMARQUE II-38. Si I'on admet 'axiome du choix, alors 1’énoncé (i) se généra-
lise a des familles arbitraires de compacts, éventuellement non dénombrables; c’est
un célebre résultat de topologie générale appelé théoreme de Tychonov. La dé-
monstration de ce théoreme est un remarquable exercice d’“abstract nonsense”, que
'on pourra trouver dans de nombreux ouvrages de référence, par exemple [Dunford-
Schwartz]. La preuve de 1’énoncé (i) est beaucoup plus simple car on peut utiliser &
la fois la métrique et la dénombrabilité.

DEMONSTRATION. (i) C’est occasion d’introduire le concept d’extraction dia-
gonale (ou argument diagonal de Cantor), qui servira souvent par la suite. Soit
(™)nen une suite d’éléments de X ; chaque ™ est une suite (2} )en, avec z} € X.
De la famille des (27),en, & valeurs dans le compact K, on peut extraire une sous-

(n) (n)

suite convergente, notée 27", De la famille 25", & valeurs dans le compact K5, on

peut extraire une sous-suite convergente notée mflwz(n) . Par récurrence, on construit
des applications strictement croissantes ¢ : N — N, telles que la suite xflo“'o‘p’“(")

est convergente dans Xj;. On pose alors

w(n) =p10ps0...0@,(n).

Pour tout k£ < n, on peut écrire

p(n) = (pro...opx)oy(n),

ol 1), est une fonction croissante. Il s’ensuit que, pour n > k, la suite (xf(”)) est
extraite de xflo”'ow"'(n), et converge donc dans Xj vers une limite x;, € Xj. Par
définition de la topologie cylindrique, la suite (de suites) z#™ converge vers la suite
r = (Tk)ren- La suite (z™),eny admet donc x pour valeur d’adhérence, ce qui prouve

la compacité de X.

(ii) Soit d,, une métrique rendant X,, complet ; on vérifie alors que la métrique
27" dp (T, Yn)
{1 + d (2, ZM)}

métrise la topologie produit de X et le rend complet.
Par ailleurs, si (2})ren est une suite dense dans X,,, on vérifie que la famille des
suites

d(z,y) = sup
neN

k1 k2 kEn .1 1 1
(371 1L s s TN TN 1 TNy 2 TNy3s - )
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ol (ki,...,ky) € NV et N € N, est dénombrable, et dense dans X (c’est une suite
de suites!). L’espace X est donc séparable. O

I1-3.5. Quel cadre topologique pour la théorie de la mesure? Méme
si leurs fondements axiomatiques présentent des similitudes, théorie de la mesure
et topologie font souvent mauvais ménage, et peuvent mener a des descriptions
qualitatives tres différentes. Ainsi, un ensemble peut étre “gros” pour topologie (par
exemple un ensemble gras au sens de Baire, i.e. une intersection dense d’ouverts)
et tres petit pour la mesure (i.e. inclus dans une famille de boules de volume total
arbitarirement petit); on y reviendra.

Dans de nombreux domaines, les notions de “généricité” au sens topologique
et au sens de la théorie de la mesure sont différentes; un exemple célebre est le
théoreme KAM en mécanique Hamiltonienne, pour lequel I'instabilité générique (au
sens topologique) va de pair avec une stabilité trés probable.

Pour autant, théorie de la mesure et topologie ne sont pas des concepts étrangers.
Nous verrons dans la section suivante que les propriétés topologiques d'un espace
métrique déterminent en partie ses propriétés en tant qu’espace mesuré, quand on le
munit de la tribu borélienne. 11 est don légitime de se demander s’il existe un cadre
topologique naturel pour développer la théorie de la mesure.

Dans les années 1950 et 1960, il a pu sembler qu'un tel cadre était celui des
espaces localement compacts, non nécessairement métriques, Plusieurs résultats
excellents ont été établis pour ces espaces; parmi les plus remarquables se trouvent
le Théoreme de Représentation de Riesz (Chapitre III); et le Théoreme de Haar
(Chapitre ?7?). La théorie de la mesure dans les espaces localement compacts occu-
pait alors une place importante dans nombre de traités de référence tels que ceux de
Bourbaki et Halmos, et méme dans ’ouvrage plus concis de Rudin, dont la popularité
reste intacte.

En revanche, les probabilistes n’ont jamais pu admettre ce cadre, qui exclut les
espaces fonctionnels naturels tels que 'espace de Wiener (connu depuis les années
1920). Depuis Kolmogorov, 'essentiel de la théorie des probabilités a été développé
dans le cadre des espaces métriques séparables, le plus souvent complets ; autrement
dit, des espaces polonais.

Deux théories concurrentes se sont donc développées parallélement au cours du
vingtiéme siecle, avec des points communs et des divergences : les espaces localement
compacts d’une part, les espaces polonais d’autre part. Pour apprécier un peu mieux
cette distinction, voici quelques exemples :

- un espace métrique compact est bien sir localement compact, et automatique-
ment polonais ;

- 'espace euclidien R", ou plus généralement n’importe quelle variété rieman-
nienne complete, est a la fois un espace localement compact et un espace polonais ;

- Pespace [0, 1][07”, muni de la topologie de la convergence simple, est compact
mais n’est pas polonais (car non métrique);

- lespace C([0,1]; R), muni de la topologie de la convergence uniforme, est po-
lonais mais non localement compact.

L’expérience a montré que le cadre des espaces polonais est plus naturel et
concerne une communauté scientifique considérablement plus importante. En outre,
la théorie de la mesure dans des espaces non métriques (méme compacts) mene
a diverses pathologies [Dudley, Appendice E]. Pour toutes ces raisons, il est clair
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maintenant que le “bon” contexte mathématique de la théorie de la mesure est ce-
lui des espaces polonais. Cela n’empéche pas que des hypotheses additionnelles de
compacité locale aient des conséquences fort commodes.

Pour autant, je n’ai pas banni compleétement de ces notes les énoncés faisant
intervenir des espaces localement compacts abstraits; la principale motivation en
est la volonté de préserver toute la splendeur (!) des théoremes de Riesz et de Haar.
De maniere générale, je proposerai donc des preuves complétes dans le cas des espaces
polonais, et des preuves presque completes dans le cas localement compact ; la lectrice
intéressée pourra en reconstituer les détails.

Qu’est-ce qui fait le succes de ces deux catégories d’espace ? Pour simplifier,

- dans les espaces polonais, tout se ramene a des boules ;

- dans les espaces localement compacts, tout se raméne a des fonctions continues.
Je vais en dire un peu plus dans la fin de cette section.

11-3.6. Pourquoi les espaces polonais sont-ils agréables 7 Les axiomes des
espaces polonais en font des espaces particulierement bien adaptés a la propriété de
o-additivité des mesures : dans de nombreux problémes, on peut se ramener a une
question portant sur une famille dénombrable d’ensembles simples tels que des
boules. Voici un bon exemple.

THEOREME I1-39 (ouverts et compacts d’un polonais). Soit (X,d) un espace
métrique séparable, soit (x,)nen une suite dense dans X, et soit (ex)ren une suite
quelconque de nombres positifs décroissant vers 0. Soit By [’ensemble des boules
ouvertes de centre x, et de rayon €, et B la réunion des By. Alors

(i) une partie O de X est ouverte si et seulement si elle est union dénombrable
d’éléments de B ;

(ii) st X est en outre complet (donc polonais), alors une partie K de X est com-
pacte si et seulement si elle s’écrit comme une intersection d’unions finies d’adhé-

rences d’éléments de By ; en d’autres termes, K est compact si et seulement si il
existe (Ny) et (n(k,7)) (k€ N, 1 <j < Ny) tels que

(4) E= U Bo@uw)

kEN 1<j< N,

REMARQUE I1-40. La formule (4) dit que l'on peut bien approcher K en le
recouvrant par un grand nombre de petites boules que I'on ferme. Noter que I'union
de boules fermées apparaissant au membre de droite n’est pas forcément compacte ;
c’est 'intersection qui l'est.

PREUVE DU THEOREME II-39. (i) Il est clair qu’une union d’éléments de B est
ouverte. Pour vérifier la réciproque, il suffit de prouver que tout x € O appartient
a un élément de B. Puisque O est ouvert, il existe r > 0 tel que B,(x) C O.
Soit k tel que € < 7/2, et soit n tel que d(z,,z) < & On va constater que
B.,(z,) C O, ce qui conclura I'argument. Soit donc y tel que d(z,,y) < € ; alors
d(z,y) < d(z,z,) +d(z,,y) < erp+e, <7, doncy € B.(x) et donc y € O.

(ii) Montrons qu'une partie K de la forme (4) est compacte. Une union finie
de parties fermées étant fermée, K s’écrit comme une intersection (dénombrable)
de parties fermées; c’est donc un fermé. Si 'on parvient a montrer que toute suite
a valeurs dans K converge dans X, on saura que la limite est aussi dans K, et le
critere de Bolzano-Weierstrass assurera que K est compact.
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Soit donc (yr)een une suite a valeurs dans K. Par hypothese, elle prend ses valeurs
dans un nombre fini de boules de rayon ¢ ; I'une de ces boules au moins contient
donc une infinité de termes de la suite. On peut donc extraire de (y¢) une sous-suite
dont tous les éléments sont a distance au plus €; les uns des autres. Mais la suite (y,)
ainsi extraite est également a valeurs dans une union finie de boules de rayon ey ;
I'une de ces boules au moins contient donc une infinité de termes de la suite, et on
peut extraire & nouveau une sous-suite dont tous les éléments sont a distance au plus
g9 les uns des autres. On continue ainsi le processus : par un procédé d’extraction
diagonale, il est possible de construire une suite extraite, toujours notée (y,), telle
que tous les y, pour ¢ > k sont a distance au plus ¢ les uns des autres. C’est donc
une suite de Cauchy, et grace a I’hypothese de complétude elle converge dans X, ce
qui conclut I'argument.

Réciproquement, soit K un compact, montrons qu’il peut s’écrire sous la forme (4).
Pour tout k, et pour tout z € K, on peut trouver n tel que d(z,z,) < £; on
peut donc inclure K dans I'union des B;, (z,), avec d(z,, K) < ;. Par compacité
on peut extraire un sous-recouvrement ouvert. Il existe donc des éléments x4 ;)
(1 < j < Ny) tels que K soit inclus dans 'union des B, (zn.;)), & fortiori dans

I'union des B., (Tn(k5)), avec d(&y k), K) < €x. Cela étant valable pour tout k, on a

KcK =) |J Bal@any)

kEN 1<j< Ny

Soit maintenant y € K’', et soit £k € N. Par hypothese, il existe x,, tel que
y € B., (x,), avec d(z,, K) < e On a alors d(x,,y) < &, et donc d(y, K) <
ek + ex = 2¢5. Puisque k était arbitraire, d(y, K) = 0, ce qui entraine y € K. On
conclut que K’ = K, ce qui était notre but. O

I1-3.7. Pourquoi les espaces localement compacts sont-ils agréables ?
La popularité des espaces localement compacts tient pour beaucoup a ce que dans de
tels espaces on peut, dans de nombreuses situations, remplacer les ensembles ouverts
(identifiés a leurs fonctions indicatrices) par des “fonctions plateaux”, a valeurs dans
[0, 1], continues et a support compact. C’est ce qu’expriment les deux théoremes
suivants [Rudin, Théoremes 2.12 et 2.13].

THEOREME I1-41 (lemme d’Urysohn). Soit X un espace séparé localement com-
pact, O un ouvert et K un compact de X, K C O. Alors il existe une fonction f,
continue, d valeurs dans [0, 1], qui vaut identiquement 1 au voisinage de K, et dont
le support est compact et inclus dans O. En particulier,

g < f < 1o.

THEOREME I1-42 (partition de I'unité). Soient X un espace séparé localement
compact, K un compact de X, et Oq,...,0, une collection finie d’ouverts, tels que
K C UOy. Alors il eziste des fonctions continues fi,..., fn, a4 valeurs dans [0, 1],
telles que chaque fi. ait son support compact et inclus dans Oy, et

xGK:>ka(x)—

Si l'on se donne un recouvrement quelconque O de K par des ouverts, alors on
peut en extraire un sous-recouvrement fini {O1,..., 0y}, et la conclusion précédente
reste vraie.
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F1GURE 4. Le lemme d’Urysohn

Le lemme suivant est également utile. On peut le voir comme une conséquence
directe du lemme d’Urysohn (pourquoi 7), mais on peut aussi considérer qu’il précede
logiquement cet énoncé.

LEMME I1-43 (voisinages compacts). Soient X un espace localement compact, K
un compact de X, et O un voisinage ouvert de K. Alors il existe un compact K' et
un ouvert O de X tels que

KcO cK' co.

PREUVE DU LEMME I1-43 DANS LE CAS METRIQUE. Soit F' := X \ O. Pour
tout x € K, on a d(x, F) > 0; on peut donc trouver r, > 0 tel que la boule B, (z)
n’intersecte pas X \ O, et soit par conséquent incluse dans O. Par hypothese, il
existe également un voisinage compact K, de x. Considérons C, := B, ()N K,
c’est un voisinage compact de z, inclus dans O. Soit V, un sous-ensemble ouvert
de C, contenant x : les V, recouvrent K ; par compacité on peut donc en extraire

un sous-recouvrement fini V,,, ..., V,,, et la famille des C,, recouvre également K.
L’union des Cj, est alors un voisinage compact de K, inclus dans O. 0

PREUVE DU THEOREME II-41 DANS LE CAS METRIQUE. Soient K’ et O’ comme
dans le Lemme II-43. On pose alors

d(xz, X \ K'
d(z, X \ K') +d(z,0")
(noter que le dénominateur ne s’annule jamais). Il

PREUVE DU THEOREME II-42 DANS LE CAS METRIQUE. On ne démontrera que
la premiere partie de I’énoncé, la deuxiéme en découlant facilement. Pour tout j, on
note F; le complémentaire dans X de I'union des ensembles O;, pour i # j : c’est
alors un fermé, et

KEnFyc((0)\ ()0 co;
i i]
Grace au Théoreme I1-41, on peut trouver une fonction f; a support compact dans
Oj, a valeurs dans [0, 1], qui vaille identiquement 1 sur un voisinage de K N Fj. On
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définit alors
fi(z) siz e KNEj

fi(z) ==
(x
;ij# size KN (U 0;)
>ic Ji(@) it
et on vérifie que cette famille remplit toutes les conditions requises. O

Voici pour finir une proposition énoncant que 'on peut “épuiser” un espace
localement compact et o-compact par une famille de compacts “gentiment emboités”
(souvent appelée suite exhaustive de compacts) :

PROPOSITION II-44. Soit X un espace localement compact et o-compact. Alors
X peut s’écrire comme l'union croissante d’une famille de compacts (K, )nen, telle
que K, .1 soit voisinage de K,,. Pour tout compact K de X, il existe alors ng € N
tel que K soit inclus dans lintérieur de K,, pour n > ng.

DEMONSTRATION. Par hypothése, on peut trouver des compacts (C,),en dont
I'union est X entier. Posons K; = ;. On va montrer qu’il existe un compact K,
qui contienne un voisinage de K, et Cs.

Pour chaque n on peut construire un ouvert O,, et un compact C/, de sorte que
C, C O, C C!. 1l est clair que les O,, recouvrent X . En particulier, le compact C est
recouvert par un nombre fini des O,, : il existe N; € N tel que C; C O1UO,U. ..Uy, .
En particulier, le compact C] U...UCY, est voisinage de C}. Il suffit alors de poser
K2 = C{ U...uU Omax(Q,Nl)'

En répétant ce raisonnement, on construit par récurrence une suite (K, ),en telle
que K, soit voisinage de K, et contienne C; U...U C, ;. La réunion des K, est
donc X tout entier.

Soit V,, I'intérieur de K,. Puisque V,, contient K,,_1, I'union croissante des V,, est
X tout entier. Si K est un compact de X, il est donc inclus dans V,, pour n assez
grand, ce qui conclut la preuve. O

II-4. Régularité des espaces mesurés

De nombreux résultats de théorie de la mesure s’appliquent dans un cadre tres
général, sans aucune hypothese additionnelle. Mais en pratique il est trés commode
de pouvoir s’appuyer sur certaines propriétés tres utiles, dites de “régularité”, qui
mélent des hypothéses de topologie et de théorie de la mesure.

I1-4.1. Vocabulaire de base.

DEFINITION 1I-45 (finitude et o-finitude). Une mesure p sur un espace mesuré
X est dite finie si X est de mesure finie; elle est dite o-finie si X peut s’écrire
comme une union dénombrable d’ensembles Ay de mesure finie.

REMARQUE 1I-46. Certains théoremes importants d’intégration sur les espaces
produits utiliseront crucialement des hypotheses de o-finitude.

DEFINITION I1-47 (probabilité). Un espace mesuré (X, u) est appelé espace de
probabilité si u[X] = 1.
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REMARQUE II-48. Cette définition semble particulierement triviale, mais il ne
faut pas oublier qu’il a fallu attendre longtemps avant que ’on comprenne que la
théorie de la mesure était un cadre conceptuel naturel pour développer la théorie
des probabilités. Cette intuition est due indépendamment a Kolmogorov et Ulam.

DEFINITION 11-49 (atome). On dit que x € X est un atome pour la mesure p si
pl{z}] > 0.

Le choix de cette terminologie est transparent : un atome est une partie que 1’on
ne peut découper, au sens de la théorie de la mesure, en morceaux plus petits.

DEFINITION II-50 (concentration, négligeabilité). Soit (X, A, u) un espace me-
Sure.

(i) Soit C' un sous-ensemble quelconque de X ; on dit que u est concentrée sur C
si, pour toute partie mesurable A contenant C, on a u[X \ A] = 0.

(ii) Soit N un sous-ensemble quelconque de X ; on dit que N est u-négligeable
(ou négligeable) si N est contenu dans un ensemble mesurable A tel que p[A] = 0.

(iii) Soit C' un sous-ensemble quelconque de X ; on dit que u charge C' si, pour
toute partie mesurable A contenant C, on a u[A] > 0.

REMARQUE II-51. Ces définitions se simplifient quand on se restreint a des par-
ties mesurables : si A est mesurable,

e 1 est concentrée sur A si et seulement si u[X \ A] =0;

e A est p-négligeable si et seulement si u[A] = 0;

e 1 charge A si et seulement si pu[A] > 0.

EXEMPLE II-52. La mesure ¢, est concentrée sur {z}, qui n’est pas forcément
mesurable.

Intuitivement, les ensembles négligeables sont ceux qui ne devraient jouer aucun
role en intégration. Cependant, il est parfois délicat de traduire cette intuition quand
ces ensembles ne sont pas mesurables. Ceci motive la notion suivante :

DEFINITION II-53 (complétude). Un espace mesuré est dit complet s’il posséde la
propriété suivante : si A est négligeable et B est inclus dans A, alors B est mesurable
(et donc automatiquement négligeable).

REMARQUES 1I-54. (i) Le sens du mot “complet” est différent de celui qu’il
a dans “espace métrique complet”.

(ii) La complétude est une propriété subtile, parfois bien commode, parfois source
de complications infinies. On verra plus tard que 1'on peut toujours “complé-
ter” une mesure.

11-4.2. Mesures de Borel et régularité.

DEFINITION II-55 (mesure de Borel). Soit X un espace topologique. La tribu
B(X) engendrée par les ouverts de X est appelée tribu borélienne de X, et les
mesures définies sur cette tribu sont dites mesures de Borel.

La définition suivante est particulierement importante. Elle exprime le fait que
les ensembles boréliens, pour compliqués qu’ils soient, peuvent étre approchés au
sens de la mesure, de l'intérieur par des ensembles “topologiquement petits”.
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DEFINITION I1-56 (régularité). Soit X wun espace topologique et p une mesure
définie sur une tribu A de X contenant la tribu borélienne. On dit que p est réguliére®
si elle vérifie la propriété caractéristique suivante : pour tout ensemble mesurable

AeAona
p[A] = inf {p[O]; O ouvert, A C O}
= sup {u[K]; K compact, K C A}.

La régularité d’'une mesure implique automatiquement que les ensembles mesu-
rables se décomposent en une partie “réguliere” et une partie de mesure nulle, au
sens de la proposition suivante :

PROPOSITION II-57 (mesurabilité, F, et Gs). Soit X un espace topologique et
soit p une mesure régquliere sur X, définie sur une o-algébre A contenant la tribu
borélienne. Alors,

(i) Toute partie A € A (et en particulier tout borélien) de mesure finie peut
s’écrire sous la forme FUN, ou F est une union dénombrable de fermés (un F,) et
N un ensemble mesurable négligeable ;

(i) A peut également s’écrire sous la forme G\ N', oi G est une intersection
dénombrable d’ouverts (un Gs) et N un ensemble mesurable négligeable.

DEMONSTRATION. Par régularité, on peut trouver une suite de compacts K; et
d’ouverts O; tels que K; C A C O; et p[K;] = plE], plO;] — plE]. Quitte a poser
K| = Ky, K = K, UK}, O] = 01, O; = O;_; N Oj, on peut supposer que les
K sont croissants et les O; décroissants. On pose alors F' = UK, et G = NO;. La
conclusion découle de la g-additivité de p. 0

La régularité va souvent de pair avec la propriété suivante :

DEFINITION 1I-58 (finitude sur les compacts). Une mesure de Borel pu sur un
espace topologique X est dite finie sur les compacts® si pour tout compact K de X
on a u|K] < +oo.

EXEMPLE II-59. La mesure de comptage sur R n’est ni finie sur les compacts,
ni réguliere, puisque la mesure de tout segment non trivial, et de tout ouvert non
trivial, est +oo0.

Enfin la régularité est liée de maniere quelque peu subtile a la propriété de o-
additivité, comme le montre I’énoncé suivant (que I'on peut considérer a ce stade
comme une curiosité, mais qui s’averera utile dans le Chapitre ?7?) :

PRrROPOSITION II-60. Soient A et B deux algebres, avec A C B, et u : B — R une
fonction additive d’ensembles, vérifiant la propriété de régularité intérieure partielle

(5) VBeB ulB]= sup{u[K]; K compact, K C B, K € A}.
Alors p est o-additive sur A.

REMARQUE II-61. La Remarque VIII-67 montrera que I’hypothese 5 est cruciale.

2. Cette propriété est parfois appelée du nom de Radon, et le terme “régularité” désigne parfois
la propriété d’approximation par des fermés, plutét que par des compacts [Bogachev].

3. Une mesure de Borel finie sur les compacts est parfois appelée mesure de Radon ; parfois on
impose aussi des propriétés de régularité, au sens indiqué plus loin [Evans-Gariepy].
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PREUVE DE LA PROPOSITION II-60. Soit p vérifiant les hypotheses du théo-
reme. Par aditivité on a, pour toute famille (Ay)ren d’ensembles mesurables disjoints,

ZlngN plAr] < plUkenAg], d’ot

> A <l A

keN keN

Si p n'est pas o-additive, il existe des (Aj)ren disjoints tels que Y, . pu[Ax] <
p|UAg], en d’autres termes on peut trouver § > 0 tel que pour tout N € N,
N

ZM[Ak] < pUkenAg] =0 = Z,u[Ak] +uf U Arl;

k=1 k=1 E>N+1

d’ou plUgsni1A4k] > 0 (ici on utilise le fait que p est & valeurs finies). Posons
Cyp = U1 Ay @ alors (Cy)en est une suite décroissante de compacts d’intersection
vide, et p[Cy] > 0 pour tout /.

Pour chaque ¢ € N, soit K, un compact tel que K, C Cy, K, € A, et u[Co\ K] <
2-+D§ Alors K1N...NK, € Aet

p[Eyn . K] > plC) =) 2706 > 65— 5/2 = 6/2;

en particulier K7 N ... N K, est non vide. Les compacts (K7 N ...N Ky)pen forment
une suite décroissante de compacts non vides, leur intersection est donc non vide,
en contradiction avec le fait que les Cy eux-mémes sont d’intersection vide. 0

11-4.3. Théorémes de régularité automatique. Les espaces polonais d'une
part, les espaces localement compacts d’autre part, jouissent de propriétés bien com-
modes. En particulier, on a le résultat suivant, qui peut paraitre surprenant au
premier abord :

THEOREME I1-62 (Régularité des mesures sur les espaces polonais). Soit X un
espace polonais muni d’une mesure borélienne 1, o-finie. Alors u est automatique-
ment réqulicre, et concentrée sur un ensemble o-compact.

Dans le cas ou pu[X] < 400, la derniére assertion de ce théoréme est connue sous
le nom de lemme d’Ulam. Voici un corollaire immédiat du Théoreme II-62.

COROLLAIRE 1I-63 (Régularité des mesures sur R"). Soit y une mesure de Borel
sur R™, finie sur les compacts; alors p est régquliére.

Avant de démontrer le Théoreme I1-62, mentionnons sans démonstration une va-
riante qui s’applique a des espaces topologiques localement compacts [Rudin, Théo-
reme 2.18], et implique également le Corollaire 11-63.

THEOREME I1-64 (Régularité des mesures dans un espace localement compact).
Soit X un espace séparé localement compact, dans lequel tout ouvert est o-compact,
muni d’une mesure de Borel i, finie sur les compacts. Alors u est automatiquement
réguliere.

REMARQUE I1-65. Il est facile de vérifier que les ouverts de R", ou d’une variété
de dimension finie, sont o-compacts. Par ailleurs, on trouvera dans [Rudin, Cha-
pitre 2, exercice 18] un contre-exemple montrant que la conclusion du Théoreme I1-
64 n’est pas forcément vraie sans 'hypothese quelque peu étrange de o-compacité
des ouverts.
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Voici maintenant une preuve du Théoreme I1-62, inspirée de celle que 1’on trouve
par exemple dans [Dudley, p. 225]. La démonstration utilisera un résultat dont la
preuve se trouve plus loin (Théoréeme I1-77), mais bien sir il n’y a pas de cercle
vicieux !

PREUVE DU THEOREME II-62. 1. Dans le début de cette preuve, on suppose que
p est finie. Soit € > 0, montrons qu’il existe un compact K. tel que p[X \ K.] <e.
De ce résultat il sera facile de déduire (exercice) que p est concentrée sur 1’ensemble
o-compact S := Upen K i

Par hypothese, il existe une suite (z,,),eny dense dans X. En particulier,

X = UnZlB(xny 1),

et donc p]X] = limy, 00 pt[Uk<nB(2g, 1)]. Comme pu[X] < 400, on peut donc trouver
ny tel que

€
M[X \ (UkSmB(Ik‘? 1))] < 5
De méme, pour tout j on peut trouver n; tel que
€
([ X\ (Upn, Bk, 1/4))] < e

Posons

K. = () (Unen, B 177))

j>1
D’une part, K. est totalement borné : en effet, si § > 0 est donné on peut choisir
j>1/§etona

K, C ngnjB<Jfk, 1/]) - ngnjB(l’k,(;).

D’autre part, K. est fermé car intersection de fermés; comme ’espace ambiant X
est complet, il s’ensuit que K. est également complet. Etant complet et totalement
borné, il est compact. Enfin,

p[X \ K. = p[Uj(X \ Upen, B(ax, 1/7))]
U5 (X N\ Up<n; B(xr, 1/5))]
<3 HIX N Uk, Blaw, 1/9))]

j>1

<ez27—5

j>1

IN

2. Montrons maintenant que p est réguliere. Soit A un ensemble mesurable, et
¢ > 0, nous voulons montrer qu’il existe un ouvert O contenant A et un compact K
inclus dans A tels que

plO] =& < plA] < p[K] +e.

On va d’abord supposer que X est compact : il y a alors identité entre compacts
et fermés. Définissons F comme la famille de toutes les parties boréliennes A de X
telles que, pour tout € > 0 on peut trouver un ouvert O contenant A, et un fermé
F' contenu dans A, satisfaisant a

(6) plO] —e < plA] < p[F] +e.
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Clairement, notre but est de montrer que F coincide avec I’ensemble de la tribu des
boréliens. Il est tres facile de montrer que F est stable par passage au complémen-
taire. Il est également stable par union croissante : en effet, si A, est une famille crois-
sante d’éléments de F, et A = UAy, on peut choisir ky tel que pu[Ag,] > u[A] —€/2,
et un compact K contenu dans Ay, tel que p[Ag,] < plK] +¢/2, ce qui impliquera

plA] < plAr] + /2 < plK] + e

On peut également, pour tout k£ € N, introduire un ouvert O, contenant Ay, tel que
plOx] < plAg] +e27%; alors O = UO,, vérifie A C O et O\ A C U(Oy \ A), donc

plO\ A 3252_k:5.

keN

3. Si I'on montre que F contient tous les ensembles ouverts, le Lemme de Classe
monotone (Théoréme II-77, démontré plus loin) impliquera que F est la tribu boré-
lienne tout entiére. Si A est ouvert, I'inégalité de gauche dans (6) est trivialement
vérifiée par O = A ; pour montrer I'inégalité de droite, il suffit de prouver 'existence
d’une famille croissante d’ensembles fermés Fy inclus dans A tels que u[F)] — p[A].
Introduisons, pour k € N,

Fp = {m e A; d(z, X\ A) > 1/k}.

Soit x € A; comme A est ouvert, on peut inclure dans A une boule ouverte centrée
en x, et donc = est a une distance positive de X \ A. Le point = appartient donc
a Fy pour k assez grand, on conclut que 'union des Fj, est A tout entier. Les F}
formant une famille croissante, on a donc pu[Fy] — p[A]. Or chaque Fj, est fermé,
puisque image réciproque de 'intervalle fermé [1/k, +oo[ par I'application continue
(et méme 1-lipschitzienne) x — d(x, A).

4. Eliminons maintenant ’hypothése de compacité de X. Soient A mesurable
et ¢ > 0. Comme g est concentrée sur un ensemble o-compact, on peut trouver
un compact X’ C X tel que u[X \ X'] < e/2. L'espace X' est métrique, séparable
et complet, il est en outre compact, on sait donc que la restriction de p a X' est
réguliere. Il existe donc un ouvert O’ de X', contenant A’ = X' N A, et un compact
K’ de X', contenu dans A’, tels que

plO] —e/2 < plA] < plK'+¢/2.

Comme intersection de compacts, K’ est automatiquement compact. Par ailleurs,
on peut écrire O’ = X’ N O pour un certain ouvert O contenant A. Mais alors,

plO] < plOT+ pl X\ XT < plOT+¢/2 < p[AT+e < plA] +¢,
et
plA] < plA]+ p[X N\ X < p[A] +¢/2 < plK'] +-¢.
On en déduit que p est bien réguliere.

5. Eliminons finalement I'hypothése de finitude de p. Par hypothese, il existe
une famille (X,,),>; de parties de X de mesure finie, dont l'union est X entier. Sans
perte de généralité, on peut supposer que X,, est une famille croissante. Définissons
une famille de mesures u,, par

pn[A] = p[AN X,
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Il est clair que u, est finie; d’apres le morceau de démonstration déja effectué, elle
est donc concentrée sur un ensemble o-compact S,. Par conséquent, u est concen-
trée sur I'union des S,,, qui est une union dénombrable d'unions dénombrables de
compacts ; et donc une union dénombrable de compacts. On vérifie enfin la propriété
de régularité. Soit A un ensemble mesurable de X, et soit € > 0. Pour tout n, on
peut trouver un compact K, et un ouvert O, tels que

K,CcANX, CO,,

avec ulO\ (AN X,)] <e27"; et pu[(ANX,)\ K] <¢/2. On pose O = UQ,, : alors
O est un ouvert contenant U(AN X,,) = A, et

PlON\ Al = p[(U0) \ (UANX))] < Y pl0a\(ANX,)] <} 27 =

Pour 'autre sens, distinguons deux cas. Si u[A] = +o0, alors pu[A N X,,| = 400, et
I'inégalité pu[K,] > u[AN X, — ¢ implique u[K,] — oco. Si en revanche p[A] < +o0,
alors on peut trouver N € N tel que
€
pANXx] > pA] - =
Il s’ensuivra c
PEN] 2 AN Xy] = 5 2 plA] -«

Dans tous les cas, on a bien p[A] = sup{u[K]}, ou K décrit I'ensemble des compacts
inclus dans A. Ceci acheve de prouver la régularité. U

IT-5. Concentration

Une mesure borélienne p sur un espace mesuré X peut étre concentrée sur un
petit sous-ensemble de X, ou au contraire “voir tout X”. La puissante théorie de la
“concentration de la mesure” étudie et quantifie cela pour bon nombre de mesures
apparaissant dans des problemes variés de géométrie, statistique ou physique. Ici
nous allons simplement passer en revue quelques notions de base sur le support et
la diffusivité (le caractere diffus) d’une mesure.

I1-5.1. Support. Le support est le plus petit fermé sur lequel u est concentrée.

THEOREME I1-66 (support). Soit X un espace topologique séparé et u une me-
sure borélienne réguliere sur X. On peut alors définir le support de p comme le
complémentaire du plus grand ouvert sur lequel i est identiquement nulle.

En combinant ce théoreme avec les théoremes de régularité automatique I1-62 et
[1-64, on obtient le

COROLLAIRE II-67. Si p est une mesure de Borel sur un espace topologique X,
et que

- soit X est polonais et ju est o-finie,

- soit X est séparé, localement compact et tous les ouverts y sont o-compacts, et
[ est finie sur les compacts,
alors on peut définir le support de pu.

REMARQUE II-68. On pourra comparer la notion de support d’une mesure a
celle de support d’une fonction continue a valeurs réelles, que I'on définit comme le
plus petit fermé en-dehors duquel f est identiquement nulle. Si f est une mesure a
densité continue (Exemple (iv) dans la section I1-2), les deux notions coincident.
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DEMONSTRATION DU THEOREME I1-66. Soit €2 la réunion de tous les ouverts
w C X tels que pfw] = 0. Par construction 2 contient tout ouvert ou p s’annule;
le but est de montrer que p[2] = 0, et bien siir cela n’est pas évident car c¢’est une
union a priori non dénombrable.

Supposons que u[€2] soit strictement positif; par régularité il existe alors un
compact K C Q tel que pu[K] > 0. Pour tout z € K il existe un ouvert w = w,

contenant x, tel que pfw,| = 0. Par compacité on peut trouver J € Net xq,...,2; €
K tels que K C U{w,;; 1 < j < J} Alors p[K] < )7 plw,,] = 0, ce qui est en
contradiction avec I'hypothese. On conclut effectivement que p[2] = 0. O

REMARQUE II-69. Dans le cas polonais, au lieu d’obtenir le corollaire II-67 en
combinant les théoremes I1-66 et 11-62), on peut aussi raisonner directement en no-
tant qu'un espace polonais admet une base B dénombrable d’ouverts (comme dans
le Théoreme 11-39). Le support de p peut alors étre construit comme le complé-
mentaire de 'union (forcément dénombrable) de tous les ouverts w de B tels que

plw] = 0.
Faisons enfin le lien avec la notion d’atome :

PROPOSITION II-70 (une mesure insécable est un atome). (i) Soit (X, A, u) un
espace séparé mesuré, tel que u[X| > 0 et tel qu’on ne peut séparer X en ensembles
mesurables disjoints X, et Xo de mesure positive. Alors i est un atome : u = md,
pour un certain x € X et m > 0 (éventuellement m = 00).

(ii) Plus généralement, si [’on ne peut pas trowver plus de K parties mesurables
disjointes de mesures positives, alors p est une combinaison de mesures de Dirac
placées en K points : |1 = Zfil M0y, .

PREUVE DE LA PROPOSITION II-70. Démontrons (i). Si Spt u est un singleton
{z}, alors p est de la forme md, ; sinon on peut trouver x; et xs distincts dans Spt p ;
alors si By et By sont deux boules disjointes centrées en x; et x5 respectivement, on
a u[Bi] > 0 et u[Bs] > 0, donc on sépare X en deux parties disjointes de masses
positives via X; = By et Xo = X \ Xj.

La preuve de (ii) suit le méme raisonnement. O

11-5.2. Diffusivité. Comment traduire I'idée qu'une mesure sur un espace X
est “diffuse”, “bien répartie”, qu’elle “charge tout ’espace” ? Plusieurs notions co-
existent, les plus simples sont les suivantes.

e On dit que 4 est sans atomes si il n’existe aucun x tel que p[{z}] > 0.

e On dit que u est de plein support si son support est égal a X tout entier.

e On dit que i est doublante sur les boules si sa restriction a chaque boule
B(zg, R) est doublante (avec une constante de doublement C' = C(R, zy)), au sens
de la définition suivante.

DEFINITION II-71 (doublement). Soient (X,d) un espace métrique muni de sa
tribu borélienne, et p une mesure de Borel sur X. Soit C' > 0 une constante ; on dit
que (o est C-doublante si, pour tout x € X etr >0 on a

p[Bar(2)] < C p[B(2)].

On dit que pu est doublante si elle est C'-doublante pour un C' > 0.
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REMARQUE II-72. Il est équivalent de définir ce concept en termes de boules
ouvertes ou de boules fermées. En effet, par o-additivité,

plBr(x)] = lim plBp-y(@)],  p[By(x)] = lim u[Byyp-1(2)].

EXEMPLES II-73. On verra plus tard que la mesure de Lebesgue en dimension n
est 2"-doublante. La mesure de volume sur une variété riemannienne compacte est
également doublante. La mesure de volume sur une variété riemannienne complete
non bornée n’est pas forcément doublante, mais elle est doublante sur les boules.
La mesure ) .y, sur N (ou R) n’est pas doublante, ni doublante sur les boules :
par exemple, la boule By /5(1/2) a pour masse 0, alors que la boule B;(1/2) a pour
masse 2.

De ces différentes notions, celle de doublement est la plus précise :

THEOREME II-74. Soit u une mesure régulicre doublante sur les boules d’un
espace métrique (X, d), et non identiquement égale a 0 ou +oo. Alors

- pour tout x € X etr >0 on a0 < u[B.(r)] < +o0;

- est de plein support;

- la mesure p ne peut avoir d’atome en dehors des points isolés de X.

DEMONSTRATION. 11 suffit de montrer ces propriétés pour la boule B(xg, R),
avec R arbitrairement grand. On peut donc supposer que u est C'-doublante pour
un certain C' > 0. Supposons d’abord qu’il existe = € X et r > 0 avec u[B,(x)] = 0.
Alors u[By,(x)] < CulB,(z)] = 0. Par récurrence, p[Bor,.(z)] = 0 pour tout k.
Puisque X est I'union croissante des boules Byk,.(z), u[X] = 0 par o-additivité, ce
qui est contraire a I'hypothese. On conclut que p[B,(z)] > 0.

Puisque p n’est pas identiquement 400, il existe au moins un zy € X tel que
p[{xo}] < +oo. Par régularité, il existe un ouvert contenant z, dont la mesure soit
finie, et donc une boule B, (o) dont la mesure soit finie. Par le méme raisonnement
que ci-dessus, toutes les boules By, () sont de mesure finie. Si z € X et r > 0
sont données, on peut toujours trouver k tel que B, (z) C Bax,,(x0), ce qui implique
que B,(x) est aussi de mesure finie.

Soit maintenant = € X, qui ne soit pas un point isolé ; montrons que p[{z}] = 0.
Supposons par l'absurde que p[{z}] = a > 0, et soit § > 0, a choisir plus tard. Par
régularité on peut trouver € > 0 tel que u|[B:(z)] < a+ 6. Comme x n’est pas isolé,
la boule B.»(x) ne se réduit pas a x; soit donc y # x tel que d(z,y) < €/2. On
pose r := d(x,y). La boule B,(y) est tout entiére contenue dans B.(z) (pour tout
2z € B.(y)onad(x,z) <d(z,y)+d(y,z) <r+r <e). Comme par ailleurs B,(y) ne
contient pas x, on a

a+pu[B(y)] = p[{z}] + p[Br(y)] = pl{z} U B.(y)] < p[B.(y)] < a+4.
d

On en déduit que u[B,(y)] < 0. D’autre part, x € Ba.(y), d’ou p[Ba-(y)] > «. La
mesure p étant C-doublante, on a

a < p[Bay(y)] < CulB,(y)] < C4.
On obtient une contradiction en choisissant § = a/(2C'). O
I1-6. Prolongement de mesures

Comme on I’a déja dit, on veut souvent définir a priori la valeur d’une mesure sur
une certaine classe d’ensembles : par exemple, les pavés dans R? ou RY. En général,
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il n’est pas évident que I'on puisse le faire, c’est-a-dire qu’il existe une mesure qui
attribue des valeurs spécifiées a priori sur certains ensembles. Un tel résultat est
appelé théoréme de prolongement (ou d’extension).

Le théoreme de prolongement le plus célebre et le plus utile a été démontré
vers 1914 par Carathéodory, qui a cette occasion a développé le concept important
de mesure extérieure?, ou mesure de Carathéodory.

Ce théoreme subtil commence par utiliser un outil simple et tres efficace pour
montrer que deux mesures coincident sur une tribu entiere, ou plus généralement
qu’une propriété est vraie pour toute une tribu. C’est le lemme de classe mono-
tone (déja utilisé dans la preuve du Théoreme 11-62).

II-6.1. Lemme de classe monotone.

DEFINITION I1-75 (classe monotone). On appelle classe monotone une famille C
de parties d’un ensemble X, stable par limite croissante et par différence :

Wk €N, Ay €C, A, C Ap] = | JArec,

keN
[A,BeC, AC Bl= B\ AeC.

REMARQUE II-76. Noter que dans cette définition on a imposé B\ A € C seule-
ment dans le cas ou A C B.

Bien siir, une o-algebre est une classe monotone ; et réciproquement, il ne manque
pas grand chose a une classe monotone pour étre une o-algebre : seulement la stabilité
par intersection, et la condition de contenir X . L’énoncé suivant fournit une condition
suffisante pour qu’il y ait identité.

THEOREME II-77 (Lemme de classe monotone). Soit F une famille de parties
d’un ensemble X, stable par intersection finie. Soit C = CM(F) la plus petite classe
monotone contenant F ; on suppose que X € C. Alors C coincide avec la tribu o(F)
engendrée par F.

DEMONSTRATION. Il suffit bien sfir de vérifier que C est une tribu : en effet,
toute tribu contenant F doit forcément contenir C.

Notre but est donc de vérifier que pour tout A et B dans C, on a ANB € C;
cette propriété, combinée aux axiomes de classe monotone, garantira que C est une
tribu. Cependant ce résultat de stabilité par intersection semble a priori délicat car
nous n’avons aucun moyen de décrire C; nous allons contourner cette difficulté en
utilisant un raisonnement classique.

Soit d’abord A € F, et
Ca={BeC; AnBeC}.

Par hypothese, C4 contient F. D’autre part, on vérifie aisément que C4 est stable par
différence et limite croissante; il s’ensuit que c’est une classe monotone contenant
F, et c’est donc C tout entiere. On a donc démontré que pour tout A € F, et B € C,
ona ANB eC.

Maintenant, pour A € C, on définit a nouveau

Ci={BeC ANBeC).

4. que certains auteurs appellent tout simplement “mesure” [Evans-Gariepy]
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La premiere étape nous montre que C4 contient F. On conclut comme précédemment
que C4 =C. O

Le lemme de classe monotone est un outil d’usage universel en théorie de la
mesure, car ses hypotheses s’accordent bien avec la propriété de o-additivité des
mesures (finies). En effet, si 1 est une mesure, en général on ne sait pas en général
calculer u[A N BJ, ou pu[A U BJ, en fonction de u[A] et u[B]; mais si A C B on sait
que pu[B\ A] = u[B] — pu[A]. De méme, en général on ne sait pas calculer u[UAx] en
fonction des p[Ax]; mais si la suite (Ay) est croissante, alors p[UA,] = lim p[Ay].

I1-6.2. Théoréme de prolongement de Carathéodory. Soient A une al-
gebre de parties de X, et p une fonction additive sur A, i.e. une fonction positive
vérifiant 'axiome d’additivité u[AU B] = p|A]+ p[B] pour A et B disjoints. Peut-on
étendre p en une mesure o-additive sur la o-algebre engendrée par A 7?7

Pour cela il faut bien stir que u soit o-additive sur A lui-méme : supposant qu'un
élément A de A s’écrive comme union disjointe d’élements Ay de A (par exemple,
un rectangle dans R? peut s’écrire comme une union dénombrable de rectangles
disjoints, d’une infinité de manieres différentes), on doit avoir

plA] = 3 A

Le théoreme suivant dit que cette condition nécessaire est également suffisante,
pourvu qu’on lui adjoigne une autre condition de o-finitude.

THEOREME II-78 (théoréme de prolongement de Carathéodory). Soient X un
ensemble, A une algebre de parties de X, et u une fonction positive sur A, telle que

(a) p est o-additive sur A;

(b) X peut s’écrire comme union dénombrable de A, € A avec p[Ax] < +oc.
Alors il existe un unique prolongement de p en une mesure (o-additive) définie sur
la o-algébre o(A).

REMARQUE II-79. La propriété de o-additivité sur A n’est pas forcément évi-
dente a vérifier. Si p[X] < 400, elle est équivalente a la condition suivante, parfois
plus commode : pour toute suite décroissante (Ay)reny d’éléments de A,

(NA, =0) = kh—g;lo ulAg] = 0.

Si p[X] = +o0, il existe aussi une reformulation analogue, mais elle est un petit
peu plus délicate. Par hypothese, X est union croissante de parties X appartenant
a A, de mesure finie. Soit B un élément de A de mesure infinie, on peut écrire B
comme 'union croissante des p[BN Xk], et une condition nécessaire a la o-additivité
sur A est limy oo u[B N Xi] = p[B] = +o0. 1l est en fait assez facile de montrer
que I'hypothese de o-additivité sur A est équivalente a la conjonction des deux
hypotheses suivantes :

(i) pour toute suite décroissante (Ay)reny d’éléments de A,
(1[Ag] < +oo et NA, =0) = klim p[Ag] = 0;
—00
(ii) pour tout B € A tel que pu[B] = 400, on a
lim p[B N Xy = +o0.

k—o00
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REMARQUE II-80. On peut faire ’analogie avec le célebre théoreme de prolonge-
ment unique des fonctions continues. Ce théoréme énonce que si f est une fonction
uniformément continue, définie sur une partie quelconque E d’un espace complet Y,
alors f se prolonge de facon unique en une fonction continue sur E. En théorie de
la mesure, ce qui joue le role de f c’est la fonction d’ensemble, ce qui joue le role
de E c’est la famille F, et ce qui joue le role de E c’est o(F). Montrer 1'unicité est
facile, c’est juste un passage a la limite dans le cas topologique, et une application
du lemme de classe monotone dans le cas de la théorie de la mesure. Montrer 1’exis-
tence est plus délicat, et requiert I'uniforme continuité dans le cas topologique, et
un raisonnement bien plus complexe pour la théorie de la mesure.

REMARQUE II-81. Le théoreme de Carathéodory, ou ses variantes, est le coeur de
toute la théorie de Lebesgue. En général, quand on doit construire une mesure, on ne
sait I’évaluer que sur certaines parties simples : ainsi pour calculer 'aire d’une figure
dans le plan on cherche a I'approcher par une union de rectangles disjoints, dont
on sait calculer ’aire. On veut ainsi passer a la limite dans le calcul de I'aire d’une
union finie de rectangles. Mais comment montrer que ce calcul converge? et qu’il
converge quelle que soit le procédé d’approximation ? Le théoreme de prolongement,
en passant de la mesure définie sur I’algebre des unions finies de pavés, a la o-algebre
de toutes les limites d'unions finies de pavés, garantira la convergence et 1'unicité
de la limite. De la méme facon que si une fonction F' dans un espace métrique est
continue mais qu’on ne sait la calculer que sur une partie dense, disons D, on pourra
toujours poser F'(x) = lim F(x,), on z, € D et x,, — x, et la valeur sera bien définie
et indépendante de la suite x,, choisie.

On peut trouver des preuves du Théoreme II-78 dans diverses sources, par
exemple [Bony, section 1.6], Gramain, section VI.1] ou [Dudley, Théoréme 3.1.4].
Mais je vais plutot adapter ces preuves pour démontrer un énoncé plus général,
qui contient le Théoreme I1-78 comme cas particulier. L’intérét propre de 1’énoncé
généralisé apparaitra par la suite.

THEOREME I1-82 (théoréme de Carathéodory généralisé). Soient X un ensemble,
et F une famille de parties de X, stable par intersection finie. Soit v une fonction
définie sur F, a valeurs dans [0, +oo]. Alors

(i) St X est union dénombrable d’une famille croissante d’éléments Xy, de F tels
que p[Xyg] < 400, alors il existe au plus un prolongement de p en une mesure sur

o(F);
(ii) Soit p* le prolongement de p défini ainsi : pour toute partie A de X,

(7) WAl = inf{Zu[Ak]; A e F; ACUAk}.
k=1
On suppose que
(8) VA,BeF, plANB]+ p'[A\ B] = p[A].
Alors p* définit sur o(F) une mesure qui prolonge . En outre, cette mesure est
o-additive sur la o-algébre M, contenant o(F), définie par
(9) M:={ACX;VBCX, p'[BNAl+u'[B\ A =pB]}.
Les éléments de M sont dits pi-mesurables; la tribu M, munie de p*, est automati-
quement complete.
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(iii) On suppose maintenant que non seulement F est stable par intersection
finie, mais qu’en outre le complémentaire de tout élément de F peut s’écrire
comme une union finie disjointe d’éléments de F. Alors la condition (8)
est satisfaite si et seulement st p est o-additive sur F ; i.e. pour toute famille
dénombrable (A, )nen d’éléments disjoints de F tels que UA,, appartient a F, on a

N[U An] = ZM[An]~

neN neN

En particulier, p admet un prolongement o-additif 4 o(F) si et seulement si j est
o-additive sur F.

DEFINITION 11-83 (mesure extérieure). La fonction p* apparaissant dans (7) est
appelée mesure extérieure associée a p (et d la famille F ).

REMARQUES 11-84. (i) Bien noter que p*[A] est définie pour toute partie
A de X. Ce n’est pas a priori une mesure; en revanche elle est croissante,
et vérifie 'axiome de sous-additivité dénombrable : pour toute famille
dénombrable (Ag)ren de parties de X,

w A <7 A

keN keN

Noter que dans cette définition il est inutile de supposer les A; disjoints. Par
extension, on appelle mesure extérieure n’importe quelle application définie
sur l'ensemble des parties d’un ensemble, a valeurs dans [0, +o0], qui soit
croissante, attribue la valeur 0 a ’ensemble vide, et vérifie I'axiome de sous-
additivité dénombrable.

(ii) Il est crucial, dans la définition de la mesure extérieure, d’autoriser une union
dénombrable et pas seulement une union finie de Aj. Pour s’en convaincre,
on peut penser au cas de la mesure de Lebesgue sur l'intervalle [0, 1], que 'on
peut construire a partir de la mesure extérieure associée a ’ensemble F des
sous-intervalles de [0, 1], et & la fonction p="longueur”. En effet, si I’on cherche
a recouvrir QNJ0, 1] par une famille finie d’intervalles, la somme des longueurs
de ces intervalles est forcément supérieure ou égale a 1. En revanche, pour
tout € on peut recouvrir QN [0, 1] par une famille dénombrable d’intervalles
dont la somme des longueurs est plus petite que ¢.

(iii) L'intuition est la suivante : la mesure extérieure cherche a mesurer un en-
semble A en 'approchant “par I'extérieur”, et en se ramenant a la famille de
référence F. Si la frontiere de A n’est pas trop affreuse, on devrait retom-
ber sur la valeur attendue pour p[A]. En outre, si B est un autre ensemble
quelconque, mesurable ou pas, la mesure p*[B] ne devrait pas changer si
I'on coupe B selon BN A et B\ A. (B n’est pas forcément mesurable, mais
comme A l'est, découper B selon A, en plus des autres découpages envisagés,
ne perturbera pas 1'évaluation de la mesure extérieure de B.)

IMAGE

(iv) Dans le cas ou X est de masse totale finie (u[X] < +00), on pourrait se
contenter de définir les parties mesurables A (la tribu M) par I'égalité

WLA] + X0\ A] = plx].
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Ainsi, intuitivement, une partie A de X est uy-mesurable si I'on parvient a I’ap-
procher extérieurement, au sens de la mesure p, par des unions d’éléments de
F, 'approximation étant suffisamment précise pour que la mesure extérieure
ne comptabilise aucune masse appartenant a X \ A. Lebesgue utilisait déja
cette construction.

Voici maintenant quelques remarques sur 1’énoncé du Théoreme I1-82, qui est le
coeur méme de la théorie de Lebesgue.

REMARQUES II-85. (i) Sans I’hypothese de “o-finitude” faite en (i) au Théo-
reme I1-82, il n’y a pas forcément unicité du prolongement. Quand elle pro-
longe effectivement p, la mesure extérieure est alors le plus grand prolonge-
ment possible [Gramain, p. 116].

(ii) Une partie F qui vérifie les hypotheses de la partie (iii) du Théoreme II-
82, a savoir : F est stable par intersection binaire; et le complémentaire de
tout élément de F est réunion d’un nombre fini d’éléments disjoints de F;
est parfois appelé une semi-algeébre. Une algebre étant un cas particulier de
semi-algebre, la conclusion de ce théoreme implique bien siir celle du Théo-
reme [I-78.

DEMONSTRATION DU THEOREME II-82. Si la preuve de la partie (ii) est sub-
tile, la partie (i) en revanche est une application simple du Lemme de classe mono-
tone.

Commengons par démontrer (i) sous I'hypothése pu[X] < +oo. Le Lemme de
classe monotone (Théoreme II-77) s’applique puisque X est par hypothese limite
croissante d’éléments de F. Donc la g-algebre o(F) n’est autre que la classe mono-
tone C engendrée par F. Soient u et i deux prolongements possibles. On pose

B={CeC; ulA] = nl[Al}.

Par hypothese, B contient F. Comme pu et 1 sont compatibles avec les opérations
de limite croissante et de soustraction, au sens ou

(10) A C B= pu[B\ A] = u[B] — ulA], etc.,

on voit que B est une classe monotone. Il s’ensuit que B = C, ce qui conclut la preuve
de (i). Notons que I'hypothese de finitude a été utilisée implicitement quand nous
avons écrit (10), qui n’aurait guere de sens si p|B] = u[A] = +o0.

Passons maintenant a la démonstration de (i) dans le cas général. Soient u et 11
deux prolongements possibles ; par le raisonnement précédent on sait que u[XyNA] =
f[XxNA] pour tout A mesurable. La famille (X}) étant croissante, la famille (X;NA)
I’est aussi, et son union est X N A = A. Par o-additivité, on peut passer a la limite
quand k£ — oo et obtenir u[A] = [A], ce qui conclut la preuve de (i).

Attelons-nous maintenant a la démonstration de (ii). Comme dans ’énoncé, on
définit
M:={ACX;VBCX, p'[BNAl+u[B\ A =upB]}.
Montrons que M est une o-algebre, et ©* une mesure sur M ; cette g-algebre

est en outre complete. Cet énoncé est indépendant de I'hypothese (8). On divise la
preuve en sept étapes.
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L. p* est croissante. En effet, si A’ C A, I'infimum qui définit p*[A’] est pris sur
une classe de familles de parties plus vaste que celui qui définit p*[A].

2. u* est dénombrablement sous-additive. En d’autres termes, si (Ag)ren €st une
famille de parties de X, on a

LA <Y A

Si p*[Ag] = 400 pour un certain Ay, alors bien sir il n’y a rien a démontrer. Dans
le cas contraire, par définition de la borne inférieure, pour tout £ on peut trouver
une famille (Fj;);en d’éléments de F tels que

Ax CUF, Y ulFa] < pi[Ax] +e27F,
J

ou € > 0 est arbitrairement petit. En particulier,

(UAg) C Uij’ ZM[ij] <Y A Fe

Il s’ensuit que p*[UAg] < > u*[Ax] + €, et on obtient la conclusion souhaitée en
faisant tendre € vers 0.
Notons en particulier que pour toutes parties A et B de X,

pBl < p BN A+ i [B\ Al
Pour prouver I'appartenance d’une partie A a M, il suffit donc d’établir I'inégalité
inverse.

3. M est une algébre. D’une part, il est clair que () appartient & M ; et il est
évident que M est stable par passage au complémentaire. Il suffit donc de vérifier
que M est stable par intersection. Soient A; et Ay deux éléments de M, et soit B
une partie quelconque de X. Notre but est de montrer que

P BN (AN A+ p B\ (AN Ay)] < p*[B].

Pour cela, on note que B\ (41 N Ay) = (BN A;) \ A) U (B \ 4;), d’ou, par
sous-additivité,

P BN\ (AN Ag)] < pi[((B N A1)\ Ag)] 4 17 [B\ Adl.
En combinant cette inégalité avec 'appartenance de A; et de Ay a M, on obtient
p[BNAIN A+ p*[B\ (A1NAg)] < ' [(BNA) N As]+p*[(BN A1)\ Ao] 4+ 1 [ B\ A4
= W[BNA]+ ' [B\ A] = p'[B],

ce qui conclut 'argument.

4. u* est additive sur M. En effet, considérons A et B deux éléments disjoints
de M ; puisque B € M, on a

plAUB] = [(AUB) N Al + p*[(AU B) \ A] = p[A] + p*[B],

ce qui prouve 'additivité de p*.
Par ailleurs, si A; et Ay sont deux éléments disjoints de M, alors pour toute
partie B de X,

' [BN(A1UAR)] = p*[(BN(A1UA)NA " [(BN(A1UA) \AL] = p [BNALJ+p" [ BNA];
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par récurrence on obtient que si on se donne des éléments A; de M, disjoints et en
nombre fini, alors, pour toute partie B de X on a

pBN(UAR)] =) i (BN Al

5. M est une o-algébre. Pour montrer cela, il nous suffit de vérifier que pour
toute famille dénombrable de parties A, disjointes, éléments de M, et pour toute
partie B de X,

pB 0 (UAR)] + p*[B\ (UAR)] < p*[B].

Posons A" = U}_, Ag, A® = U Ai. D’apres l'identité établie a I'étape 4, et la
croissance de p*, on sait que pour tout n,

WB = W [BOA+ @ [B\ A" 2 Y @' [BOA] + w'[B\ A~].

En passant a la limite n — oo, et en utilisant la sous-additivité, on trouve

pBl =Y p BN A+ p[B\ A
> W[BNA®] + ' [B\ A% > p*[B].

Les trois membres de I'inégalité sont donc égaux, ce qui prouve que A>* € M. En
particulier,

pBOAT] + pi[B\ A% = p[B].

6. u* est o-additive sur M. Pour s’en convaincre, il suffit de poser B = X dans
I’égalité précédente.

7. (X, M, 1*) est un espace complet. Soit A € M avec p*[A] = 0; en particulier,
pour tout B C X on a p*[B \ A] = p*[B]. Soient A’ C A et B C X, alors p*[A'N
Bl < p'[A] = 0, et p*[B] = p*[B\ A] = p*[B\ A] = p*[B]. On conclut que
p[B\ A’ = p*[B], et u*[A'] =0, donc A’ est p-mesurable.

Récapitulons : nous avons défini une o-algebre M et une mesure p* sur M.
Pour conclure la preuve de (ii), il nous suffit de prouver que M contient F (ce
qui impliquera que o(F) C M), et que p* coincide avec p sur F. Clest ici que
I'hypothese (8) va intervenir.

Posons B = () dans (8), on trouve p*[A] = u[A] pour tout A € F, ce qui montre
que la restriction de p* a F est bien p.

Soient maintenant A € F, et B C X. Soit (Ay) une famille d’éléments de F
recouvrant B; la famille (A; N A) recouvre alors BN A, et tous ses éléments appar-
tiennent a JF grace a la propriété de stabilité par intersection finie. En appliquant
successivement la définition de p*, sa sous-additivité et ’hypothese (8), on trouve

W (BNA + @ [B\A <Y pulA N A+ B\ A

<Y (A A+ A A]) = Al

k
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En prenant la borne inférieure sur tous les recouvrements (Ay) admissibles, on par-
vient a

W B OA (B A < ' [Bl;
I'inégalité réciproque est toujours vérifiée, il y a donc égalité, ce qui signifie que
A € M. La preuve est complete.

Passons enfin a la partie (iii) du Théoreme II-82. Si le critere (8) est vérifié,
alors p se prolonge en une mesure o-additive p*, et en particulier elle est o-additive
sur F; c’est bien siir la réciproque qui est délicate. On va donc supposer que p est
o-additive sur F et établir (8). On procede en trois étapes.

1. p est croissante sur F. Soient A et B deux éléments de F avec A C B. Par
hypothese on peut écrire X \ A = UC}, ou les C; sont des éléments de F, disjoints;
alors

B=AU(B\A)=Aul JLAnCy),
J

ol le membre de droite est une union d’éléments disjoints de F; par additivité de p
on a

pulB) = plA]+ > plANCy] > plA],

J
ce qui prouve que p est bien croissante.
2. p coincide avec p* sur F. D’apres la définition de p*, on a toujours p*[A] <

p[A] pour tout A € F. D’autre part, soit A € F et soit (A, )neny un recouvrement
arbitraire de A par des éléments de F, c’est-a-dire A C UA,,. On pose

A=A, A=A\ A, Ay=A3\(AlUA), Ap= A\ (AlUA UA;),  ete

Vérifions que chacun des A’ peut s’écrire comme une union finie de parties
disjointes appartenant a F. En effet, par hypothese, pour chaque j on peut
trouver des parties disjointes B;;., 1 <i; < NN;, appartenant a F, telles que

A=A N (XN AN (X \ Ay N n(X\ Aj)

N1 N2 N]*l
= A (U Bui)n (U Bew) o0 (Y Bioas, )
i9=1

i1=1 ijo1=1

= U 4nBun...nB__,.
1155051
Pour chaque j, les B;; sont disjoints; cela entraine que pour deux choix différents
du multi-indice (71, ...,4;), les parties ANA;N By, N...NBj_1;,_, correspondantes
sont disjointes. Pour chaque j donné, la réunion de toutes ces parties constitue A;, et
par construction les A’ sont deux a deux disjoints. On conclut que toutes les parties

Aj N B17i1 N...N Bj_Lij—I’

que l'on renumérote Cjj, (1 < k < M;) sont disjointes. Par construction, leur union
est égale a UA,, ; et grace a la stabilité de F par intersection finie, toutes ces parties
sont des éléments de F. En outre, pour tout 5 on a

Aj = U Ajﬁogk;

1<e<j, 1<k<M,
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d’ou, par o-additivité de u sur F,
plA) = > ulA;NCul,
1<0<j, 1<k<M,
et en particulier (en ne conservant que les termes en ¢ = j) on a
> ulCi] < ulAy).
1<k<M;

En sommant sur tous les indices 7, on obtient
D ulCi) < Ay,
gk J

puis, comme p est croissante,

ZM[A NCji] < ZM[AJ']-

Les parties ANCY;, sont deux a deux disjointes, appartiennent a F, et leur union est
AN (UA,) = A. Par g-additivité, le membre de gauche de I'égalité précédente est
donc p[A]. En conclusion, on a montré que pour tout recouvrement arbitraire de A
par une famille (A;) d’éléments de F, on avait

ulA] < pulAy].
jEN
Par définition de p*, on a donc p[A] < p*[A], ce qui achéve de prouver que u et p*
coincident sur F.

3. L’égalité (8) est satisfaite. Puisque u* est sous-additive, un corollaire de I’étape
précédente est

plAl < plAN Bl + AN\ B,

pour toutes parties A et B dans F. Pour prouver la validité de (8), il suffit d’établir
I'inégalité inverse. Pour cela, on remarque que A\ B = AN (X \ B) est 'intersection
de A avec une union finie disjointe d’éléments de F ; et peut donc s’écrire comme
une union finie disjointe d’éléments D;, de F. Alors

PAN B+ [UDy) < p[AN B+ > p*[Di] = u[AN B+ > p[Dy.

Mais AN B et les Dy, sont des parties disjointes dont la réunion est A ; toujours par
additivité de p, la derniere somme est donc égale a pu[A]. On conclut que

plAN Bl + @A\ B < plA],
ce qui conclut la preuve de (8) et du Théoreme I1-82. O

EXERCICE II-86. Adapter, en la simplifiant, la preuve du Théoréme II-82 pour
démontrer directement le cas particulier du Théoreme I11-78.

Je vais présenter des a présent deux applications importantes du Théoreme de
prolongement de Carathéodory. Dans 'immeédiat, je n’en fournirai donnera que des
preuves partielles; les preuves completes viendront plus tard dans le cours.



MESURES 69

I1-6.3. Produits infinis. Le théoreme suivant permet de construire des me-
sures sur des produits infinis :

THEOREME II-87 (produit infini de probabilités). Soit (X, i )ken une famille
dénombrable d’espaces de probabilités. Pour tout m et toute famille Ay, ..., A,
de parties mesurables de Xy, ..., X,, respectivement, on pose

C(Ar,.. . Ap) = A1 x . x A x [ X
k=m-+1

On définit alors
p@(C(Ar, . Al = T ] sl Ax]-
k=1

Cette fonction u™ se prolonge en une unique mesure de probabilité sur le produit
infini [] Ag, muni de la tribu engendrée par les cylindres C(Ay, ..., Ay), m € N.

REMARQUE II-88. Ce théoreéme peut se généraliser de diverses manieres, mais la
conclusion est en général fausse si I'on n’impose pas de restriction sur les quantités

f[ X

Dans le cas ot les X}, sont des ensembles finis (au sens de : ensembles de cardinal
fini, et pas : ensembles de mesure finie), la démonstration du Théoréme I1-87 est tres
simple et je vais la présenter tout de suite. Le cas général [Dudley, p. 257-259] est
plus subtil, et nécessitera d’étre plus aguerri : Cf. Théoreme IV-104 au Chapitre IV.

DEMONSTRATION DU THEOREME II-87 POUR DES ESPACES DE CARDINAL FINI.
Sans perte de généralité, on suppose que

Ny, N
Xe={0,..,Ne}; =) afds Y aj=1,
/=1 (=1

et chaque X}, est muni de la tribu triviale P(X}). Les cylindres sont de la forme
C'=A; XAy x ... X Ap X Xp11 X Xpyo X ... ; on définit alors p>*[C] = H?:1 [ Ag].
Il est facile de vérifier que les cylindres forment une algebre, et que la fonction u>
est additive sur cette algebre. En outre, u*[X] = 1. Pour appliquer le Théoréme II-
78 et conclure a 'unicité d’un prolongement o-additif de p*°, il suffit de vérifier la
o-additivité de p™ sur la famille des cylindres. Soit donc (C),),eny une famille de
cylindres disjoints, dont I'union est un cylindre C' = [[ Aj. Par le Lemme 11-89 ci-
dessous, il n’y a qu'un nombre fini de C), non vides ; I'identité u>[UC,] = > u>*[C,]
est donc conséquence de I'additivité de pu™. 0

LEMME II-89 (absence de recouvrement dénombrable par des cylindres). Soient
(Xk)ken une famille d’ensembles finis, et (Cy)nen une famille de cylindres disjoints
de [ Xk, telle que |JC,, = [[ Xk Alors il n’y a qu’un nombre fini de C,, non vides.

Je vais fournir deux démonstrations de ce lemme. La premiere est simple et élé-
mentaire, le principe rappelle un peu celui qui permettra dans la suite de démontrer
le Théoreme II-87 dans un cadre général. La deuxieme, plus compacte, illustrera
I'intérét d’un raisonnement topologique, et préparera la voie a la démonstration du
Théoreme I1-90 ci-dessous.
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PREMIERE DEMONSTRATION. Chacun des cylindres C, est union disjointe de
“cylindres élémentaires”, de la forme (ai, as, . .., ax) X [ [;5g41 Xi; on dit qu'un tel
cylindre est d’ordre K et a pour base {aj,...,ax}. Il suffit de démontrer le lemme
dans le cas ou tous les C} sont des cylindres élémentaires. On retire les cylindres
non vides ; en particulier les C}, seront supposés tous distincts. On va supposer qu’il
y a une infinité de C%, et arriver a une contradiction.

Considérons l’ensemble des cylindres d’ordre 1. Si chaque élément de X; est
le premier élément d'un cylindre d’ordre 1, alors il y a exactement |X;| cylindres
d’ordre 1, et leur réunion finie couvre X, il n'y a donc qu’un nombre fini de CY, ce
qui est impossible. Il existe donc un sous-ensemble non vide Y7 = {uy,...,us} de
X1, tel que le cylindre de base Y] n’intersecte aucun des Cj d’ordre 1, et doit donc
étre recouvert par les cylindres d’ordre 2 ou plus. Le premier élément de chacun
des cylindres d’ordre 2 ou plus est I'un des u;; comme les u; sont en nombre fini
et qu’il y a une infinité de cylindres, I'un au moins des u; apparait une infinité de
fois en premier élément de I'un des cylindres d’ordre 2 ou plus. Appelons-le y; : le
cylindre de base y; est donc recouvert par une infinité de cylindres, dont la premiere
composante est toujours 1.

On montre alors, par un raisonnement similaire, qu’il existe un élément y, de
X5, qui n’est le deuxiéme élément d’aucun cylindre d’ordre 2, tel que le cylindre de
base {y1,y2} est recouvert par une infinité de cylindres d’ordre 3 ou plus, dont les
deux premiéres composantes sont {y;,ys2}.

Par récurrence, on construit ainsi une suite (yx)reny dans [[ X, telle que pour
tout j € N, {y1,92,...,y;} n’est le premier élément d’aucun cylindre d’ordre j
parmi les C,,. En particulier, cette suite n’appartient a aucun des cylindres C,,, ce
qui fournit une contradiction. O

DEUXIEME DEMONSTRATION. On munit chaque X de la topologie discrete,
toute partie de Xj est alors ouverte; par définition, la topologie produit est alors
engendrée par les cylindres, qui sont en particulier des ouverts. D’autre part, C' est
un produit (infini) de compacts, donc compact par le théoreme de Tychonov (dans
la version simple du Théoréme II-37 ot 'on considére un produit dénombrable).
De la famille (C}) on peut donc extraire un sous-recouvrement fini; comme ils sont
disjoints, seul un nombre fini d’entre eux est non vide. O

11-6.4. Théoreme de prolongement de Kolmogorov. Ce théoreme est fon-
damental en théorie des probabilités, et tout particulierement des processus stochas-
tiques. Il s’agit essentiellement d'une généralisation du précédent.

THEOREME I1-90 (théoréme de prolongement de Kolmogorov). Soit T un en-
semble arbitraire, et (X;)ier une famille d’espaces polonais; on définit

X = HXt.

Pour toute partie finie F'= {t1,...,tx} CT, on définit Xp := Xy, X ... X Xy, ; et
pour tout borélien Arp de X, on définit le cylindre

Cr(Ap) ={x € X; (x4,,..., 24, ) € Ap}.

On munit X de la tribu engendrée par tous les cylindres C(Ar), pour toutes les
parties finies F' de T. On se donne une fonction u, qui pour toute partie finie F
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de T définit une mesure de probabilité sur la tribu des cylindres C(Af). Alors p se
prolonge en une unique mesure de probabilité sur [ X;.

REMARQUES II-91. (i) Bien noter la condition de compatibilité implicite
dans ce théoréme : si F' C F”, tout cylindre C(Af) peut aussi étre vu comme
un C(Ag ) : il suffit de prendre Ay = Xy pour tous les t' € T\ T'. Les nombres
p[C(Ar)] et u[C(Ap)] doivent alors bien siir coincider ! On parle de “systéme
de marginales” compatible.

(ii) En théorie des processus stochastiques, I'espace T' est d’habitude un morceau
de R, , interprété comme I’espace des temps. Le cas particulier ou la famille T’
n’est autre que N (temps discret) releve également du théoreme dit de Ionescu
Tulcea, souvent utilisé en théorie des probabilités. Cependant, le théoreme de
Kolmogorov ne nécessite aucune hypothese de régularité sur 7. Pour certaines
généralisations, on pourra consulter par exemple [Dudley, p. 441].

(iii) Ce théoreme sera démontré au Chapitre IV (Théoreme IV-119) apres un
passage en revue des propriétés principales de I'intégration produit.

(iv) Dans la pratique, les modalités de la construction de la probabilité p sont
rarement utiles; c¢’est seulement le résultat d’existence que 1'on utilise.

I1-6.5. Critere de Carathéodory. Comme nous l'avons vu, le théoreme de
prolongement de Carathéodory construit une tribu M sur laquelle la mesure ex-
térieure p* est automatiquement o-additive. Le critere de Carathéodory est une
condition d’apparence relativement simple qui entraine que M contient la tribu
borélienne. C’est le critere que l'on utilise traditionnellement pour construire les
mesures de Hausdorff dans R™, que nous étudierons plus tard.

THEOREME I1-92 (Criteére de Carathéodory). Soit (X, d) un espace métrique, et
soit u* une mesure extérieure sur X, au sens de la Remarque 11-84 (i); on définit
la tribu M comme dans ’énoncé du Théoréme II-82. Si, pour toutes parties A et B
de X telles que

d(A,B) := inf{d(z,y); x € A, y € B} >0,
on a
p[AU B] = p*[A] + p*[ B,

alors la tribu M contient la tribu borélienne de X.

DEMONSTRATION. Il suffit de démontrer que la tribu M contient tous les fermés.
Soient donc A un ensemble fermé, et B un ensemble arbitraire, on veut prouver que

W'[B) = (B A+ ' [B\ A
Grace a la sous-additivité de p*, il suffit d’établir
p[B] = p*[BO A+ pw[B\ Al
Sans perte de généralité, on suppose que p*[B] < +oo. Pour tout n > 1, on définit
A, ={x € B; d(z,A) <1/n},

et on note que UA,, = A puisque A est fermé. Alors d(B\ A,, BN A) > 1/n > 0,
d’ou

pIB\ Ap] + [ BO A = p'[(B\ An) U (BN A)] < p[BJ.
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I1 suffit donc de prouver que
pBN\ Ap] —— p'[B\ AJ.

Soit alors A, ;41 := A, \ Apt1; en particulier B = B\ A,, U (Ug>p, Ak k+1). Par
sous-additivité de p*,

WIB\ A < i [BN AL < @i [B\ A+ ) i [A g,

et la conclusion s’ensuivra si I’on peut démontrer

ZN*[Ak,kJrl] < +00.

k>1

Comme d(A; 41, Aj j+1) > 0 des que j > i+ 2, on peut établir par récurrence

ZM [Agk 2141] U Asg k1] < p[A] < 4-o0;
et, de méme,

N
Z 1 [Agky12k2] < pt[A] < +oo.
k=1

On conclut facilement en faisant tendre N vers 'infini. O

II-7. Complétion de mesures

Le prolongement d'une mesure est une opération délicate mais inoffensive; au
contraire, la complétion est une opération tres simple mais risquée.

THEOREME I1-93 (complétion d'une mesure). Soit (X, A, u) un espace mesuré,
et soit A la famille des parties E de X qui s’écrivent AUN, ot A € A et N est
p-négligeable, c’est a dire inclus dans une partie Z € A, telle que u[Z] = 0. Alors
A est une tribu, et u admet un prolongement unique 11 a A, tel que (X, A, 1) est un
espace mesuré complet.

DEFINITION 11-94 (ensembles p-mesurables). On dit que la tribu A apparaissant
dans le Théoréme 11-93 est la tribu des ensembles (ou parties) p-mesurables.

REMARQUES II-95. (i) De fagon équivalente, les ensembles p-mesurables sont
les parties E telles qu’il existe A et A’ dans A, telles que A C £ C A’ et
p[A"\ A] = 0. Ou encore, ce sont les parties E telles qu'il existe B dans A et
N négligeable, telles que £ = B\ N.

(ii) Cette notion dépend bien sir de u, mais aussi de A. Souvent, par défaut A
sera la tribu borélienne d’un espace topologique.

PREUVE DU THEOREME II-93. Avec les notations de 1’énoncé, il suffit de poser
I[E] = pld], et de vérifier les axiomes de o-additivité (exercice). La seule subtilité
consiste en fait & montrer que cette définition est licite, c’est a dire qu’elle ne dépend
pas du choix de A et N. Pour cela, on pourra remarquer que (avec des notations
évidentes) si £ = A U Ny = Ay U Ny, alors Ay \ Ay C E\ Ay C Ny C Zy est de
mesure nulle, donc p[A;] = p[(A1 N As)] + p[Ar \ As] = p[A; N Ay] < ufAs]; et par
symétrie, pu[A;] = p[As). O
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REMARQUE I1I-96. La simplicité de ’énoncé et de sa preuve masque le fait que
les ensembles ainsi complétés peuvent étre extrémement compliqués. L’étude de
I'intégration sur des espaces produits montrera bien que 'opération de complétude
n’est pas inoffensive.

Le Théoreme 1I-82 fournissait déja un prolongement complet de la mesure u;
il n’est pas clair a priori que ce soit le méme que celui qui est fourni par le Théo-
reme I1-93 car une mesure admet en général plusieurs prolongements complets. 1l y
a cependant unicité quand on impose certaines condition de régularité.

THEOREME I1-97 (unicité de la complétion réguliere). Soit X un espace topo-
logique et i une mesure de Borel sur X, définie sur la tribu borélienne A. On
suppose que X est o-fini et que p est régulicre. Alors Uespace (X, A, i) défini dans le
Théoréme 11-93 est l'unique prolongement complet de (X, A, ) en un espace mesuré
complet et régulier.

DEMONSTRATION. Soit (X, A, /i) un prolongement complet régulier de (X, A, ).
Comme X est o-fini, tout élément A de A peut s’écrire comme union dénombrable
d’éléments A; de A avec [[Ag] < +oco. Par la Proposition 11-57, pour chaque Ay il
existe des Boréliens By, et Cy, tels que u[By] = u[Ax] = 1[Ck, et By C Ay C Cy. En
particulier, Ay s’écrit comme I'union d’un Borélien et d'un ensemble inclus dans un
Borélien fi-négligeable, ce qui montre que A contient A. On conclut que les deux
tribus sont égales, et la fin de la démonstration en découle aisément. O

En conclusion : tant que l'on travaille avec des mesures régulieres, il n'y a pas
de difficulté a définir la complétion.

II-8. Construction de la mesure de Lebesgue

Le théoreme suivant est une application du théoreme de prolongement de Cara-
théodory ; c’est aussi I’acte fondateur de la théorie de Lebesgue. On munira bien sir
R de sa topologie habituelle.

THEOREME I1-98 (mesure de Lebesgue en dimension 1). Il existe une unique
mesure borélienne A sur R telle que la mesure d’un intervalle [a,b] (a < b) soit égale
a sa longueur b — a. On appelle mesure de Lebesque.

La complétion X de \, également appelée mesure de Lebesque, est définie sur la
tribu des ensembles Lebesgue-mesurables, qui est constituée de toutes les parties
E de R telles qu’il existe des ensembles Boréliens A et B tels que

ACFEC B; AB\ 4] = 0.
La construction présentée ci-dessous était déja celle qu’utilisait Lebesgue.

DEMONSTRATION DU THEOREME I1-98. La famille des intervalles est stable
par intersection finie (l'intersection de deux intervalle est un intervalle), et R est
I'union des intervalles [—k, k] pour k € N; I'unicité de la mesure de Lebesgue est
donc une conséquence du Théoreme I1-82(i).

L’existence demandera plus de travail. Considérons la famille F de tous les inter-
valles de R. Un intervalle I C R étant donné, on définit A[/] comme étant la longueur
|I| de I. L’intersection de deux intervalles est un intervalle, et le complémentaire
d’un intervalle est la réunion de deux intervalles ; nous sommes donc dans les condi-
tions d’application du Théoréeme de prolongement 11-82 (iii). Pour prouver que A se
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prolonge en une mesure sur la tribu engendrée par F, qui n’est autre que B(R), il
suffit de vérifier la o-additivité de X. C’est un exercice qui s’énonce ainsi : Etant
donnée une famille d’intervalles (Iy)ren disjoints, dont la réunion est un intervalle
I de R, prouver que

(11) AR

keN

Admettons provisoirement ce résultat ; on peut alors appliquer le Théoreme 11-82
(iii) pour construire la mesure de Lebesgue via le concept de mesure extérieure de
Carathéodory. Les propriétés de la complétion resultent alors des Théoremes 11-93
et 11-97. O

DEMONSTRATION DE (11). Si Pon sait prouver (11) dans le cas ou I est un
intervalle borné, le cas général s’ensuivra : en effet, pour tout entier £ on peut poser
I*=1n0[—4L] I} = I,N[—(, (] et il est tres facile de vérifier que

(=D 1l =) Il
l 12

On suppose donc que I est borné. Si I n’est pas fermé, on peut toujours adjoindre a
I un ou deux points (qui sont des intervalles particuliers, de longueur nulle!) : cela
ne change ni |7|, ni > |I|. Il nous suffit donc de prouver (11) dans le cas particulier
ou I = [a,b]. Sans perte de généralité (le probleme étant invariant par translation
et dilatation), on pourra méme supposer I = [0, 1]. Il est facile de vérifier que pour
tout k,

L+ L]+ 4 ] <1,

S Ll <t

keN

en particulier

C’est bien sir I'inégalité inverse qui est (légerement) plus subtile.

Si A C [0,1] est réunion d’'un nombre fini d’intervalles disjoints, on définira
|A| comme la somme des longueurs de ces intervalles; il est intuitivement évident
(mais un tout petit peu fastidieux a vérifier) que cette définition est indépendante
du choix de la décomposition de A en intervalles disjoints (par exemple, si on écrit
la,c] = [a,b[U[b,c] on a ¢ —a = (b —a)+ (¢ —b)). On vérifie en outre que si
A=1U...Ul, alors |A| < ||+ ...+ |I,], que les intervalles I}, soient disjoints
ou non.

Soit € > 0, arbitrairement petit. Pour tout k£, on définit un intervalle J, ouvert
dans [0, 1], contenant Iy, tel que |J; \ I;| < 27" (par exemple, si I}, = [a, b] on pourra
choisir Jj, =]a — 281e, b+ 25F1[N [0, 1]). Les intervalles ouverts Jj, recouvrent [0, 1]
tout entier, puisque les [, forment déja un recouvrement de [0, 1]. Par compacité,
on peut en extraire un sous-recouvrement fini : il existe K € N tel que [0,1] C
JiUJyU. ..U Jg. En particulier,

K

K
LY A <D (Il +27%) < O Ikl + ¢
k=1

k=1 k

En faisant tendre e vers 0, on obtient bien 1 < ), |I;|, comme on le souhaitait. [
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II-9*Recouvrement et remplissage

Cette section pourra étre omise en premiere lecture; outre qu’elle répond a cer-
taines questions naturelles sur les liens entre ensembles mesurables et boules, elle
s’averera d'un grand intérét dans certains chapitres ultérieurs.

Pour étudier une mesure “localement” au voisinage d’un point, on considere la
mesure de petites boules centrées en ce point; c’est le coeur de la procédure de
“désintégration” étudiée dans le Chapitre ??7. Dans cette optique, il est naturel de
s'intéresser a des recouvrements d’ensembles par des petites boules. Dans le cadre
de la théorie de la mesure, on ne sait gérer les mesures de familles d’ensembles que
lorsqu’ils sont disjoints; le probléme d’identifier des “sous-recouvrements disjoints”
est donc assez naturel. Cependant, si un ensemble A est recouvert par des boules,
on ne peut en général en tirer un sous-recouvrement disjoint; au mieux on peut
espérer extraire une sous-famille disjointe, qui recouvre “presque” ’ensemble A, au
sens ol elle continue a en recouvrir une proportion non négligeable. Ce probléme est
I'objet de divers lemmes de recouvrement. On va ici considérer le plus simple
d’entre eux, le Lemme de Vitali. Je vais I’énoncer avec des boules fermées, mais
on pourrait aussi bien le faire avec des boules ouvertes.

Dans 1’énoncé suivant, si B = Blz,r] est une boule fermée de centre z et de
rayon 7 et A est un nombre positif, on note AB la boule de centre = et de rayon Ar.
(En général cette convention n’a de sens que si 'on considére B comme un couple
(z,7), de sorte que la valeur de r est uniquement déterminée par la boule choisie;
dans un espace métrique général il est tres possible que Bz, r] = Bz, 7’| sans pour
autant que r soit égal a r'!)

THEOREME I1-99 (Lemme de recouvrement de Vitali). (i) Soient X un espace
métrique séparable, et B une famille de boules fermées dans X, de rayon non nul et
majoré. Alors de B on peut extraire une famille dénombrable B de boules disjointes
telles que

UBc 4B

BeB Beg

(ii) En outre si p est une mesure borélienne C-doublante sur X, on a

wUJB] = o ull B].

Beg BEB

Avant d’aborder la preuve du Théoreme 11-99 proprement dite, commencons par
deux lemmes trés simples :

LEMME II-100. Soient B et B’ deux boules fermées d’un espace métrique, de
rayons respectifs r et r’, telles que

B'NB #0; r’zgr.

Alors, avec les notations du Théoréme I1-99, on a B C 4B’.

LEMME II-101. Si X est un espace métrique séparable et B est une famille
quelconque de boules de rayon non nul, alors on peut extraire de B une sous-famille
disjointe mazimale M, ce qui veut dire que toute sous-famille de B strictement plus
grande que M ne peut étre disjointe.
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REMARQUE II-102. Cet énoncé de théorie des ensembles reléve de 'axiome du
choix (ou de manieére équivalente, du principe de maximalité de Hausdorff) ; mais
comme on va le voir, I’hypothese de séparabilité permet d’éviter le recours a I'axiome
du choix général, pour ne garder que 'axiome du choix dépendant — méme si la
famille B est non dénombrable.

PREUVE DU LEMME I1I-100. On écrit B = B,j(z), B’ = B,,(2'). Par hypothese
il existe z € BN B'. Alors, pour tout y € B on a d(a',y) < d(2',2) + d(z,y) <
4 2r < o'+ 3 =41 (Falre un dessin!) 0J

PREUVE DU LEMME II-101. Soit (2,)nen une suite dense dans X. On va construire
par récurrence la famille M, comme suit.

Si 21 appartient a I'un des éléments de B, on choisit dans B une boule B; conte-
nant z; et on pose By = {B;}. Dans le cas contraire, on pose B; = ().

_ Si zp appartient a l'un des éléments de B qui n’intersectent aucun él’ement de
Bl, on choisit dans B une boule B, contenant zs et n’intersectant aucun ¢ élément de
81 ; on pose alors Bg 61 U {By}. Dans le cas contraire, on pose Bg 81

Et ainsi de suite : si z; appartient a I'un des éléments de B qui n’intersectent
aucun élément de Bj_;, on pose B, = Bi_1 U {Bk} ol By est une boule de B
contenant z;, et n’intersectant aucun élément de Bk 1; dans le cas contraire, on pose
By, = By_1.

Soit M = {By,, Bi,, ..., By, ...} I'union de toutes les familles B}, ainsi construites.
I1 est clair que M est dénombrable. Si By, et B, appartiennent a M, supposons par
exemple £ > k, alors By a été choisie parmi les boules n’intersectant pas les éléments
de By_1, en particulier n’intersectant pas B, ; donc la famille M est disjointe.

Il reste a montrer que cette famille est maximale. Soit donc B un élément de B
n’appartenant pas & M, montrons que M U {B} n’est pas disjointe. Puisque B est
de rayon strictement positif, il existe un z, € B. A ’étape m de la construction,

- soit une boule B,, contenant z,, a été choisie et incluse dans la famille M ; mais
alors B,, "B # (;

- soit on n’a pas fait de tel choix, ce qui veut dire que toutes les boules de B
contenant z,, (en particulier la boule B) intersectaient déja un élément de 1’ensemble

B
Dans les deux cas, B rencontre un élément de M, ce qui acheve la démonstration
de la maximalité. O

DEMONSTRATION DU THEOREME I1-99. Commencons par traiter le cas simple
ou il n’y a qu'un nombre fini de boules. On peut alors classer les boules par ordre
décroissant du rayon : r(By) > r(By) > r(Bs) > .... On construit alors I'ensemble B
selon la méme procédure que précédemment : au début on pose gl = {B}, puis si
Bs n’intersecte pas By on pose By = {By, By}, sinon on pose By = {Bl} ; et ainsi de
suite. A 1’ étape k, si By, n’intersecte aucun élément de Bk 1 0n pose Bk Bk_lu{Bk},
et sinon on pose Bk Bk 1.

On définit alors B = UB;. Soit B = By un élément quelconque de B. Sil n’est
pas dans B c’est qu’il intersecte une boule B; de Bk 1 avec bien str j < k, donc

r(B;) > r(Bk) Posons B’ = Bj, on a alors BN B’ # () et (avec les mémes notations

que dans le Lemme I1-100) 7" > r; d’ou B C 3B’ par un argument similaire a celui
du Lemme II-100.
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Dans le cas général cependant, il est impossible d’ordonner les boules par ordre
de rayon décroissant (I’énoncé autorise méme une infinité non dénombrable de
boules...). II faut donc modifier légerement la stratégie. Si B = B[z, r] est une
boule de rayon r, on note r = r(B). Par hypothese il existe R > 0 tel que toutes les
quantités r(B) soient majorées par R. Pour tout j € N, soit

5 {sen (3) meam<(3) ).

~_ On choisit grace au Lemme II-101 une famille dénombrable disjointe maximale
M, dans B;. s
On choisit ensuite une famille dénombrable disjointe maximale My dans

22:{3682; VB € M;, B’mB:@}.

On continue de méme : au rang k, on choisit une famille dénombrable disjointe
maximale M, dans

z = {BeBs vBe |J B, BnB=0}

j<k—1

On pose enfin B =uUM k- 11 est facile de montrer que cette famille est disjointe;
il reste & vérifier que toute boule de B est incluse dans 4B’ pour une certaine boule
B €B. N

Soit donc B € B. Si B € B, le résultat est évident. Sinon, introduisons £ tel que
B € B;,. Puisque Ek est une famille disjointe maximale dans I’ensemble

{BeB: wpe ) B, Bnp=0}
J<k—1
il n’y a que deux possibilités :
- soit B n’appartient pas a Zj, ce qui veut dire que B intersecte un élément de I'un
des M, pour j < k —1;

- soit B appartient a Zj, et alors la famille obtenue en adjoignant B a M, n’est pas
disjointe, ce qui veut dire que B intersecte un élément de M.

Dans tous les cas, B intersecte un élément B’ de ;. M ;; en particulier r(B’) >
(2/3)r(B). On applique alors le Lemme II-100 pour conclure que B C 4B’. Ceci
conclut la preuve de (i).

Passons maintenant a (ii) : Pour cela on écrit
n[J B] <[ 4B] <3 ul4B) < @* Y ulB) = C*u[| Bl.
BeB BeB BeB BeB BeB
ou 'avant-derniere inégalité découle de la propriété de C-doublement, et la derniere

provient de ce que la famille B est disjointe. U

Voici maintenant un corollaire frappant et utile du Lemme de Vitali; il énonce
que 'on peut remplir, au sens de la théorie de la mesure, un ouvert par de petites
boules (fermées) disjointes :
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COROLLAIRE II-103. Soient X un espace métrique séparable, | une mesure boré-
lienne sur X, doublante et finie sur les boules fermées de X . Alors, pour tout ouvert
O de X et pour tout § > 0 on peut trouver une famille dénombrable G de boules
fermées disjointes Blx,r] C O, de rayon r < §, telles que

M[O\UB]:O

Beg

EXEMPLE II-104. On verra plus tard que la mesure naturelle dans R”, la mesure
de Lebesgue, est 2"-doublante. Il s’ensuivra que tout ouvert de R™ est, a un ensemble
de mesure de Lebesgue nulle prés, union dénombrable de boules euclidiennes fermées
disjointes.

PREUVE DU COROLLAIRE II-103. 1. Traitons d’abord le cas ou O est inclus
dans une boule fermée, en particulier u[O] est fini et p est C-doublante sur O.
Soit. B I’ensemble de toutes les boules fermées de rayon au plus 9, incluses dans O.
Puisque O est ouvert, la réunion de tous les éléments de B est exactement O. Par le
Théoreme 11-99, il existe une famille dénombrable disjointe B C B telle que

n[U Bl = ¢?ulo);

BeB
d’ou
ulo\ U B] < (1 - ¢2uio).

BeB

Par o-additivité, il existe une sous-famille finie B’ C B , telle que

wo\ U 8 < (1- ) wlol

Bep’

On pose Oy := O\ Jpep B : comme intersection finie d’ouverts, c’est un ouvert, il
est inclus dans O et de mesure au plus A p[O] avec A = (1 — C72/2) < 1.

On itere alors la construction : par récurrence on construit une suite décrois-
sante d’ouverts Oy, tel que Ok_q \ Of est une union finie de boules fermées, et
p[Ok] < A p[Og_4]. Par o-additivité, I'intersection des Oy, est de mesure nulle, et son
complémentaire dans O est une union dénombrable de boules fermées.

2. Considérons maintenant le cas général ou O n’est pas inclus dans une boule.
Soit g un élément quelconque de X, pour tout r > 0 on pose S, = {x € X; d(zg,z) =
r}. (C’est la sphere de centre zp et de rayon r.) Puisque X est I'union des boules
B(zo, k), k € N, elle est o-finie; en particulier il y a au plus une infinité dénom-
brable de r > 0 tels que u[S,] > 0. Fixons une fois pour toute une suite r, — o0
(k € N) telle que pu[S,,] = 0. On pose alors Cy = B(zg,r1), et pour k € N,
Cy = B(xg,rk+1) \ Blzo, k). (Les Cy sont donc des coronnes ouvertes disjointes.)
Le complémentaire des Cj dans X est de mesure nulle, en particulier O est, a un
ensemble de mesure nulle pres, I'union disjointe des ouverts O, = O N C}. Par la
premiere partie de la preuve, chacun des Oy peut s’écrire, a un ensemble de mesure
nulle pres, comme une union disjointe de boules fermées By, ; (j € N). Ceci conclut
la preuve du théoreme. O
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REMARQUE II-105. Le Lemme de Vitali est le lemme de recouvrement le plus
simple et le plus connu; il en existe cependant bien d’autres, utilisés dans des situa-
tions variées. En voici deux parmi les plus intéressants :

e le Lemme de recouvrement de Besicovitch [Evans-Gariepy pp. 30-35] :
Soit B = {B(Za,7a)aca} une collection de boules de rayon borné dans [’espace
Fuclidien R™, et soit C' ’ensemble de leurs centres. Alors il existe une constante
K, ne dépendant que de n, et des sous-familles disjointes dénombrables By,..Bx
de B, qui recouvrent ’ensemble C'. En particulier, de B on peut extraire un sous-
recouvrement B tel que chaque x € C' appartient a au moins une, et au plus K boules
de B.

Ce lemme, qui exploite la structure particuliere de I’espace R™, permet d’étudier
des mesures non nécessairement doublantes : par exemple, on peut 'utiliser pour
montrer que le Corollaire I1-103 reste vrai si O est un ouvert de R™ et ;1 une mesure
arbitraire.

e le Lemme de recouvrement de Whitney, tres utile en analyse harmonique,
permet de remplir un ouvert O de R™ par une famille dénombrable de cubes C},
dont les cotés sont paralleles aux axes, dont les intérieurs sont disjoints, et dont les
diametres sont a peu pres proportionnels a leur distance au bord de O :

diam (Cy) < d(Cy, R™ \ O) < 4diam (Cy).

Pour en savoir plus, on pourra consulter le passionnant ouvrage d’E.M. Stein,
Singular Integrals and Differentiability Properties of Functions (Princeton University
Press, New Jersey, 1970), pp. 16-18 et Chapitre VI.






CHAPITRE III

Intégration selon Lebesgue et selon Riesz

Ce chapitre définit 1'intégrale de Lebesgue pour une large classe de fonctions,
dites sommables au sens de Lebesgue ; ce cadre abstrait inclut les fonctions continues
a support compact comme cas particulier. Le point de départ sera la notion de
fonction mesurable (section III-1); de la découlera la définition de l'intégrale de
Lebesgue (section I11-2), et I'on vérifiera qu’elle constitue une forme linéaire (section
I11-3).

Une autre route consiste a partir des fonctions continues et a définir 'intégrale
comme une forme linéaire continue sur cet espace. Le théoréme de Riesz (section
I11-4) assure que ces deux points de vue sont équivalents, modulo quelques subtilités,
sous certaines hypotheses topologiques. La plus importante de ces hypotheses est la
condition de compacité locale, qui est vraie en dimension finie (dans R™ ou une
autre variété différentielle complete de dimension finie), mais en général fausse en
dimension infinie, comme dans I’espace de Wiener.

Ce chapitre se conclut par quelques mots sur I'intégration a valeurs vectorielles
(section I1I-5), qui sera abordée plus en détail dans un chapitre ultérieur.

ITI-1. Fonctions mesurables

On cherche a définir une large classe de fonctions susceptibles d’étre intégrées,
c’est a dire évaluées par l'action d’'une mesure : les fonctions mesurables. Cette
classe de fonctions devrait comprendre a tout le moins les fonctions indicatrices
d’ensembles mesurables. Dans un cadre topologique, elle devrait aussi comprendre
les fonctions continues.

En topologie, ou les parties ouvertes jouent un réle privilégié, on dit qu’'une
fonction est continue si I'image réciproque de tout ouvert est un ouvert. En théorie
de la mesure, on adopte une démarche similaire pour définir les fonctions mesurables.

ITI-1.1. Définition.

DEFINITION ITI-1 (fonctions mesurables). Soient (X.A) et (Y,B) deuz espaces
mesurables. Une fonction f : X — Y est dite mesurable si [image réciproque de
n’importe quelle partie. mesurable de Y est une partie mesurable de X :

VB € B, f1(B) € A

ExEMPLE III-2. L’exemple le plus simple est la fonction indicatrice f = 14 d’un
ensemble mesurable A : ¢’est la fonction qui vaut 1 sur A et 0 sur le complémentaire.
Cela est vrai quelle que soit la tribu dont on munit I’espace d’arrivée R. En effet,
I'image réciproque d’un ensemble quelconque par f est I'un des quatre ensembles
0, X,A, X\ A, qui sont tous bien siir mesurables.

Nous verrons dans la suite des criteres pratiques de mesurabilité, permettant de
construire de tres nombreuses fonctions mesurables. En fait, si 'on travaille avec la
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tribu borélienne, la mesurabilité est la regle plutdt que 1'exception (Remarque I11-
26), et la mesurabilité est beaucoup, beaucoup plus générale que la continuité.

REMARQUES I1I-3. (i) Soient (X,.A) un espace mesurable, Y un ensemble
quelconque, et f : X — Y. Il est toujours possible de munir Y d'une o-
algebre pour laquelle f soit une fonction mesurable. Il suffit pour cela de
définir une partie mesurable de Y comme une partie dont I'image réciproque
est mesurable. Cela définit bien une tribu sur Y (exercice). Cette tribu est
la plus grande qui rende f mesurable : toute tribu plus petite a la méme
propriété, et aucune tribu strictement plus grande ne ’a. On 'appelle tribu
image de A par f et on la note fzA (ou f.A, ou fA).

(ii) Soient maintenant X un ensemble quelconque, (Y, B) un espace mesurable,
et f: X — Y une fonction quelconque. Il est encore possible de munir X
d’une c-algebre pour laquelle f soit une fonction mesurable. Il suffit pour
cela de considérer les images réciproques des ensembles mesurables. Cette
tribu est la plus petite qui rende f mesurable : toute tribu plus grande a
la méme propriété, et aucune tribu strictement plus petite ne 1'a (exercice).
On l'appelle tribu engendrée par f et on la note o(f) (ou f*Bou f~'B);
on reviendra sur cette notion majeure. Intuitivement, o(f) est la tribu des
ensembles que 'on peut décrire “au moyen seulement de la fonction f”, ou
encore “au travers des seules valeurs de la fonction f”. En particulier, o(Id) =
B (la tribu engendrée par la fonction identité est la tribu B tout entiere).

(iii) Plus généralement, si une famille de fonctions (f;);c; est donnée, f; : X — Y,
on note o((fi)icr) la plus petite tribu qui rende mesurable toutes les f;, ou
de fagon équivalente, qui rende mesurable I'application produit f = [[..; fi,
avec la tribu produit sur [ [ ;. Intuitivement, par exemple o( f, g) (abréviation
pour o((f,g))) est la tribu des événements que 1'on peut décrire en utilisant
seulement les valeurs de f et g.

(iv) De méme que I'image d’un ouvert par une application continue n’est en gé-
néral pas ouverte, 'image d’un ensemble mesurable par une application mesu-
rable f n’est a priori pas mesurable. C’est cependant le cas si f: X — Y est
une application bijective entre deux espaces polonais X et Y munis de leur
tribu borélienne : sous ces hypotheses, 'image de tout ensemble mesurable
par f est mesurable. En particulier, la réciproque d’une bijection mesurable
entre espaces polonais est automatiquement mesurable (Théoreme I11-24 plus
loin).

Le critere pratique qui suit est d’usage constant.

PROPOSITION ITI-4 (critére pratique de mesurabilité). Soient (X, A) et (Y, B)
deux espaces mesurables, et f : X — Y. On suppose que la tribu B est engendrée par
une famille F de parties de Y : B = o(F). Alors f est mesurable si et seulement si
pour tout F € F, f~Y(F) est mesurable.

DEMONSTRATION. Si f est mesurable, bien stir f~!(F) doit étre mesurable pour
tout F' € F. Réciproquement, supposons que f~1(F) est mesurable pour tout F' € F,
et définissons

C.— {B €B; [TYB) e A} = f,A.
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On a déja noté dans la Remarque I11-3(ii) que C est une tribu; cela découle en fait
des formules habituelles

FAYAB) = N FB), T UB) = (B

Mais comme elle contient F, elle contient également o(F) = B, ce qui prouve la
mesurabilité. O

EXEMPLES III-5. (i) L’exemple le plus courant est le suivant : si X et Y
sont deux espaces topologiques, munis de leur tribu borélienne, et f : X — Y
est une fonction quelconque, alors f est mesurable si et seulement si 'image
réciproque de tout ouvert de Y est un Borélien de X. On dit alors que f est
borélienne. En particulier, toute fonction continue est borélienne.

(ii) Dans le cas ou Y = R", pour montrer quune fonction f : X — Y est mesu-
rable, il suffit de vérifier que I'image réciproque de tout pavé est un borélien
de X. Par exemple, si on réussit a montrer que c¢’est une union dénombrable
d’intersections dénombrables d’unions dénombrables de fermés...

(iii) Dans le cas ou Y = R, pour montrer la mesurabilité il suffit de vérifier que
I'image réciproque de tout intervalle semi-ouvert, de la forme I = [y, +o0],
est un borélien. En particulier, toute fontion semi-continue inférieurement
(ou supérieurement) est borélienne. Mais en général la classe des fonctions
boréliennes est beaucoup plus large.

(iv) Dans le cas ou Y est un espace produit, muni de la topologie produit, pour
montrer la mesurabilité il suffit de vérifier que I'image réciproque de tout pavé
est mesurable. Et si Y est un produit infini, il suffit de vérifier que I'image
réciproque de tout cylindre est mesurable.

On va voir au paragraphe suivant comment on peut, via des opérations simples,
construire de tres nombreuses fonctions boréliennes qui ne sont pas du tout continues,
ni continues par morceaux. Toutefois les liens entre mesurabilité et continuité sont
étroits. D’une part, sous certaines hypotheses topologiques, les fonctions boréliennes
peuvent étre bien approchées par des fonctions continues, et encore mieux par des
fonctions semi-continues ; les théoremes de Lusin et Vitali-Carathéodory, qui seront
évoqués section 1I1-4.4, en sont une bonne illustration. Ensuite, ’exercice suivant
montre que sous des hypotheses assez générales, toute fonction borélienne peut étre
considérée comme une fonction continue pour une topologie plus fine, sans toucher
aux boréliens. Il est donc naturel que ces deux classes de fonctions, les boréliennes
et les continues, vérifient des énoncés assez similaires.

EXERCICE III-6 (Une fonction borélienne est toujours continue en un sens). Soit
X un espace polonais.

(a) On dit qu’'une partie A de X vérifie la propriété (B) si il existe une topo-
logie polonaise qui raffine la topologie de X tout en préservant la classe des
boréliens, et pour laquelle A est ouvert. Montrer que I’ensemble des parties
vérifiant (B) est une o-algebre contenant les ensembles ouverts. (Noter que
dans la propriété (B) on peut méme imposer que A soit ouvert et fermé.)

(b) En déduire que tous les boréliens vérifient la propriété (B).

(c) SiY est un espace polonais et f : X — Y est borélienne, montrer que tous
les f~Y(B), pour B borélien de Y, vérifient la propriété (B).
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(d) Montrer qu'’il existe une topologie polonaise sur X, plus fine que la topologie
initiale mais avec les mémes ensembles boréliens, et qui rend f continue.

I11-1.2. Stabilité des fonctions mesurables. Il est tres facile de construire
des fonctions discontinues en manipulant des fonctions continues et un peu de théorie
des ensembles : il suffit par exemple de définir une fonction séparément sur |a, b
et |b,c]. En revanche, en manipulant des fonctions mesurables et des ensembles
mesurables, on ne peut guere construire que des fonctions mesurables!

PROPOSITION III-7 (restriction). (i) Soient (X,.A) et (Y,B) deuzx espaces mesu-
rables, et A une partie mesurable de X. Soit f : X — Y une application mesurable.
On munit A de la tribu induite par A, i.e. ’ensemble de tous les éléments de A qui
sont inclus dans A. Alors la restriction de f a A est une application mesurable de
A dans Y.

(i) La méme propriété reste vraie si A n'est pas mesurable, la tribu induite par
A étant alors 'ensemble de toutes les intersections d’éléments de A avec A.

DEMONSTRATION. C’est un simple jeu de maniement des axiomes. 0

ProprosSITION III-8 (recollement). (i) Dans un espace mesurable (X, A), soit
(Ag)ken une famille dénombrable de parties mesurables disjointes, telle que X = UAj,.
Soit également (Y, B) un espace mesurable. Sur chaque Ay (considéré comme espace
mesurable), on se donne une fonction mesurable fy : A, — Y. Soit f la fonction qui
pour tout k coincide avec f;, sur Ag. Alors f est mesurable.

(ii) Dans un espace mesurable (X, A), soit A une partie quelconque de X, f est
une fonction mesurable de A (muni de la tribu induite) dans Y, espace polonais,
alors f est la restriction a A d’une fonction mesurable X — Y.

DEMONSTRATION. Pour (i), L’image réciproque d'un ensemble mesurable B par
f est Punion des ensembles mesurables f, '(B), c¢’est donc un ensemble mesurable.
Pour (ii), on procede par approximation; 'argument est remis a la section III-
2.2. OJ

PROPOSITION III-9 (produit infini de fonctions mesurables). Soient (X, A;)ier
et (Yy, B)ier des espaces mesurables, dépendant d’un paramétre t € T, et soient.
(f)ier des fonctions mesurables de X, dans Yy respectivement. On munit X =[] X,
et Y =[]V, de la tribu produit, i.e. la plus petite tribu qui rende mesurable tous les
cylindres. Alors Uapplication f =[] fi est mesurable de X dans Y.

En particulier, si f1, ..., fr sont des applications mesurables définies sur Xy, ..., Xj
respectivement, a valeurs dans Yi,..., Yy respectivement, alors lapplication f =
(f1,--., fx) est mesurable de X1 X ... x X, dans Y1 X ... X Y.

DEMONSTRATION. Par le critére IT1-4, il suffit de montrer que I'image réciproque
de tout cylindre est mesurable; on peut méme se limiter a le faire pour les cylindres
engendrés par des pavés By = (By,, ..., By ), T = (t1,...,tk) :

Cr(Br) = {y cY;Vke{l,...,K}, y, € Btk}.

Ici K est arbitraire et chaque B;, est une partie mesurable de Y;,. Alors

JHCr(Br) = Cr(Ar),
ou
AT:(Atp-“aAtK)? Atk:flgl(Btk)'
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C’est, en particulier un ensemble mesurable. O

PRrROPOSITION III-10 (composition). Sotent f : X — Y et g : Y — Z deux
applications mesurables entre espaces mesurables, alors leur composition g o f est
mesurable.

DEMONSTRATION. C’est une conséquence immédiate de la définition. O

COROLLAIRE III-11. Soient X,Y et Z des espaces mesurables, tels que Y et Z
sont des espaces topologiques munis de leur tribu borélienne, soient f : X — Y une
application mesurable, et ¢ 1Y — Z une application continue. Alors po f : X — Z
est une application mesurable.

DEMONSTRATION. C’est une conséquence de la proposition précédente, combi-
née avec l'exemple I11-5(i). O

PROPOSITION III-12 (graphe). Soient (X, A) et (Y, B) des ensembles mesurables,
f X =Y une fonction, et G(f) = {(z, f(x)); x € X} C X XY son graphe. On
munit X XY de la tribu produit. Alors, si f est mesurable et que la diagonale
A ={(z,x); © € X} est mesurable, alors G(f) est mesurable.

DEMONSTRATION. Le graphe de f est I'image réciproque de la diagonale par
I'application mesurable (z,y) — (f(x),y). O

En anticipant sur la proposition IV-39, on en déduit

COROLLAIRE III-13. §7 X etY sont des espaces métriques séparables complets,
et que f: X — Y est mesurable, alors son graphe est mesurable dans X x Y. Cela
reste vrai st f nest définie que sur une partiec mesurable de X .

A Taide de ces criteres simples, il est facile de trouver beaucoup d’opérations
¢lémentaires qui préservent la notion de mesurabilité. La proposition suivante ras-
semble les plus courantes.

PROPOSITION III-14 (opérations élémentaires). Soient (X, A) un espace mesu-
rable, et f,q deux fonctions mesurables de X dans R, muni de la tribu borélienne.
Alors les fonctions f+ g, f — g, fg, min(f, g), max(f,g) et, si g ne s’annule pas,
f/g sont mesurables.

DEMONSTRATION. On applique le corollaire I1I-11 avec les applications conti-
nues addition, soustraction, etc. Noter que min(f,g) = (f +g¢)/2—|f —g|/2. O

Outre ces opérations élémentaires, une opération fréquemment utilisée pour dé-
finir des fonctions est la limite (ou ses avatars tels que série, etc.). Pour parler de
limites, il sera bien commode de remplacer R par R = R U {£oc}, dont on fait
un espace topologique en décidant que les intervalles ]a, +oo[ et |a,+o0] (a € R)
engendrent les ouverts. La restriction de cette topologie a R est la topologie usuelle ;
en effet, les intervalles ]a, +00[ et | — 00, a[ engendrent la topologie usuelle de R. On
note que R est un espace métrique compact. On munira toujours R de sa tribu boré-
lienne ; en pratique ce sont juste les boréliens de R, auxquels on s’autorise d’ajouter
400 et/ou —oo (Exemple II-17). La motivation pour considérer R plutot que R est
simple : la convergence dans R est plus aisée que dans R.
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REMARQUE III-15. Attention aux opérations dans R : 'opération (z, y) > x+y
n’est pas bien définie dans R tout entier & cause de I'indétermination (+o00)+(—00).
Ainsi, si f et g sont deux fonctions & valeurs dans R, on ne peut pas affirmer que
f + g soit mesurable. Si I'on sait que f et g prennent leurs valeurs dans R U {+o0},
alors f + g est bien mesurable ; mais f — g n’est pas forcément défini...

THEOREME III-16 (stabilité de la mesurabilité réelle par limite). Soit (f,)nen
une famille de fonctions mesurables sur un espace mesurable (X, A), da valeurs dans
R. Alors

(i) les fonctions inf f,,, sup f,, liminf f,, et limsup f,, sont mesurables ;

(i) la fonction lim f,, est mesurable sur son domaine, c’est a dire sur [’ensemble
mesurable C' ot la suite de fonctions (f,) converge simplement ;

(iii) si g est une fonction mesurable quelconque de X dans R (par exemple la
fonction nulle), alors la fonction f définie par

f(z) = lim f,(z) sizeC
f(z) = g(z) sinon
est mesurable de X dans R.

REMARQUE III-17. On rappelle que la limite supérieure (respectivement infé-
rieure) d’une suite d’éléments de R est sa plus grande (respectivement plus petite)
valeur d’adhérence dans R. La limite supérieure et la limite inférieure existent tou-
jours dans R, pas forcément dans R.

DEMONSTRATION. Soit (f,,) une famille de fonctions mesurables, on va montrer
par exemple que inf f,, est mesurable. On ne va pas travailler avec les boréliens
directement, mais on va choisir une famille génératrice commode ; par exemple, les
intervalles [ar, +00] (Cf Exemple II-17). Soit donc A, = {inf f, > a}, avec a € R, le
but est de montrer que A, est mesurable. Or A, = {z;Vn € N, f,(z) > a}, donc

Aa = mnENfgl([&a +OO])7

qui est mesurable comme intersection d’ensembles mesurables ; cela acheve la preuve
de la mesurabilité de inf f,,. La mesurabilité de sup f,, s’en déduit, puisque sup f,, =
—inf(—f,). (Exercice : Refaire la preuve avec les ]a, +o0]; puis avec les [—o00, af ;
puis avec les [—o0, af.)

Montrons ensuite, par exemple, que limsup f,, est mesurable. Idem, il suffit de
montrer que B, = {limsup f,, > a} est mesurable, pour tout a € R. Or dire que z
appartient a B,, c’est dire que pour tout € > 0, f,,(z) prend une infinité de fois une
valeur supérieure ou égale a o — ¢. Les € > 0 forment une famille non dénombrable,
mais on ne perd rien en la renplacant par la famille dénombrable des 1/k : C,
est I’ensemble des z tels que :pour tout k, pour tout n il existe m > n tel que
fm(z) > a —1/k. Autrement dit,

Ca = ﬂ ﬂ U fr;1<[a - 1/k7 +OO])7
keN neN meN
donc C,, est bien mesurable, ce qui conclut la démonstration du point (i). (Exercice :
Refaire la preuve avec les |a, +00] ; puis avec les [—o0, ] ; puis avec les [—o0, a.)
(ii) L’ensemble C' des points de convergence est 'union de trois ensembles qui
d’apres (i) sont tous mesurables :
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- ensemble ou f, — +o00, i.e. liminf f,, = +00;

- ’ensemble ou f,, — —o0, i.e. limsup f,, = —o0;

- 'ensemble ou f,, converge dans R, i.e. liminf f,, < 400 et limsup f,, > —oc et
limsup f, — liminf f,, = 0.

On peut donc considérer C' comme espace mesuré, et on en déduit (ii) grace a la
Proposition III-7.

(iii) découle de (ii) et de la Proposition III-8. O

REMARQUE III-18. Pour traiter oo, on aurait aussi pu dire que {f,, — +o0} =
{liminf f,, = +o00} N {liminf f,, = +00} est mesurable comme intersection de mesu-
rables. Mais en tout cas on ne peut pas traiter de facon unifiée oo et R, car I'ex-
pression limsup f,, —liminf f,, n’est pas définie si les deux sont égales a 400 ou —00;
et on ne peut pas non plus passer par C' = Uyer{liminf f, = a} N {limsup f,, = a}
car la somme n’est pas dénombrable !

ExeEmpPLES III-19. (i) Soit f : R — R une fonction dérivable, alors sa dérivée
est mesurable. En effet, ¢’est la limite simple de la suite de fonctions continues

gr(x) = k[f(z + 1/k) — f(z)].
Bien noter que la dérivée n’est pas forcément continue.

(ii) Une série de Fourier définit une fonction mesurable sur son domaine de
convergence ; de méme pour une série entiere. Rappelons que de telles sé-
ries peuvent ne pas converger, et méme quand elles convergent, leur valeur
limite n’est pas forcément continue.

(iii) L’intégrale de Riemann étant définie par un procédé de limite, les fonctions
définies comme des intégrales de Riemann a parametre sont mesurables. On
verra au Chapitre IV que cet énoncé se généralise a des intégrales a parametre
définies dans la théorie de Lebesgue.

EXERCICE III-20. Redémontrer les points (ii) et (iii) du Théoreme III-16 quand
les f,, sont a valeurs dans R, sans faire référence a des liminf et lim sup, via le critere
suivant : une suite de nombres réels converge si et seulement si elle est de Cauchy.
En déduire que les points (ii) et (iii) du Théoreéme III-16 restent vrais quand Iespace
d’arrivée R est remplacé par un espace métrique complet arbitraire (Commencer par

prouver la mesurabilité de 1’ensemble des points & pour lesquels la suite (f,(z)) est
de Cauchy.)

En s’insiprant de ’exercice I1I-20 on pourra démontrer la généralisation suivante :

THEOREME ITI-21 (stabilité de la mesurabilité par limite, cas général). Soit
(fn)nen une famille de fonctions mesurables sur un espace mesurable (X, A), d
valeurs dans un espace polonais Y muni de sa tribu borélienne. Alors la fonction
lim f,, (éventuellement étendue arbitrairement hors du domaine de convergence) est
mesurable. Plus précisément,

(i) lensemble C' des points de convergence de (f,) est mesurable ;
(ii) la fonction lim f,, est mesurable de C' dansY ;

(iii) si g est une fonction mesurable quelconque de X dans 'Y, alors la fonction
f définie par

f(z) = lim f,(x) sixzeC
f(x) = g(z) sinon
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est mesurable de X dans 'Y .

Pour conclure cette section, voici, sans démonstration compléte, deux résultats
frappants sur les isomorphismes mesurables, c’est a dire les applications a la fois
mesurables et inversibles.

DEFINITION I11-22 (isomorphisme mesurable). Soient (X,.A) et (Y, B) deux es-
paces mesurables. On dit que f réalise un isomorphisme mesurable entre X etY si f
est bijective et bimesurable, c’est a dire mesurable et d’inverse mesurable, fu A =B

et (f1) 4B = A.

Quand deux espaces mesurables sont mesurablement isomorphes, tout énoncé de
mesurabilité prouvé dans 1'un s’appliquera aussi a ’autre.

THEOREME ITI-23 (théoréme d’isomorphisme dans les espaces polonais). Soient
(X,A) et (Y,B) deux espaces polonais munis de leurs tribus boréliennes respectives,
et soient A un borélien de X, B un borélien deY . Alors A et B sont mesurablement
isomorphes, si et seulement si ils ont méme cardinalité.

THEOREME III-24 (théoréme de I'inverse mesurable). Soient X et Y deux espaces
polonais, munis de leurs tribus boréliennes respectives, A et B des boréliens de X et
Y respectivement, et f une bijection mesurable de A dans B. Alors f~1 est mesurable.

REMARQUES III-25. (i) Les deux théoremes précédents sont liés : le pre-
mier dit que s’il existe une bijection quelconque entre A et B, alors il existe
aussi une bijection bimesurable; le second (parfois appelé Théoréme de Ku-
ratowski) dit que s’il existe une bijection mesurable entre A et B, alors auto-
matiquement elle est bimesurable.

(ii) Il n’y a en fait que trois cas de figure : Soit A et B sont finis, soit ils sont
infinis dénombrables, soit ils ont le méme cardinal que R.

Je ne présenterai pas ici la preuve du Théoreme I11-23 ; on la trouvera en grand
détail dans [Parthasarathy, sections 1.2]. Pour le Th éoreme I1I-24 (objet de [Par-
thasarathy, section 1.3]), une preuve sera présentée pour les lectrices averties, dans
le Chapitre V; ce théoréme y sera replacé dans le cadre plus général de la théorie
descriptive des ensembles et des théoremes de sélection mesurable.

REMARQUES I11-26 (Mesurabilité, régle ou exception ?). (i) En conséquence
des théoremes de stabilité précédents (énoncés I11-7 & 111-24), la plupart (sinon
la totalité) des fonctions que I'on rencontre ou que ’on construit pour résoudre
des problemes d’analyse réelle sont mesurables. Par analyse réelle j’entends :
quand le cadre est R ou R™ ou une variété riemannienne de dimension finie,
munie de la tribu borélienne. Le plus souvent, on ne se donne méme pas la
peine de le mentionner, car la mesurabilité est presque automatique. En toute
rigueur, il faut cependant démontrer cette mesurabilité. En pratique il y a (a
peu de choses pres) une seule situation ou cela s’avere délicat : quand on prend
un supremum ou un infimum sur une famille de fonctions non dénombrables.
On reviendra sur cette question dans le chapitre VI.

(ii) La situation est un peu différente en théorie des probabilités, surtout dans
I’étude des processus stochastiques. D une part, dans ce contexte on considere
souvent des produits infinis indexés par un ensemble non dénombrable, pour
lesquels la mesurabilité peut étre une propriété non triviale. D’autre part,
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dans ce domaine on est souvent amené a définir des tribus plus ou moins
grandes, emboitées les unes dans les autres, pour encoder de l'information
par rapport a la dépendance aux variables aléatoires. Dans ce cas les tribus
sont bien plus grossieres que la tribu borélienne, et la mesurabilité pourra
étre facilement violée. Voici un exemple classique : soit X = {0,1}Y, que
I’on interprete comme ’espace des suites de résultats obtenus par une infinité
dénombrable de tirages pile ou face (0 pour face, 1 pour pile). On décide
naturellement que toutes les parties de {0, 1} sont mesurables (et ouvertes).
Il serait naturel d’introduire une fois pour toutes la tribu produit sur X, qui
rend mesurables toutes les applications coordonnées oy, : © — x}. ; ¢’est aussi
la tribu borélienne sur le produit. Cependant, dans une perspective stochas-
tique, on préfere souvent munir X de la famille de tribus emboitées (A, )nen,
ou A, est la tribu engendrée par les applications oy,...,0, (constituée des
parties cylindriques dont la base est un sous-ensemble arbitraire des n pre-
miers facteurs). Un indice n étant fixé, il existe bien str de trés nombreuses
fonctions qui ne sont pas A,,-mesurables (& commencer par o,1).

(iii) Si X est un espace topologique, muni de sa tribu borélienne, on a vu que
toute limite simple d’une suite de fonctions continues est mesurable. Il est
naturel de se demander si la réciproque est vraie ; dans un tel cas on pourrait
définir les fonctions mesurables comme les limites de fonctions continues. La
réponse est négative : on ne peut pas en général approcher une fonction
mesurable par des fonctions continues. Cependant, sous certaines hypotheses
topologiques (compacité locale, par exemple), la réponse devient positive si
I'on s’autorise a oublier un ensemble de mesure nulle : c¢’est un corollaire du
théoréme de Lusin, présenté a la fin de ce chapitre. Dans le méme esprit,
le théoréme de Vitali-Carathéodory montrera que I'on peut approcher
une fonction mesurable par des fonctions semi-continues, par au-dessus ou
par en-dessous, au prix d’une erreur arbitrairement petite sur I'intégrale.

IT1-1.3. Tribu engendrée par une fonction mesurable.

THEOREME III-27 (tribu engendrée par une fonction). (i) Soient X un espace
quelconque et (Y, B) un espace mesurable, et soit f une application quelconque de X
dans Y. Il existe alors une plus petite tribu sur X qui rende f mesurable ; on la note
o(f). Elle est faite de tous les ensembles f~*(B), ou B est une partie mesurable
quelconque de Y .

St au départ X est un espace mesurable, muni d’une tribu A, et f est mesurable,

alors o(f) C A.

(ii) Plus généralement, soient X un espace quelconque, (Yi, Bi)ier une famille
d’espaces mesurables indexés par un ensemble T arbitraire ; pour tout t € T on se
donne une fonction f; + X — Y,. Alors il existe une plus petite tribu sur X qui
rende mesurables toutes les applications fi ; on la note o((fi)er). Si X est au départ
un espace mesurable, muni d’une tribu A, et chacune des f; est mesurable, alors

o((fder) C A

DEMONSTRATION. L’énoncé (i) est une conséquence immédiate des définitions,
et des formules

fﬁl(ﬂBk) Iﬂffl(Bk); fﬁl(UBk) :Uffl(Bk)-
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Pour I’énoncé (ii), on construit la tribu o((f;)ier) comme U'intersection de toutes les
tribus contenant toutes les tribus o(f;). O

Intuitivement, la tribu engendrée par une fonction mesurable f est faite des
parties dont la définition “ne fait intervenir que les valeurs de f”; une fonction
mesurable pour la tribu o(f) est donc une fonction qui “ne dépend que de f” — une
propriété qu’il peut étre utile de formaliser dans des contextes tres variés. Essayons
de caractériser ces fonctions. Pour se convaincre que le probleme est assez subtil,
expliquer pourquoi la “démonstration” ci-dessous est incomplete.

PRETENDU THEOREME II1-28 (fonctions mesurables pour o(f)). Soient X un
espace quelconque, et Y et Z deux espaces mesurables. On se donne f une fonction
quelconque de X dans'Y, et on munit X de la tribu o(f). On suppose en outre que
les singletons de Z sont mesurables. Alors les fonctions mesurables de X dans Z
sont exactement les fonctions de la forme ® o f, ou ® est une fonction mesurable de
Y dans Z.

PRETENDUE DEMONSTRATION. Soit g une fonction mesurable de X dans Z. On
pose B = f(X). On va construire une fonction mesurable ® sur B telle que g = ®of.
On pourra ensuite attribuer une valeur quelconque a ® sur Y\ B.

Soit maintenant z € Z, par hypothése {2} est mesurable, et A, := g7 ({z}) est
un élément de o(f), il s’écrit donc f~1(B,) avec B, mesurable, que I’on peut choisir
inclus dans B. Les B, sont deux a deux disjoints : si y € B, N B, avec z # 2/, alors
on écrit y = f(z), don z € fYB,)N fH(By) = g '({z}) Ng {7} = 0. Tls
recouvrent par ailleurs B, puisque tout élément y de B s’écrit sous la forme f(z),
on peut alors poser z = g(z) et on a x € A,, dot z € f~1(B,), dou f(z) € B..
Tout y € B appartient donc a un unique B,, et on peut alors poser ®(y) =z. O

On trouvera un peu plus loin une variante un peu moins ambitieuse, mais rigou-
reuse (Théoreme I11-40).

I1I-1.4. Fonctions mesurables et complétion. Le théoreme suivant fait le
lien entre fonctions mesurables pour une tribu, et fonctions mesurables pour la tribu
complétée.

THEOREME I1I-29 (mesurabilité pour la tribu complétée). Soit (X, A, u) un
espace mesuré, et soit A la complétion de A pour ; soit f une fonction mesurable
pour la tribu A. Alors il existe une fonction g, mesurable pour la tribu A, telle que
f =g, p-presque partout.

La preuve de ce théoreme est remise a la section I11-2.2; elle reposera sur une
tres efficace méthode d’approximation des fonctions mesurables.

III-2. L’intégrale selon Lebesgue

De la méme facon que les ensembles mesurables sont ceux dont on définit la
mesure, les fonctions réelles mesurables sont celles dont on espere définir 'intégrale.

On a vu dans la section précédente I'extréme généralité de la notion de fonction
mesurable, et en conséquence on pourra intégrer de tres nombreuses fonctions dans
la théorie de Lebesgue. Le principal prix a payer sera la renonciation aux compensa-
tions. Dans le cas de I'intégrale de Riemann, on a diverses recettes pour traiter des
intégrales semi-convergentes, dans lesquelles de grandes valeurs positives et néga-
tives proches se compensent, dans des procédés de limite ad hoc, qui font intervenir
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la structure de I'espace de définition. Par exemple, au voisinage d’un point de R on
a de grandes valeurs positives d’un coté et négatives de 'autre, et on peut définir
des approximations bien choisies a I'approche de ce point singulier. En théorie de
Lebesgue, on pense aussi peu que possible a I’ensemble de départ (qui peut étre tres
général), on se concentre sur les valeurs; cela rend impossible en pratique un bon
traitement des compensations. Le plan est donc de séparer tout simplement parties
positive et négative, décrire [ f = [ fi — [ f- et de définir séparément les deux
intégrales ; la question est alors d’intégrer les fonctions positives.

Il peut subsister un probleme si I'intégrale diverge (vaut formellement +o0), mais
ce n’est pas bien grave : attribuons dans ce cas explicitement la valeur 400 quand
cela se présente. On peut méme, si cela est commode, autoriser la fonction intégrée
a prendre ses valeurs dans [0, +00]. Si les deux intégrales [ fi et [ f_ sont infinies,
on ne parviendra pas & dire la valeur de [ f; il faut peut-étre alors, en amont de
la procédure de Lebesgue, introduire un redécoupage de l'intégrale, ou définir un
procédé limite ; c’est une autre histoire.

Dans cette section, on commencera donc par définir I'intégrale des fonctions posi-
tives, en les approchant par des fonctions tres simples : prenant seulement un nombre
fini de valeurs. Ensuite, quand cela aura un sens, on généralisera aux fonctions si-
gnées (i.e. a valeurs positives ou négatives).

IT1-2.1. Fonctions simples. Comme dans la théorie de Riemann, on définit la
valeur de I'intégrale d’une fonction en 'approchant par des fonctions particuliere-
ment simples, pour lesquelles la valeur de l'intégrale est indiscutable. Mais au lieu
des fonctions constantes par morceaux, c’est une classe bien plus grande qui jouera
un role privilégié : les fonctions mesurables prenant un nombre fini de valeurs, aussi
appelées fonctions simples.

DEFINITION III-30 (fonction simple). Soit (X,.A) un espace mesurable. On ap-
pelle fonction simple positive (ou juste fonction simple, ou fonction étagée) une
fonction de la forme

N
f= ZaklAka
k=1

ot les ay, sont des nombres positifs (éventuellement +00) et les Ay, sont des parties
mesurables formant une partition de X.

Les deux criteres suivants, presque évidents, sont laissés en exercice.

ProposiTION III-31 (reformulation de la simplicité). (i) Soit (Ag)i<k<ny une
famille finie de parties mesurables, pas forcément une partition, et soit (ou)i<k<n
une famille de nombres réels positifs (éventuellement +00); alors f = > cyla, est
simple.

(ii) Une fonction positive f est simple si et seulement si elle est mesurable et
prend un nombre fini de valeurs.

REMARQUES III-32. (i) La condition de positivité est imposée ici unique-
ment parce que nous avons pour but de définir d’abord 'intégrale des fonc-
tions positives. Mais la définition des fonctions simples s’étend a des fonctions
a valeurs dans un espace mesurable quelconque, pas forcément R, : on dira
juste qu’une fonction est simple si elle est mesurable et ne prend qu un nombre
fini de valeurs.



92 CHAPITRE III (1" janvier 2026)

(ii) Simples au sens de leurs valeurs (un ensemble fini), les “fonctions simples”
peuvent néanmoins étre tres complexes dans leurs variations : aussi complexes
que peuvent 1’étre les ensembles mesurables.

La définition de l'intégrale d’une fonction simple sous le sens :

DEFINITION I11-33 (intégrale d'une fonction simple). Une fonction simple posi-
tive f étant donnée sur l’espace mesuré (X, A, p), avec les notations de la Défini-
tion III-30, on pose

N
[ Fan =" anul,
k=1

avec la convention 0 x (4+o00) = 0.

PROPOSITION III-34 (Invariance de 'intégrale des fonctions simples). (i) Si f =
Y agla, est une fonction simple, avec les oy, positifs mais les Ay ne formant pas
forcément une partition, alors on a toujours

/fd,u = i::ak,u[Ak]-

(ii) Si f est une fonction simple prenant les valeurs oy, ..., ax € [0,+00], alors

[ Fan=3" anulf ],

Cette derniére proposition, intuitive, est laissée en exercice (fastidieux et pas si
simple!).

ProrosiTION III-35 (additivité de l'intégrale des fonctions simples). Soient f
et g deux fonctions simples positives, alors pour tous o, 5 € Ry, la fonction af + Bg
est simple, et

Jtar+sgydn=a [ rau+s [gan

DEMONSTRATION. Ecrivons f = 3" a;14,, g = > bilp,, ol les (A;) et les (By)
forment deux partitions de X. Alors af + g = ij(aaj + Bbr)14,nB, est bien une
fonction simple, et la valeur de son intégrale est

> (aa; + Bby)p[A; N Bi] =« Z ;O A NBl) +8) bk(z plA; 0 Byl)

jk

=a Z a;u[A; N (UBR)] + B8 bpp[(UA;) N By
=a Z a;u[A;] + B bepl By

(On peut aussi déduire cet énoncé de la Proposition 111-34.) O

I11-2.2. Approximation des fonctions mesurables. C’est un résultat élé-
mentaire et fondamental que toute fonction mesurable positive peut étre approchée
par des fonctions simples :
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THEOREME I11-36 (approximation par des fonctions simples). Soit f une fonc-
tion mesurable sur un espace mesurable (X, A), d valeurs dans [0, +00]. Alors il existe
une suite croissante (¢n)nen de fonctions simples positives, qui converge simplement
vers f.

Si f est bornée par M, on peut en outre imposer @, — pn_1 < M/2", oo =0 et
si f est non bornée, on peut imposer o, — @1 < 1ig>n +27".

Si X est muni d’une mesure o-finie p, on peut en outre imposer da chaque @,
d’étre nulle en-dehors d’un ensemble de mesure finie.

DEMONSTRATION. Soit d,, = 27", on pose ¢, (x) = ko, si f(x) € [k, (k+1)d,]
et f(x) <n; eu(z) =nsi f(z) > n. Il est facile de vérifier que ¢, (x) converge vers
f(z) pour tout z. D’autre part, si f(x) € [kdn, (k+1)d,[, alors f(x) € [2kd,11, (2k+
2)0p41], done p,41(x) vaudra soit 2kd, 11, soit (2k+1)d,41, soit (2k+2)d,11, et dans
tous les cas sera supérieur ou égal a ¢, ().

Dans le cas ol on se donne une mesure o-finie p, on a X = UX,,, avec u[X,] <
+00, et on peut poser @, = p,lx, pour prouver la derniere partie de I’énoncé. [

©n Pn4+1

F1GURE 1. Approximation d’'une fonction mesurable par des fonctions simples

COROLLAIRE III-37 (une fonction mesurable est combinaison dénombrable de
fonctions indicatrices). Soit f une fonction mesurable, d valeurs dans Ry U {+o0}.
Alors il existe des nombres réels positifs (cx)g>1 et des ensembles mesurables (Ag)ren

tels que
f= Z crla,.
k=1

ExXERCICE III-38. Utiliser une variante de la construction précédente pour mon-
trer que 'on peut choisir la famille (¢;) a priori parmi l’ensemble des suites qui
convergent vers 0, et dont la série diverge (par exemple, ¢, = 1/k fait 1'affaire).

On peut étendre ce résultat a des espaces bien plus généraux :

THEOREME I11-39 (approximation par des fonctions simples, encore). Soit f une
fonction mesurable entre espaces mesurables (X, A) et (Y,B). On suppose que Y est
un espace polonais et B sa tribu borélienne; on note (yx)ren une suite dense dans
Y. Alors il existe une suite (on)nen de fonctions simples, prenant ses valeurs dans
{Ur }ren, telle que @, converge simplement vers f.
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La démonstration du Théoréeme I11-39 est laissée en exercice.

Pour illustrer I'intérét de ces théorémes d’approximation, voyons comment les
utiliser pour résoudre le probleme abordé dans le paragraphe I1I-1.3, dans un cadre
légerement restreint ; et dans la foulée pour démontrer le Théoreme I11-29.

THEOREME I11-40 (fonctions mesurables pour o(f)). Soient X un espace quel-
conque, Y un espace mesurable, et Z un espace polonais, muni de sa tribu borélienne.
On se donne f une fonction quelconque de X dans Y, et on munit X de la tribu
o(f). Alors les fonctions mesurables de X dans Z sont exactement les fonctions de
la forme ® o f, ou ® est une fonction mesurable de 'Y dans Z.

DEMONSTRATION. 1. Soit ¢ une fonction simple de X dans Z. Comme g prend
un nombre fini de valeurs, la tentative de démonstration présentée au paragraphe I11-
1.3 aboutit (pourquoi ?) et permet de construire une fonction ® mesurable, telle que
g=oof.

2. Considérons pour commencer le cas ou Z = R,. Par le Théoreme III-36 on
peut construire une famille g, de fonctions simples, o(f)-mesurables, convergeant
simplement vers g. En particulier, il existe ®, mesurable tel que g, = ®, o f. La
fonction ® := lim sup ®,, est mesurable, et pour tout z € X on a

g(x) = lim gy (z) = lim @y, (f(2)) = limsup &, (f(x)) = (Limsup ©,)(f(z)) = ©(f(z)).

3. Si maintenant Z = R, écrivons ¢ = g, — g_ avec g+ > 0; par I'étape 2,
gr =®PLof doug= (P, —P_)o f, ce qui conclut la preuve.

4. Enfin si Z est un espace polonais quelconque, on peut raisonner de méme en
appliquant I’Exercice II1I-20 et le Théoreme I11-39. O

DEMONSTRATION DU THEOREME I1I-29. En décomposant f en parties posi-
tives et négatives, on se ramene au cas ou [ est positive. Soit f une fonction mesu-
rable pour la tribu A ; d’apres le Corollaire I111-37, on peut écrire

f= Z crla,,
k=1

ol les ¢, sont des nombres positifs, et les A, sont des éléments de A. Par définition
de la tribu complétée, pour tout k on peut écrire A, = By U E), E, C Ny, avec
By, E, € A et u[Ni] = 0. On pose alors N := UNg, et g =Y clp,. O

EXERCICE III-41. En utilisant le méme argument, démontrer la Proposition I1I-
8(ii).
Maintenant le théoreme d’approximation des fonctions mesurables par des fonc-

tions simples permettra de construire l'intégrale des fonctions mesurables positives
a partir de I'intégrale des fonctions simples.

I11-2.3. Intégrale des fonctions positives.

DEFINITION IT1-42 (intégrale d’une fonction positive). Soient (X, A, p) un espace
mesuré, et f une fonction mesurable sur X, d valeurs dans [0,400]. On appelle
intégrale de f pour la mesure pu, et on note

/fdu
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(o [ fawow [ s@ane) ou [ fe)utan))

sup{/gdu; g simple; 0 < g < f} € [0, +o0].

la quantité

REMARQUE III-43. (i) Le supremum est pris sur une classe non vide, puisque
la fonction nulle est admissible.

(ii) Si f est une fonction simple, cette définition coincide avec la Définition I11-33.

(iii) On verra dans le chapitre suivant que

/fduznlggozgnu Hw flz) 2 Qﬁn}] :
keN

ce qui justifie I'intuition suggérée par la figure 1 au Chapitre I. En ce sens,
I'intégration de Lebesgue est bien un procédé de sommation par tranches.

(iv) Si A est une partie mesurable de X, on peut considérer A comme un espace
mesuré et définir [ 4 f comme l'intégrale de la restriction de f a A; ou de fagon
équivalente, comme 'intégrale de la fonction mesurable f14; ou de fagcon équivalente
comme l'intégrale de la restriction de f a A par rapport a la restriction de u a A.
On note que si u[A] = 0, alors la restriction de p a A est la mesure nulle, et en
particulier [ 4 fdu=0.

EXERCICE I11-44. Soit C' la mesure de comptage sur N, muni de la tribu triviale
P(N). Qu’est-ce qu'une fonction étagée sur N7 Montrer que si f : N — [0, +o0],

alors [ fdC =3 . f(n).

DEFINITION III-45 (fonctions intégrables). Si f est une fonction mesurable po-
sitive d’intégrale finie, on dit qu’elle est intégrable, ou sommable.

La proposition suivante rassemble quelques propriétés élémentaires de 'intégrale.
Comme les ensembles négligeables (ceux qui sont inclus dans un ensemble de mesure
nulle) ne jouent aucun role dans la valeur de l'intégrale, il est commode de I’exprimer
en utilisant la terminologie ci-apres.

DEFINITION I11-46 (presque partout). Soit (X, u) un espace mesuré. On dit
qu’une propriété est vraie p-presque partout (ou dp-presque partout, ou du-p.p.,
ou p.p.) si U'ensemble des éléments de X qui ne vérifient pas cette propriété est
négligeable.

PROPOSITION I11-47 (Propriétés élémentaires de 'intégrale des fonctions posi-
tives). Soient (X, A, p) un espace mesuré, et f, g deux fonctions positives mesurables
sur X.

(i) Si [ fdp < +o0, alors f est finie p-presque partout ;
(it) Si [ fdp =0, alors f est nulle p-presque partout ;

(iii) Si f < g p-presque partout, alors [ f < [g. En particulier, si g est
sommable, alors f [’est aussi.

(i) Si f =g p-presque partout, alors [ f = [g.
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(v) Si A et B sont deux parties mesurables disjointes, et f est une fonction

mesurable positive, alors
e
AUB A B

DEMONSTRATION. (i) Si A = f~!(+00) est de mesure strictement positive, alors
la famille de fonctions simples (k14)gen montre que le supremum dans la définition
de l'intégrale de f est infini, d’ot [ f = +o0.

(ii) Supposons que [ f = 0; soit £ > 0. Si la mesure de F. := {z; f(z) > ¢}
était strictement positive, on pourrait construire une fonction simple valant ¢ sur
F., positive et d’intégrale strictement positive, minorant f, donc l'intégrale de f
serait strictement positive. C’est faux par hypothese, donc F, est de mesure nulle.
En conséquence, ’ensemble des points ou f n’est pas nulle est de mesure nulle, car
c’est la réunion dénombrable des F /. (kK € N), qui sont tous de mesure nulle.

(iii) est évident par construction : si f < g presque partout, soit ¢ une fonction
simple minorant f, on redéfinit ¢ sur ’ensemble négligeable ou f > g, en lui attri-
buant la valeur 0 sur cet ensemble. La fonction ainsi obtenue est simple, minore g
et a méme intégrale que ¢. On passe ensuite au supremum sur toutes les fonctions
simples ¢ minorant f.

(iv) résulte de (iii).

(v) est laissé en exercice. O

I11-2.4. Intégrale des fonctions sommables.

DEFINITION 11148 (fonctions sommables). On appelle fonction sommable une
fonction mesurable a valeurs dans R telle que |f| est sommable. Alors la partie
positive f. = max(f,0) de f, et sa partie négative f_ = max(—f,0), étant majorées
par |f|, sont toutes deux sommables, et on pose

Jr-(fo) - (J-4)

REMARQUE III-49. Plus généralement, on peut définir [ fdu dans R dés que
I'une au moins des fonctions f, et f_ est sommable.

La proposition suivante est conséquence facile de la définition de l'intégrale et
des propriétés précédentes.

PROPOSITION III-50 (propriétés élémentaires de l'intégrale des fonctions som-
mables). Soient (X, A, u) un espace mesuré, et f une fonction mesurable de X dans

R. Alors,
(i) Si |f| est majoré par une fonction sommable, alors f est sommable ;

(ii) Si f est sommable, alors
JEEYAE

(iii) Si f et g sont deux fonctions sommables, et f < g presque partout, alors

[f< /g

(iv) Si A et B sont deux parties mesurables disjointes, et f est une fonction
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EXEMPLE III-51. Si X est de mesure finie, toute fonction bornée est sommable.
En effet, |f| est alors majoré par une fonction constante ¢, dont l'intégrale vaut

cp[X].

III-3. L’intégrale est une forme linéaire positive

On rappelle qu'une forme linéaire L sur un espace vectoriel E est une application
linéaire de E' dans R compatible avec les opérations d’addition et de multiplication
par un scalaire. Quand ’espace E est un espace de fonctions a valeurs réelles, on
dit que L est positive si elle prend des valeurs positives sur toutes les fonctions
positives.

Dans le cas présent, il est évident que I'intégrale d’'une fonction sommable positive
est positive. Il est & peine moins évident que [(Af) = A [ f pour toute fonction f
sommable et pour tout scalaire A. En. revanche, la relation capitale [(f + g) =
(] f) + ([ g) est beaucoup plus subtile!

I11-3.1. Addition des fonctions positives.

THEOREME I11-52 (addition des intégrales des fonctions positives). Soient f et
g deux fonctions positives mesurables sur un espace mesuré (X, u). Alors

/(f+g)du=/fdu+/gdu-

En particulier, f + g est sommable si (et seulement si) f et g le sont.

DEMONSTRATION. 1. Si [ f = 400 ou [ g = +00, alors par comparaison [(f +
g) = +oo et il n’y a rien a démontrer. Supposons donc que ces deux intégrales sont
finies. Soient ¢ et ¥ des fonctions simples telles que 0 < ¢ < f, 0 < ¢ < g, et
Jf<[Je+e [g<[w+e. Dapres la Proposition ITI-35, ¢ + ¢ est simple, et

[+ [os [o [orze=[wroresz [Grg+e

En faisant tendre € vers 0, on obtient

[+ [a< [t+a

2. Par la Proposition I11-36, on peut trouver des suites croissantes (¢y) et (V)
de fonctions simples telles que 0 < ¢, < f, 0 < ¥ < g, convergeant simplement
vers f et g respectivement. Soit 6 € (0,1) arbitraire, on pose

A= {; on(@) = (1-6) f(2), (@) = (1-9) g(a) }.

Les Ay forment une famille croissante; si f(z) + g(x) < +o0, alors © € A pour k
assez grand (c’est évident si f(z) = 0, tandis que si f(z) # 0 la limite de pg(x)
est strictement plus grande que (1 — §)f(x)). On a donc X = UA, U Z, ou Z est
I'ensemble des x pour lesquels f(z) = +o0o ou g(z) = +o0. Puisque f et g sont
sommables, Z est un ensemble négligeable.

Soit x une fonction simple minorant f + g. Par additivité de l'intégrale des
fonctions simples,

/f+/92/90k+/¢k2/AkSOkﬂL/AkW:/Ak(SOkﬂLW)-
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Par la définition de Ay et la positivité de I'intégrale, on a

/AkmwwzAk<1—6>x:<1—5>Akx.

Ecrivons X sous la forme <j<r O 1p,. Puisque les A;. forment une famille crois-
sante et que p[X \ (UA)] =0, on a

/A X = Zaj plAN B —— Z@j u[(UAg) N B;] = Z%’ u[(UAx) N B)] = /X-

En passant a la limite quand & — oo dans l'inégalité

/f+/92(1—5)/Akx,
/f+/92(1—5)/X\Z><=(1—5)/XX-

En faisant tendre ¢ vers 0, on obtient

/f+/gz/x

Puisque y est une fonction simple arbitraire minorant f + g, on a finalement
/f+/92/(f+g)-

REMARQUE III-53. Dans le chapitre suivant, un raisonnement exactement simi-
laire permettra de démontrer le théoreme dit de convergence dominée de Lebesgue.
En fait, dans la plupart des ouvrages de référence on démontre d’abord le théoreme
de convergence dominée, et on en déduit ensuite I’additivité de 'intégrale.

on trouve donc

OJ

I11-3.2. Généralisation : fonctions sommables. Le Théoreme III-52 en-
traine facilement la linéarité de 'intégrale des fonctions sommables.

THEOREME I11-54 (linéarité de Uintégrale). Soient (X, p) un espace mesuré ; f,
g deux fonctions sommables sur X, a valeurs dans R ; et o,  deux scalaires. Alors
af + Bg est sommable, et

Jiar+sman=a( [ran)+o( [aa).

En particulier, ['intégrale est une forme linéaire positive sur l’espace vectoriel des
fonctions sommables.

DEMONSTRATION. On note d’abord que [(af)dp = a(/[ fdu), et [(Bg) du =
B([ gdu). Il suffit donc de montrer que si f et g sont sommables de signe quelconque,

alors [(f +¢g)dp = ([ fdp) + ([ gdu). Pour cela on écrit
(f+9)+ = +9)-=F+9=U—f)+ (94 —9-)

d’ott (quand f et g sont finies, ce qui est vrai en-dehors d'un ensemble de mesure
nulle)

(f+gs+fotg-=fr+tgr+(f+9)-
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on integre alors les deux membres en utilisant le Théoreme I11-52 :

/(f+g)+du+/fdu+/gduz/f+du+/g+du+/(f+g)du.

Toutes ces quantités sont finies puisque | f| et |g| sont intégrables, on en déduit donc

/(f+g)+dﬂ—/(f+g)—du=/f+dﬂ—/f—ddu+/g+du—/g-du,

soit [(f+g)dp= [ fdu+ [gdp.

Le raisonnement précédent montre bien que l'intégrale par rapport a p est une
forme linéaire. Enfin la propriété de positivité est évidente : si f est mesurable
positive, alors [ fdp > 0. O

DEFINITION III-55 (espace de Lebesgue). Si (X, A, u) est un espace mesuré,
’espace wvectoriel des fonctions sommables est noté LY(X,p) (ou LY (X, A, un), ou
LY X, du), ou LY(X), ou L* (i), ou L*(du) ) et appelé espace de Lebesque d’exposant 1.

REMARQUE III-56. Soient f et g deux fonctions sommables, et A € R. Alors

[ = [is= [ 151
Jir+a< [ir1+10= 101+ [1al

= 181

définie sur L'(du), est donc proche de satisfaire les axiomes requis par une norme : il
lui manque seulement la propriété [|f| =0 = f = 0. Mais cette derniére identité
est évidemment fausse : on sait que [|f| = 0 si et seulement si la fonction f est
nulle hors d’un ensemble p-négligeable, ce qui n’impose pas a f d’étre identiquement
nulle, mais seulement nulle presque partout, ou “presque nulle”.

Si 'on veut transformer L' en espace vectoriel, muni de la norme [ |f], il faut
donc quotienter par la relation d’équivalence “coincider presque partout”. Deux fonc-
tions qui ne different que par un ensemble de mesure nulle seront alors considérées
“identiques”. Attention : cette opération de quotient n’est utile que si I'on veut
mettre a profit la structure d’espace vectoriel normé de 1’espace ainsi obtenu.

L’application

I11-3.3. Action sur les fonctions continues. On a vu que si X est un espace
mesuré de mesure finie, alors les fonctions bornées sont intégrables. Définissons la
norme de la convergence uniforme sur 'espace C,(X) des fonctions continues
bornées de X dans R par la formule

1 flloc := sup | f(2)].
zeX

On a alors 'énoncé suivant.

PROPOSITION III-57 (I'intégrale appartient a (Cp)*). Soit i une mesure de Borel
sur un espace X de mesure finie. Alors u définit une forme linéaire positive continue
sur espace vectoriel Cy(X) des fonctions continues bornées sur X, normé par la
norme de la convergence uniforme.
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REMARQUE III-58. La nouveauté par rapport au Théoreme I1I-54 est la conti-
nuité de pu. On rappelle qu'une forme linéaire L est dite continue si

PREUVE DE LA PROPOSITION III-57. Bien sir, toute fonction continue est bo-
rélienne, donc mesurable, et toute fonction mesurable bornée est intégrable. En

outre,
[o< [11= [ 15l = X015

Il s’ensuit que l'intégrale est bien une forme linéaire continue sur Cy(X), dont la
norme est majorée par le nombre positif u[X]. Le choix f = 1 atteint la borne, d’ou

el = wlX]- B

On peut construire ainsi de nombreuses formes linéaires continues sur Cp(X),
mais il n’est pas clair que ce soient les seules, méme dans des cas simples comme X =
R?. Cependant, si X est compact, le théoréme de représentation de Riesz assure que
toutes les formes linéaires continues sur C'(X) correspondent a des mesures. Dans ce
cas, bien stir, toutes les fonctions continues sont bornées. La prochaine section sera
I'occasion de démontrer un énoncé un peu plus général.

EXERCICE I11-59. (i) Admettons pour quelques instants que toute forme linéaire
continue sur un sous-espace fermé d'un espace vectoriel F peut se prolonger en
une forme linéaire continue sur £ tout entier (cette version du théoreme de Hahn—
Banach exige 'axiome du choix général). Etendre 'application “limite & Dinfini”
sur les fonctions continues R — R qui convergent a l'infini, en une forme linéaire
continue sur l'espace de toutes les fonctions continues bornées sur R, convergentes
ou non. Montrer que cette forme linéaire est finiment additive, mais pas o-additive,
et n’est donc pas une mesure.

(ii) Retournant maintenant a axiomatique de ce cours qui ne comprend pas
I'axiome du choix général, montrer qu’il est soit faux, soit indécidable, que Cp(R)*
soit, constitué de mesures.

I11-4. L’intégrale selon Riesz

Le résultat central de cette section, le théoreme fondamental de Riesz, s’applique
quand l'espace est localement compact, et atteint alors deux objectifs simultané-
ment :

e il identifie le dual de I’espace des fonctions continues a support compact ;

e il fournit une autre construction, alternative a celle de Lebesgue mais équiva-
lente, de I'intégration.

111-4.1. Enoncé du théoréme. Commencons par quelques définitions.

DEFINITION IT1-60 (espaces de fonctions continues). Soit X un espace topologique
arbitraire. Si f : X — R est une fonction continue, on appelle support de f le plus
petit fermé en-dehors duquel f est identiquement nulle. On note C(X) l’espace
des fonctions continues de X dans R, Cy(X) l'espace des fonctions continues
bornées sur X, et C.(X) l’espace des fonctions continues a support compact
sur X. Enfin, on note Cy(X) l’espace des fonctions f continues sur X qui tendent
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vers 0 a l’'infini, au sens ou pour tout € > 0 on peut trouver un compact K C X
en-dehors duquel |f| < e. Clairement,

C.(X) C Co(X) C Cy(X) C C(X).

L’ inclusion est stricte en général, sauf quand X est compact, auquel cas tous ces
espaces coincident. Les espaces Co(X), Co(X) et Cp(X), munis de la norme de la
convergence uniforme, sont des espaces vectoriels normés.

REMARQUE III-61. L’espace C.(X) n’est pas a priori complet (au sens usuel) : par
exemple, on peut facilement construire une fonction sur R, & support non compact,
qui soit limite uniforme de fonctions continues a support compact. En fait dans un
espace localement compact, la complétion de C.(X) est I'espace Cy(X) des fonctions
continues qui tendent vers 0 a l'infini. L’espace C,(X), en revanche, est complet.

La convention qui suit, interne a cette section, sera utile pour abréger quelques
formulations.

DEFINITION I11-62 (pré-régularité). Soit j une mesure de Borel sur un espace
topologique X . On dira que p est pré-réguliere si pour tout Borélien A de X,

u[A] = inf {u[O]; O ouvert; A C O}
(régularité extérieure) et pour tout ouvert B de X,
p[B] = sup {p[K]; K compact; K C B}.

THEOREME ITI-63 (théoréme de représentation de Riesz). Soit X un espace
topologique séparé, localement compact. Alors on peut identifier (mettre en corres-
pondance bijective)

- d’une part, les formes linéaires A sur C.(X), positives;

- d’autre part, les mesures de Borel p sur X, pré-régulieres et finies sur les
compacts ;
via les formules

Af = [ fdu, pour tout f € C.(X),
plO] = SUP{Af, felC(X), 0< f< 10}, pour tout ouvert O.

Avant de continuer, voici une liste de commentaires sur cet énoncé, qui admet
quelques variantes plus ou moins subtiles.

REMARQUES III-64. (i) L’hypothese de compacité locale est fondamentale.
L’espace de Wiener W = {v € C([0,1];R™); ~(0) = 0} ne la remplit pas.
On vérifiera en exercice que ses compacts (décrits par le théoreme d’Ascoli)
sont tous d’intérieur vide. L’espace C.(W) est donc réduit a {0} ! Pourtant il
existe des mesures non triviales sur W, telles que les mesures de Dirac, ou la
célebre mesure de Wiener décrite dans la section I1-2.

(ii) Dans I’énoncé, on ne peut pas remplacer C.(X) par I'espace plus gros Cy(X).
On peut en revanche le remplacer sans dommage par 'espace Cy(X), com-
plétion de C.(X) pour la norme de la convergence uniforme.

(iii) Dans la définition de “pré-régularité” on a imposé que l'identité plA] =
SUPgca 1K soit vérifiée pour tout ouvert. En fait cette identité sera alors
vérifiée automatiquement pour tout ensemble mesurable de mesure finie. En
particulier, si une mesure produite par le Théoreme de Riesz est de masse
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totale finie, alors elle est réguliere. Cette remarque s’averera utile plus tard
dans la démonstration du Théoreme VIII-66; il ne faut cependant pas y at-
tacher une grande importance, car en pratique, dans la grande majorité des
cas la régularité est automatique, par exemple grace aux Théorémes I1I-67
et 11I-68 présentés dans la sous-section suivante.

(iv) On peut, si on le souhaite, compléter la mesure p grace au Théoréme 11-93,
et obtenir donc une mesure complete.

(v) La preuve ne nécessite pas vraiment la linéarité de I'application A : il suffit de
savoir que A est une fonctionnelle positive, croissante (f < g = Af < Ag) et
sur-additive (A(f+g) > Af+Ag) sur 'espace des fonctions continues positives
a support compact. Cette remarque aussi sera utile pour la démonstration du
Théoreme VIII-66.

(vi) Sil'on réfléchit un peu a I’énoncé, on a I'impression que ’hypothese de pré-
régularité peut étre évitée : en effet, toute mesure de Borel finie p sur les
compacts définit bien une forme linéaire positive A sur C.(X). Cependant,
si 'on n’impose pas la pr’e-régularité, rien ne garantit a priori 'unicité de la
mesure j, correspondant a A.

Voici maintenant deux remarques d’ordre plus général :

REMARQUE II1I-65. Si pu[X] = 400, la forme linéaire A définie par p n’est pas
continue sur C.(X) considéré comme espace vectoriel normé (norme de la conver-
gence uniforme). En revanche, on peut munir C..(X') d’une topologie alternative bien
choisie, de sorte que A soit une forme linéaire continue en un sens bien précis. Je
n’en dirai pas plus sur ce probléme, dont la solution peut étre considérée comme le
point de départ de la théorie des distributions [Schwartz].

REMARQUE III-66. Le nom de “théoreme de représentation de Riesz” est égale-
ment donné a un autre théoréme, tres différent (description du dual d'un espace de
Hilbert, voir Chapitre VIII). Cette coincidence n’a rien de surprenant, Riesz étant,
avec Banach, I'un des principaux fondateurs de I’analyse fonctionnelle moderne.

Avant de passer a la preuve du Théoreme I11-63, je vais maintenant donner deux
énoncés simplifiés.

111-4.2. Enoncés simplifiés. L’hypothese de régularité est souvent vérifiée au-
tomatiquement, sous des hypotheses peu contraignantes sur X. On pourra donc
retenir les variantes explicitées ci-apres, qui n'utilisent pas explicitement ce concept.

THEOREME I11-67 (théoréme de représentation de Riesz, version simplifiée). Soit
X un espace topologique séparé, localement compact, dans lequel tout ouvert est union
dénombrable de compacts. Alors on peut identifier

- d’une part, les formes linéaires A positives sur Co(X) ;

- d’autre part, les mesures boréliennes p sur X, finies sur les compacts ;
via les formules

Af = [ fdu, pour tout f € C.(X)
plB] = sup{Af, feC(X), 0< f< 13}, pour tout borélien B.

Ces mesures sont automatiquement réquliéres.
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THEOREME I11-68 (théoréme de représentation de Riesz, cas métrique compact).
Soit X un espace topologique métrique compact. Alors on peut identifier

- d’une part, les formes linéaires A positives sur C(X);

- d’autre part, les mesures boréliennes p finies sur X ;
via les formules

Af = [ fdu, pour tout f € C(X)
plB] = Sup{Afv feC(X), 0< f< 13}, pour tout borélien B.

Ces mesures sont automatiquement régquliéres, et ces formes linéaires sont automa-
tiquement continues; on a alors

(12) [A]l = u[X].

DEMONSTRATION. Les Théorémes I11-67 et I11-68 s’obtiennent en combinant le
théoreme de représentation de Riesz avec les théoremes de régularité 11-64 et 11-62,

respectivement. En ce qui concerne (12), pour 1'égalité il suffit de choisir f = 1 dans
le calcul de sup [|Af]|/|| f|loo- O

Passons maintenant a la démonstration du Théoreme de Riesz. Il découlera assez
simplement du Théoreme de Carathéodory généralisé établi au Chapitre II, Théo-
reme II-82. D’autres approches sont possibles. Une démonstration compacte (!),
assez délicate, est proposée dans [Rudin, pp. 40-47] ; mais elle reprend plusieurs des
arguments utilisés dans la preuve du Théoreme 11-82. On voit ici l'intérét du Théo-
reme I1-82 : démontrer le Théoreme de Riesz via le Théoreme de Carathéodory lui-
méme, sous la forme du Théoreme II-78, est un formidable casse-téte! Une variante
de cette derniere démarche est menée a bien dans [Dudley], via un intermédiaire
délicat, le Théoreme de Daniell-Stone, qui traite de prolongement des fonctionnelles
linéaires positives (voir aussi [Rudin, p. 398]; in fine, la démonstration du Théoréme
de Riesz y fait intervenir le théoréme de convergence uniforme de Dini.

I11-4.3. Preuve du théoréme de Riesz. Soit X un espace séparé, localement
compact, et soit ;4 une mesure finie sur les compacts. Si f est une fonction continue
a support compact K, elle est bornée par la fonction sommable || ||« 1x, donc som-
mable. La forme linéaire A définie par Af := [ f du est donc bien définie sur C.(X),
et elle est évidemment positive.

C’est bien sir la réciproque qui est délicate. Soit A une forme linéaire positive
sur C.(X), montrons qu’il existe au plus une mesure p, satisfaisant aux hypotheéses
du Théoreme de Riesz, qui puisse la représenter. Soient u; et ps deux mesures
admissibles, et soit K un compact. Comme p; est finie sur les compacts, et pré-
réguliere, au sens de la Définition I11-62, on sait qu’il existe un ouvert O contenant
K tel que pu[K] > m[O] — ¢, on € > 0 est arbitrairement petit. Par le lemme
d’Urysohn, on peut construire une fonction continue ¢ encadrée par les fonctions
indicatrices 1x et 15. On a donc

fi2| K] —/1Kdu2 S/cpdm—/sodul S/lodm—m[O] < K] +e.

On conclut en faisant tendre € vers 0 que po[K| < p[K], et par symétrie py [K] =
po[K]. Il s’ensuit que p; et uo coincident sur les compacts; comme elles sont pré-
régulieres, elles coincident également sur les ouverts, et par suite (toujours par pré-
régularité) sur tous les ensembles mesurables. Cela prouve 1'unicité de p.
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Passons maintenant a la construction de p. L’idée est encore une fois d’approcher
les fonctions indicatrices des ouverts par des fonctions continues. Pour tout ensemble
ouvert O, on pose donc

ulO] = sup {Af; f € CLX); 0< f <o},

Le probléeme est maintenant de prolonger i a la tribu borélienne tout entiere. Comme
I’ensemble F de tous les ouverts de X est stable par intersection finie, le Théoreme I1-
82(ii) assure 'existence d'un tel prolongement si la condition (8) est satisfaite pour
tous A, B ouverts.

Dans un premier temps, vérifions que u est dénombrablement sous-additive sur
I'ensemble des ouverts : si (Og)ren est une famille d’ouverts, et O := UOQy, alors
plO] < 37, plOk]. En effet, soit f une fonction a support compact, 0 < f < 1o, et soit
K son support. K étant inclus dans I'union des Oy, on peut appliquer le théoreme I1-
42 de partition de l'unité pour trouver des fonctions continues y;,, ..., Xi,, telles que
0 < xi; <1, x4, a son support inclus dans Oy, et > x;, = 1 sur K. En particulier,

=0 xi)f= Zgj’

ou chaque fonction g; est a support compact dans O;;, et prend ses valeurs dans
[0,1]. On en déduit que

Af=> Mg <> pl0y] < plOy).
J J k
En passant au supremum sur f, on conclut que

pl0) < 37 40N,

Comme la famille F est également stable par union dénombrable, la définition
de la mesure extérieure se simplifie : dans le contexte présent,

p*[A] = inf {p[O]; O ouvert, A C O}.

En particulier, il est clair que p* coincide avec p sur F. Donc, si A et B sont deux
ouverts de X, I'inégalité

plA] < plANB]+ p[A\ B]
est conséquence de la sous-additivité de p*. Il nous reste uniquement a vérifier I'in-
égalité inverse, a savoir : pour tous ouverts A et B de X,
(13) WA B)+ A\ B] < A
Nous allons démontrer cette inégalité en deux étapes.
Etape 1 : u est sur-additive (et donc additive) sur F. Soient U et V' deux ouverts
disjoints, nous allons voir que
plUl+plV] < plUOV],

ce qui est un cas particulier de (13). Soient f et g deux fonctions continues a supports
compacts inclus dans U et V' respectivement, a valeurs dans [0, 1]. Les supports de
f et g étant disjoints, la fonction continue f + g est toujours a valeurs dans [0, 1];
et bien siir, son support est inclus dans U U V. 1l s’ensuit

Af+Ag=A(f+g) <plUUV]
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On conclut en passant au supremum sur toutes les fonctions f et g admissibles.

Etape 2 : cas général. C’est seulement a ce niveau de la construction que I'hy-
pothese de compacité locale va intervenir. Soient deux ouverts A et B de X, et soit
f une fonction a support compact K C AN B, a valeurs dans [0,1]. D’apres le
Lemme I1-43, il existe un compact K’ et un ouvert O’ tels que

KcO cK c AnB.

En particulier,
Af <[0T,
Par ailleurs,
A\B=A\(ANB)C A\ K,
et A\ K’ est un ouvert, d’ou
p AN Bl < AN\ K] = p[A\ K.

On a finalement

Af + 1 [AN B) < 0] + ulAN\ K.
Les ouverts O" et A\ K’ sont disjoints et leur union est incluse dans A; grace au
résultat de ’Etape 1, on peut compléter 'inégalité précédente comme suit :

Af + A\ Bl < plOT+ plA\ K'T = p[0" U (A\ K')] < p[4],
ce qui acheve la démonstration du théoreme.

Les Remarques I11-64 ne nécessitent pas de justification, sauf le point (iii) que je
vais maintenant considérer.

DEMONSTRATION DE LA REMARQUE I1I-64(111). Soit A la famille de toutes les
parties mesurables, et B I’ensemble de toutes les parties A € A tels que (a) u[A] <
o00; (b) plA] = sup{u[K]; Kcompact C A}. Le but est de montrer que B est
exactement ’ensemble de toutes les parties de mesure finie. Nous allons procéder en
deux temps.

1. On vérifie que AN C € B, pour tout compact C' et pour tout A € A. Pour
cela, on introduit

C = {A e A; ANC € B pour tout compact C}.

Il est clair que C contient X ; et plus généralement tous les fermés (car I'intersection
d'un fermé et d’'un compact est compacte). Si 'on montre que C est une classe
monotone, alors le Théoreme 11-77 (Lemme de classe monotone) impliquera que C
coincide avec la tribu engendrée par les fermés, qui est A tout entiere.

Montrons donc que C est une classe monotone. Si (Ay)sen est une famille crois-
sante d’éléments de C, et C' est un compact, pour tout £ € N et pour tout £ > 0 on
peut trouver un compact K, tel que u[(A,NC)\ K,] < 27%. Quitte & remplacer K,
par K7 U...UK,, on peut supposer que la suite (K}) est croissante ; et on a toujours
p[(AeNC)\ K] < e. La suite (u[Ky])ren est croissante et majorée par pu[ANC, elle
converge donc, et il existe £y € N tel que pour tout ¢ > ¢y on ait u[K¢\ K] < e. On
conclut facilement que u[(A,NC)\ Ky,] < 2¢, et la méme estimation vaut pour ANC,
ou A est I'union des A,. La conclusion est que C est stable par limite croissante.

Soient maintenant A et B dans C, soit C' un compact et soit € > 0. Soit K € ANC
un compact tel que pu[(ANC)\ K] < . Par ailleurs il existe un ouvert O contenant
BN C tel que u[O\ (BN C)] < e. On en déduit que p[(A\ B)NO\ (K \ O)] <
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pl(ANC)\ K]+ plO\ (BN C)] < 2. On en déduit que A\ B € C, et C est
donc stable par différence. Ceci acheve de prouver que C est une classe monotone,
et conclut 'argument.

2. On vérifie que tout A € A de mesure finie est en fait un élément de B. Soit
en effet A une telle partie, et soit € > 0. Il existe un ouvert O contenant A tel que
p[O] < p[A] + €. 1l existe un compact K contenu dans O tel que pu[O] > pu[K| — €;
en particulier u[O \ K] < 2e. Puisque A N K € B (par I'étape 1), il existe un
compact K’ contenu dans A N K tel que pu[(AN K)\ K'] < e. On en déduit que
PIAN K] < p[(ANK)\ K]+ p[A\ K] < p[(ANK)\ K]+ plO\ K] < e+ 2 = 3¢,
ce qui acheve I'argument. O

111-4.4. Complément : approximation des fonctions mesurables par des
fonctions continues ou semi-continues. Le théoreme de Riesz montre que sous
certaines hypotheses topologiques, on peut choisir les fonctions continues comme
point de départ de la théorie de l'intégration, au lieu des fonctions simples. On
peut se demander si cette idée peut étre approfondie, et s’il existe un analogue du
théoreme d’approximation par des fonctions simples, exprimé en termes de fonctions
continues. Les théoremes de Lusin et de Vitali-Carathéodory donnent une réponse
positive a cette question. Tous deux s’autorisent une erreur arbitrairement petite,
au sens de la mesure.

THEOREME I11-69 (Théoréme de Lusin). Soit X un espace topologique séparé
localement compact, et soit p une mesure de Borel réquliere sur X. Soit f: X — R
une fonction mesurable, nulle en-dehors d’un ensemble de mesure finie. Alors,

(i) pour tout € > 0 il existe une fonction continue f., a support compact, telle
que
inf f <inf f, <sup f. <supf
et f. coincide avec f en-dehors d’un ensemble de mesure inférieure ou égale a €.

(ii) En-dehors d’un ensemble de mesure nulle, f est limite d'une suite (f,) de
fonctions continues a support compact, prenant toutes leurs valeurs dans [inf f, sup f].

En utilisant de maniere anticipée le théoreme de convergence dominée, qui sera
démontré dans le chapitre suivant, on peut déduire du Théoréme de Lusin le corol-
laire suivant :

COROLLAIRE III-70 (Densité des fonctions continues). Soit X un espace topo-
logique séparé localement compact, et soit p une mesure de Borel régquliere sur X,
o-finie. Alors, pour toute fonction intégrable f sur X on peut trouver une suite
(fn)nen de fonctions continues d support compact, telle que

152l

DEMONSTRATION DU THEOREME II1-69. Démontrons les deux énoncés (i) et
(ii) en méme temps, en construisant une famille (f,),en de fonctions continues a
support compact, toutes comprises entre inf f et sup f, telles que p[{x; f(x) #
fn(x)}] < 1/n, et pour presque tout z € X, f(z) = f.(x) pour n assez grand.

Supposons d’abord que f est la fonction indicatrice d'un ensemble mesurable
A de mesure finie. Comme g est réguliere, il existe une suite (K,),eny de compacts
inclus dans A, et une suite (O, ),en d’ouverts contenant A, tels que p[O,\ K,] < 1/n.
Sans perte de généralité, on peut supposer la suite (K,) croissante et la suite (O,,)
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décroissante. Par le Lemme d’Urysohn II-41, pour chaque n il existe une fonction
continue ,,, a support compact dans O, a valeurs dans [0, 1], identiquement égale
a 1 sur K,,. La fonction ¢,, coincide avec f en-dehors de O,, \ K, qui est de mesure
inférieure ou égale & 1/n. En outre, si 'on pose G =NO,, et F =UK,,, N =G\ F,
alors pu[N| = 0; tout € X \ N appartient a K,, pour n assez grand, ou a X \ O,
pour n assez grand, et dans tous les cas on a alors ¢,(x) = f(z). En conclusion,
(¢n)nen remplit le cahier des charges.

Par combinaison linéaire, le résultat s’étend instantanément au cas ou f est une
fonction simple, nulle en-dehors d’un ensemble de mesure finie. Soit maintenant f
une fonction mesurable positive bornée, nulle en-dehors d'un ensemble S de mesure
finie; sans perte de généralité on suppose f < 1; on sait alors que f est limite
d’une suite croissante (g )ren de fonctions simples; nulles en-dehors de S, telles que
gr—gr—1 < 27%. Chacune de ces fonctions est également limite d’une famille (Pkn)n>1
de fonctions continues & support compact, telles qu’il existe une famille décroissante
de parties mesurables Ay ,, vérifiant

{75 orn(®) # gr(®) — gr1(2)} C Apn; wAgn) < 27%/n.
On définit alors

Jal@) =) @rnle).

Par convergence uniforme, f,, est continue ; elle est bornée par sup f, et coincide avec
> (gx — gk—1) = f en-dehors de I'ensemble A,, := Uy Ay, dont la mesure est au plus
S 0e27%/n = 2/n. En outre, la famille des A, est décroissante, son intersection
est donc de mesure nulle, et tout z € X \ (NA,,) vérifie f,(z) = f(x) pour n = n(x)
assez grand. La famille (f,) remplit donc toutes les conditions souhaitées.

Si f est positive mais non bornée, on définit F,, := {z € X; f(z) > m}. Comme
f est mesurable et a valeurs dans R, 'intersection décroissante des F,, est vide, et
par o-additivité p[F,,] — 0 quand m — oco. On peut alors effectuer un raisonnement
similaire au raisonnement ci-dessus. Enfin, si f n’est pas positive, on sépare f en
partie positive et négative f, et f_, et on conclut en appliquant le théoreme a f, et
f— séparément. O

DEMONSTRATION DU COROLLAIRE III-70. Par hypothese, on peut écrire X
comme la réunion croissante des X (k € N), avec X, mesurable et pu[Xj;] < +o0.
Soit g, = flx,1jj<n- Puisque f est intégrable, | f| est fini pi-presque partout, et donc
gn converge presque partout vers f. Le théoreme IV-12 de convergence dominée de
Lebesgue implique alors

Pour chaque n, la fonction g, est nulle en-dehors de I’ensemble de mesure finie
X, et bornée par n. Par le théoréeme de Lusin, on peut trouver une fonction f,
continue a support compact, bornée par n, qui coincide avec g, en-dehors d’un
ensemble A, de mesure inférieure & 1/n?). En particulier,

2n
/ 90— fal < sp(1ful + [gal) #lAa) < =3 —0.

Il s’ensuit que [ |f — f,| — 0. O
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REMARQUE III-71. Ce théoreme de densité est tres général, mais pas tres ex-
plicite. On verra plus tard que dans le cas ou X = R”, on peut construire, grace
a l'opération de convolution, des approximations beaucoup plus explicites d’une
fonction intégrable.

Dans le théoreme de Lusin, il est en général impossible d’imposer f. < f, alors
que l'on peut le faire quand on approche f par une famille de fonctions simples. Le
théoreme suivant remédie partiellement a ce probleme.

THEOREME I11-72 (Théoréme de Vitali-Carathéodory). Soit X un espace topo-
logique localement compact, et soit p une mesure de Borel réguliere sur X. Soit
f: X — R une fonction mesurable. Alors, pour tout € > 0 il existe des fonctions f+
et [, telles que f~ < f < fT, f~ est semi-continue supéricurement et majorée, f~
est semi-continue inférieurement et minorée, et

/f*du—ss/fs/f‘dwe-

REMARQUE III-73. Attention, ici f* et f~ n’ont rien a voir avec f, (partie
positive) et f_ (partie négative).

DEMONSTRATION. Quitte & séparer f en parties positive et négative, on peut
supposer f > 0. En approchant f par une suite de fonctions simples, on constate
que 'on peut écrire

oo o
f= Z cilg,, Zcz»,u[Ei] < 4o0.
i=1 i=1
Pour chaque 7 on choisit un ouvert O; contenant E;, et un compact K; contenu dans
E;, tels que
On pose alors

00 N
fﬁzzc’ile f+:ZCi10i7
i=1 =1

ou N est choisi de telle sorte que
o

> culE] <2

1=N+1

On vérifie facilement que f* et f~ vérifient toutes les conditions requises. O

III-5. Intégration a valeurs vectorielles

Jusqu’ici, nous avons seulement cherché a intégrer des fonctions a valeurs dans
R ou R. II est facile d’en déduire une théorie de I'intégration des fonctions & valeurs
dans un espace vectoriel de dimension finie, par exemple R™ ou C : il suffit d’“intégrer
composante par composante”. On démontre facilement la proposition suivante.

PROPOSITION III-74 (intégration a valeurs dans un espace vectoriel de dimension
finie). Soient (X, u) un espace mesuré, et E = R" (resp. E = C), muni d’une norme
(resp. du module complexe) | -|. On dit qu’une fonction mesurable f : X — E est
intégrable, ou sommable, si la fonction |f|, définie sur X et d valeurs dans R, est
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sommable. Une base (er)1<k<n de E en tant que R-espace vectoriel étant donnée, on
peut décomposer la fonction f sous la forme

F=> frex,

ot les fonctions f, sont mesurables de X dans R. Si f est sommable, toutes les
fonctions fi le sont, et on définit

e ([ 50)e

Le vecteur ainsi défini ne dépend pas du choiz de la base (ey), et lopération d’inté-
gration ainsi construite satisfait aux régles de calcul suivantes : pour toutes fonctions
sommables f et g, et pour tout X € R (resp. A € C),

Jonau=x [ an
/(f+g)du=/fdu+/gdu,
‘/fdu‘ﬁ/lfldu-

En outre, si E =R" et |-| est la norme euclidienne (resp. E = C et |-| est le
module), il ne peut y avoir égalité dans la derniére inégalité que si l'image de f est,
hors d’un ensemble négligeable, contenue dans une demi-droite de R™ (resp. de C,
vu comme R-espace vectoriel).

On peut maintenant se poser la question de l'intégration de fonctions a valeurs
dans des espaces vectoriels plus généraux, éventuellement de dimension infinie. C’est
ce que I'on appelle la théorie de I'intégration a valeurs vectorielles, ou théorie
de I'intégrale de Bochner. Cette question est assez naturelle quand on considere
des fonctions a plusieurs variables comme des fonctions d’une variable a valeurs
vectorielles — par exemple f(t,z) = f(t)(z) — démarche classique en théorie des
équations aux dérivées partielles par exemple, ou en théorie de I'interpolation.

La définition de la sommabilité tombe sous le sens : une fonction mesurable f
de X dans un espace vectoriel abstrait £ muni d’une norme || - || est dite intégrable
si la fonction || f| est intégrable sur X. Cependant, il est nettement plus délicat de
définir I'intégrale de f :

- soit on peut la définir composante par composante, sous de bonnes hypotheses
de séparabilité, en particulier ;

- soit, si 'on intégre sur un espace de fonctions, on reprend la théorie en distin-
guant intégration de la partie positive et intégration de la partie négative.

- soit on reprend la théorie directement dans un cadre fonctionnel élargi, en ne
considérant comme fonctions simples que des combinaisons linéaires de fonctions
indicatrices d’ensembles de mesure finie;

Le Théoreme de Désintégration de la mesure, au Chapitre 77, fournira un bon
exemple.

L’adaptation de la théorie de Lebesgue a l'intégration sur des espaces fonction-
nels est la théorie de I’ intégrale de Bochner. Les principaux résultats en sont
trés similaires aux résultats classiques que nous avons étudiés jusqu’a présent, ne
réservent guere de surprise, et peuvent presque toujours étre formulés in fine dans le
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langage de I'intégrale classique : ainsi, Iassertion u € L'(X; C(Y)) peut se transcrire
en

[ (s lute.)) dute) < +oc:

quant & lintégrale vectorielle [, u(z,-)du(x), on peut toujours se la représenter
comme la fonction qui & y associe [, u(x,y) du(z). Avec de tels réflexes, la lectrice
devrait pouvoir facilement interpréter les principaux résultats de 'intégration a va-
leurs vectorielles.

Sans développer une théorie compléte, je montrerai au chapitre 7?7 comment
définir une théorie simple d’intégration a valeurs vectorielles qui couvre la plupart
des espaces habituels. Pour cela, attendons d’étre un peu plus aguerris en analyse
fonctionnelle.



CHAPITRE 1V

Théoremes fondamentaux d’intégration

Maintenant que l'intégrale est définie, on va établir ses propriétés fondamentales :
celles qui servent constamment et qui ont fait le succes de la théorie de Lebesgue.

Ce chapitre passe donc en revue, dans un cadre tres général, les outils-clés sui-
vants : (i) des théoremes de passage a la limite sous l'intégrale, (ii) des théoremes
de changement de variable abstrait, (iii) des théorémes d’intégration produit, et (iv)
des inégalités controlant les expressions intégrales. Tout cela occupe les sections IV-1
a IV-4, formant peut-étre la partie la plus importante du cours.

Les sections 1V-4.5 et IV-5.2 traitent de sujets plus avancés : d’une part les
notions d’équi-intégrabilité et de tension, en lien avec la compacité des familles de
mesures ; d’autre part, la construction de mesures produits avec un nombre infini de
facteurs.

Dans tout ce chapitre on travaillera avec des mesures “individuellement” : ty-
piquement, un théoreéme fera intervenir une mesure fixée. Le Chapitre VIII, au
contraire, considérera des espaces de mesures, étudiées collectivement.

Certains théoremes ou contre-exemples se baseront sur la mesure de Lebesgue
dans R, dont 'existence a été établie dans la Section II-8; ici il suffira de savoir
que la mesure de Lebesgue d'un intervalle de R est simplement sa longueur, et
que l'intégrale associée prolonge l'intégrale de Riemann des fonctions continues par
morceaux. Plus tard, dans le Chapitre VI, on se plongera plus en détail dans les
propriétés de cette mesure particuliere.

IV-1. Comportement face aux limites

Soit (fn)nen une suite de fonctions mesurables, définies sur un espace mesuré
(X, 1), a valeurs réelles. Peut-on passer a la limite dans l'intégrale des f,? On va
passer en revue quatre problemes différents :

* On suppose d’abord que la suite converge en un sens tres fort : de maniere
monotone, par exemple en croissant. Peut-on passer a la limite sous le signe f ? Le
Théoréme de convergence monotone de Beppo Levi assure que c’est toujours
possible.

* On suppose maintenant que la suite converge, sans que la convergence soit
monotone; on sait alors que sa limite est mesurable. Peut-on passer a la limite
sous le signe [? Dans de nombreuses situations, le Théoréme de convergence
dominée de Lebesgue I'autorise.

* Puis on considere le cas ou la suite (f,,) ne converge pas nécessairement ; tout au
moins, on sait alors que sa limite inférieure et sa limite supérieure sont mesurables.
Peut-on relier les intégrales de ces fonctions a l'intégrale des f,, 7 C’est a ce probleme
que répond le Lemme de Fatou.

* Quand on s’intéresse aux fonctions continues, une hypothese res forte que I'on
utilise souvent est la convergence uniforme, qui permet en particulier de passer
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a la limite dans l'intégrale de Riemann. La théorie de Lebesgue ne contient pas de
théoreme de limite sous hypothese de convergence uniforme, car la notion plus faible
de convergence simple lui suffit bien. On peut se demander a quel point la notion
de convergence uniforme est plus forte que la notion de convergence simple. Dans
le cadre des fonctions continues, la nuance est considérable. Mais le Théoreme
d’Egorov implique que, du point de vue de la mesure, la différence est fine. On
peut ainsi parfois ramener un probleme de convergence simple a un probleme de
convergence uniforme.

IV-1.1. Convergence monotone. De méme que toutes les propriétés cruciales
des mesures découlent de la propriété de o-additivité, toutes les propriétés impor-
tantes de passage a la limite dans 'intégrale découlent du théoreme suivant, appelé
théoreme de convergence monotone de Beppo Levi, ou tout simplement théoréeme
de convergence monotone, et qui généralise un résultat antérieur de Lebesgue. On
rappelle quune suite (f,) de fonctions & valeurs dans R est dite croissante si, pour
tout x, la suite (f,(z)) est croissante.

THEOREME IV-1 (théoréme de convergence monotone de Beppo Levi). (i) Soit
(fn)nen une suite croissante de fonctions mesurables sur un espace mesuré (X, A, i),
d valeurs dans [0, +o00]. Alors

(14) / lim f,dp = lim / fndp.
XTL%OO n—oo X
En particulier, la fonction (lim f,), définie sur X et a valeurs dans [0,+o0], est

sommable si et seulement si la limite des [ f, est finie.

(ii) La méme conclusion est vraie si (f,) est une suite croissante (resp. décrois-
sante) de fonctions mesurables a valeurs dans R, pourvu que l'une des fonctions f,
soit minorée (resp. majoree) par une fonction sommable.

Les deux corollaires qui suivent s’obtiennentt en remarquant que les sommes
partielles d’une série a termes positifs forment une famille croissante.

COROLLAIRE IV-2 (interversion de série et sommation pour des fonctions po-
sitives). Soit (fn)nen une famille de fonctions mesurables, définies sur un espace
mesuré (X, A, 1), d valeurs dans [0, +oc]. Alors

(15) / (Z fn> =Y [ fudn

neN neN

COROLLAIRE V-3 (interversion de limite croissante et série). Soit (ajm)jenmen
un tableau, dénombrable de nombres réels positifs, croissante en m. Alors

w D TS o s
jeN jeN

EXEMPLE IV-4. Soient (u™)men une suite croissante de mesures. On se donne
des parties disjointes (A;),en, et on note A = UA;. Pour tout m on a

urAl =) umAy),

jeN
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et donc
: m _ : m )
lim p™[A] = E (lim p™[Aj]).
m—r0o0 m—r0o0
jeN
Il s’ensuit qu'une limite croissante de mesures est une mesure. Ou encore : une
somme dénombrable de mesures est une mesure.

REMARQUES IV-5. (i) Soit (A;)nen une famille croissante d’ensembles me-
surables, A = UA,, et soit f, = 14 ; alors la fonction indicatrice 14 est la

n

limite croissante des f,, et la formule (14) devient donc
PlUA] = Tim [A,)].
n—oo

Si en revanche les A,, sont supposés disjoints, on vérifie sans peine que 14 est
la somme de la série des f,, et la formule (15) se transforme en

plUA,] = plA,).

On retrouve donc en cas particulier du théoreme de convergence monotone
les deux formulations habituelles de la o-additivité de p. En conclusion,
le théoreme de convergence monotone n’est autre que la relation de o-
additivité exprimée en termes de fonctions plutét que d’ensembles
mesurables.

(ii) Clairement, les énoncés précédents sont également valables si les conditions
de croissance ou de décroissance ne sont vérifiées que p-presque partout.

DEMONSTRATION DU THEOREME IV-1. Il est facile de voir que I’énoncé (ii) est
une conséquence de I’énoncé (i) : si (f,,) est une suite croissante de fonctions, avec
fro = g sommable pour un certain kg, alors la famille (fy, — g) vérifie les hypothéses
de (i), et comme g est sommable on a

[ g [0+ fo= i [+ o= [

On traite 'autre cas en changeant f, en —f,. Il suffit donc d’établir (i).
Soit f = lim f,, ; par hypothése f,, < f, et donc [ f,, < [ f. La suite ([ f,) étant
croissante, elle converge dans R, et on a

Im/hg/f

Il reste a établir I'inégalité inverse, qui est le coeur du probleme. On va pour cela
reprendre 'argument déja utilisé dans la preuve de 'additivité de I'intégrale.
Soit y une fonction simple qui minore f, et soit 4 €]0, 1], on pose

A, = {z € X; fule) > (1-D)x(x)}.

Par croissance de f,,, les parties A, forment une famille croissante; en traitant a
part les x tels que x(x) = 0, on vérifie sans peine que la réunion des A, est I'espace
X tout entier. Si 'on éerit x = >, ., a;15,,

J J J

/XlAn = /Z%lAmBj =Y a;u[A, N Bj] — Y au[X N B = /X-

J=1 Jj=1 J=1
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D’autre part, par positivité de 'intégrale,

/fn Z/fnlAn > (1_5)/X1An-

En passant a la limite dans les deux membres, on trouve

im [ f,2(0-0) [x

n—o0

En prenant le supremum sur toutes les fonctions simples xy minorant f, et en faisant
tendre 0 vers 0, on aboutit bien &

i [z [ 1
O

EXERCICE IV-6. Retrouver 'additivité de I'intégrale en combinant le théoreme
de convergence monotone et la Proposition I11-36.

Voici maintenant une conséquence simple et importante du théoréme de conver-
gence monotone.

PROPOSITION IV-7 (U'intégrale restreinte définit une mesure). Soit f une fonc-
tion mesurable définie sur un espace mesuré (X, A, p), a valeurs dans [0, +oc]. Alors
la fonction d’ensembles fu définie par

a7 fuldl = [ fdn= [ i
X

est une mesure sur la o-algebre A. En outre, elle vérifie

(18) plA] = 0= fulA] =0.

DEMONSTRATION. Soit (Ag)ken une famille de parties disjointes, et A leur union.
Comme on l'a déja mentionné, on vérifie sans peine que 14 = > 14,, et donc

fla= Z(flAk)

Le Corollaire IV-2 implique donc

;/(flAk)d,u:/<;flAk> d,u:/(flA)du,
Xk: AkfdMZ/UAkfd“’

Cette propriété de o-additivité montre que fu est bien une mesure. O

soit

La propriété (18) est importante et mérite un nom :

DEFINITION V-8 (absolue continuité). Soient u et v deur mesures définies sur
une o-algebre commune. On dit que v est absolument continue par rapport a i, et
on note parfois v < p, si pour toute partie A mesurable,

plA] =0 = v[A] = 0.
Nous verrons au Chapitre 7?7 que, sous certaines conditions, les mesures absolu-

ment continues par rapport a une mesure p sont exactement les mesures fp. Notons
une derniere propriété importante de ces mesures :
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PROPOSITION IV-9 (changement de densité de référence). Sur (X, A, n) un es-
pace mesure,

(i) Soient f et g deux fonctions mesurables a valeurs dans [0, 400]. Alors

/fgduz/fd(gu);

(ii) Soient h et g deux fonctions mesurables d valeurs dans [0, +oc]|, telles que
g(x) € {0,400} = h(z) = 0.
Alors, avec les conventions 1/0 = 400, 0 X (+00) = 0/0 = (+00)/(4+00) =0, on a

(19) [ = [ % dtgn).

DEMONSTRATION. (i) Soit (f,) une suite de fonctions simples convergeant en
croissant vers f. Par convergence monotone, [ f,gdu converge vers [ fgduet [ f, d(gu)
vers [ fd(gu). Il suffit donc de prouver (19) quand f est une fonction simple, et
par linéarité il suffit de le prouver quand f est de la forme 1,4. On reconnait alors la
définition de la mesure gpu.

(ii) Les hypotheses faites sur g et h garantissent que

h
h = (_> g,
g
ce qui permet d’appliquer (i) avec f = h/g. O

IV-1.2. Lemme de Fatou.

THEOREME IV-10 (Lemme de Fatou). (i) Soient (fy)nen une suite de fonctions
définies sur un espace mesuré (X, A, ), d valeurs dans [0, +oc|. Alors

liminf f,,) dp < liminf [ f, du.
1L
n—o0 n—o0

(i3) Cette conclusion est towjours valable si les f,, sont d valeurs dans R et toutes
minorées par une fonction sommable.

(iii) Symétriquement, si (fn)nen est une suite de fonctions a valeurs dans R,
toutes majorées par une fonction sommable, alors

/(lim sup f,) dp > limsup / frdp.
n—oo n—oo
DEMONSTRATION. La encore, I’énoncé (iii) découle de (ii) via un changement de
signe, et 1’énoncé (ii) découlera de I’énoncé (i), on se concentre donc sur ce dernier.
Soit g, := infy>, fr. On vérifie facilement que g, est mesurable, et définit une
suite croissante qui converge partout vers f := liminf f;. Bien str, g, < f.. En
appliquant le théoréme de convergence monotone et en passant a la lim inf, on trouve

/f: lim /gn gliminf/fn.
n—oo
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REMARQUE IV-11. Il est facile de construire des exemples ou

/ liminf f,, < liminf / fs

meéme si la convergence a lieu partout : cela fournit ainsi des contre-exemples
au passage a la limite sous l'intégrale. Voici trois situations typiques, sur l’espace
R muni de la mesure de Lebesgue. Soit ¢ une fonction continue, positive, nulle en-
dehors de l'intervalle [0, 1], non identiquement nulle ; quitte & la multiplier par une
constante, supposons que [ ¢ = 1. Pour n > 1 on définit

Alors les suites de fonctions (f,), (gn) et (h,) convergent vers 0 partout sur R, pour-
tant on montre, par des changements de variables élémentaires, que [ f, = [ g, =
J hn, = 1. On dit que la suite (f,) illustre un phénomeéne de concentration (toute
la masse de la suite de fonctions se concentre pres de 0), la suite (g,) un phéno-
mene d’évanescence (toute la masse part a U'infini de maniere diffuse), et la suite
(h,) un comportement de bosse glissante (la masse “glisse” a l'infini, sans s’éta-
ler). Concentration, évanescence et glissade sont les trois obstructions archétypes au
passage a la limite sous l'intégrale.

FIGURE 1. concentration des f,, évanescence des g,, bosse glissante h,,
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IV-1.3. Convergence dominée.

THEOREME IV-12 (théoréme de convergence dominée de Lebesgue). Soit (f,,)nen
une famille de fonctions définies sur un espace mesuré (X, A, ), a valeurs dans R.
On suppose que (f,) est dominée, i.e.

(i) Il existe g sommable tel que |f,| < g p-presque partout pour tout n ;

alors
(20) / liminf f,, dp < lim inf/ frndp < lim sup/ fadp < / lim sup f,, du.
X N7 n—oo  fx n—oo JX X n—oo
En particulier, si (f,) est dominée et vérifie
(ii) f. converge presque partout vers f,
alors f est intégrable et
(21) / fdu = lim / fn dp.
X n—oo X
En outre, on a l’énoncé plus précis
(22) lim / |fo — fldp=0.
n—oo X

Enfin, on peut remplacer dans cet énoncé I’hypothese de domination par la condi-
tion plus faible

(i’) Pour tout n il eziste g, sommable tel que |f,| < g, p-presque partout, et tel
que [(limg,) = lim [ g, < +oc.

En introduisant les sommes partielles de séries de fonctions, on déduit de ce
théoreme le corollaire suivant :

COROLLAIRE IV-13 (interversion de série et sommation sous hypotheése de do-
mination). Soit (f,)nen une famille de fonctions mesurables définies sur un espace
mesuré (X, A, ), d valeurs dans R. Si

/ (Z rm) dp < +ox,

neN

alors chaque f, est sommable, la série de terme général [ f, du converge, et

/(an> du:Z/fndu.

neN neN

REMARQUES IV-14. (i) La version courte du Théoreme IV-12 est la sui-
vante : Deés que (f,)nen est dominée et converge presque partout, on a

(23) /X lim f, = lim /X Fa

Au plan formel, ¢’est donc juste une interversion entre les opérations de limite
et d’intégration.

(ii) La fonction f dans (21) (ou la fonction lim f,, dans (23)) n’est définie qu’en
dehors d’un ensemble de mesure nulle; en toute rigueur, pour que la formule
ait un sens, il faut soit la restreindre a l’ensemble mesurable C' ou la suite
de fonctions converge, soit étendre la fonction limite en une fonction mesu-
rable sur X tout entier (également appelée f par abus de notation) grace
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au Théoreme III-16(iii) ; dans ce dernier cas, peu importent les valeurs du
prolongement hors de ’ensemble de convergence.

(iii) La condition (i) dans le Théoreme IV-12 est appelée condition de domi-
nation : toutes les f,, sont dominées par une fonction intégrable g. Elle est
équivalente a ’hypothese

/sup | ful dpp < +00.
neN

Bien stir, cette condition n’était pas satisfaite par les exemples présentés dans
la Remarque IV-11 : en cherchant une fonction dominante on serait tombé
essentiellement, respectivement sur : la fonction 1/z sur [0, 1], la fonction
1/z sur [1,4o00], et la fonction constante 1 sur [0,+oo[, toutes trois non
sommables.

(iv) L’hypothese de domination de la suite (f,) peut étre affaiblie comme suit :
de toute suite extraite de (f,) on peut extraire une sous-suite dominée. En
effet, si une suite (u,,) a valeurs réelles est telle que toute suite extraite admet
une sous-suite convergeant vers ¢ € R, alors la suite (u,,) tout entiere converge
vers { (en Poccurrence, £ = [ f).

EXEMPLE IV-15. Sachant que l'intégrale de Lebesgue généralise 'intégrale de
Riemann, on déduit facilement du Théoreme IV-12 I’énoncé suivant : soit (f,,) une
suite de fonctions continues par morceaux sur [a,b] C R, bornée uniformément, et
convergeant simplement vers une fonction f. Alors lim [ f,,(z)dz = [ f(z)dz. En
effet, I’hypothese de borne uniforme revient a une hypothese de domination par une
fonction constante, qui est clairement intégrable sur un intervalle borné.

REMARQUE IV-16. L’énoncé IV-15 a beau s’exprimer en termes de concepts
classiques — fonctions continues par morceaux, intégrale de Riemann — il est fort
difficile & démontrer avec des outils classiques (méme quand les fonctions f,, sont
continues), alors qu’il tombe comme un fruit mir dans le jardin de Lebesgue.

DEMONSTRATION DU THEOREME IV-12. Partons de I'hypothése plus générale
(i’); on note g = limg,. Chaque f, est bien sir intégrable puisque sa valeur ab-
solue est majorée par une fonction intégrable; en outre liminf [ f, et limsup [ f,
sont majorées en valeur absolue par limsup [ g, = [ g < +oc. Enfin liminf f, et
lim sup f,, sont majorées en valeur absolue par ¢; ce sont donc également des fonc-
tions intégrables.

L’énoncé a démontrer est une conséquence simple du Lemme de Fatou. En effet,
la fonction g, + f, est positive, donc

/liminf(gn + fn) < liminf/(gn + fn)-

En combinant cela avec I'hypothése (i’), on obtient
/g + /(liminf fn) = /(g+1iminf fn) = /liminf(gn + fn)

< liminf/(gn—i—fn) = /g+liminf/fn.
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On conclut que
/ (liminf f,) < liminf / f-

En changeant f,, en —f,,, on obtient de méme

fimsup [ £, < [ (imsup 1)

Les inégalités (20) sont donc bien satisfaites.

Supposons maintenant que f, converge presque partout vers f; alors liminf f,
et lim sup f,, coincident avec f, d’ou

/f<hrn1nf/fn§hmsup/fn /f

il y a donc égalité partout, ce qui démontre (21).
Montrons enfin (22), & savoir que [ |f,, — f| — 0; puisque f est intégrable, cela
impliquera & nouveau, par inégalité triangulaire, que [ f,, converge bien vers [ f :

/fndu /fdu / f)dp| < /\fn fldp —0.

Pour prouver (22), on applique la conclusion précédente (21) en remplagant f,, et
Gn PAr fr, = |fu — fl €t g = gn + | f|- L’hypothese (i") est bien vérifiée pour f, (et
d’ailleurs aussi I'hypothese (i), si (f,,) la vérifie). D’ou

Oglimsup/\fn—ﬂS/limSUp|fn—f|:Oa

ce qui prouve bien (22). O

EXERCICE IV-17. Retrouver en cas particulier de ce théoreme le critére connu :
une série (x,) absolument convergente de nombres réels est commutativement conver-
gente, i.e. (Z,(n)) converge pour toute bijection o : N — N, et la valeur de la somme
ne dépend pas de o.

REMARQUE IV-18. Ici j’ai déduit le Théoreme de convergence dominée du Lemme
de Fatou, qui lui-méme découlait du Théoreme de convergence monotone. Mais a
partir du Théoreme de convergence dominée on peut aussi retrouver le Théoreme de
convergence monotone, au moins quand X est o-fini; de sorte que les trois énoncés
sont quasiment équivalents. En effet, supposons que f, > 0 converge en croissant
vers f. Si f est sommable, alors f,, est dominée par f, et on peut passer a la li-
mite dans l'intégrale par convergence dominée. Et si f n’est pas sommable, alors on
peut trouver une famille (y,,)men de fonctions étagées, telles que 0 < x,, < f et
[ Xm — +00; quitte & remplacer x,,, par xmlx,, ot u[Xg] < +oo et UXy = X, on
peut supposer x,, intégrable ; alors min( f,,, x,n,) est dominée par x,, et converge vers
Xm pour n — oo, d’ott iminf [ f, > [limmin(f,, xm) = [ Xm, et en faisant tendre
m vers I'infini on conclut que [ f,, — +oc.

En guise d’application du théoreme de convergence dominée, voici un théoreme
simple de continuité des intégrales a parameétre.

THEOREME IV-19 (continuité des intégrales a parametre). Soient (X, A, 1) un
espace mesuré, et Z un espace métrique. On se donne f: X X Z — [—00, +00| une
fonction telle que
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(i) pour tout z € Z, x — f(x, z) est mesurable ;

(ii) pour tout x € X, z — f(x,2) est continue;

(iii) Pour tout (z,z) € X X Z on a |f(z,2)] < g(z), ot g est une fonction
mesurable telle que [ g(x) p(dx) < +o0.
Alors Uapplication ¢(z) = [ f(x,z) p(dz) est bien définie et continue sur Z.

DEMONSTRATION. L’hypothése (iii) implique la sommabilité de |f(-,z)| pour
tout z; lintégrale [ f(z,z)du(z) est donc bien définie. Soit (z,) une suite conver-
geant vers z ; le probléme est de montrer que ¢(z,) — ¢(2). Posons f,(x) = f(z, z,),
et f(z) = f(z,z). Par (ii), on a convergence (partout) de f vers f,; et par (iii) la
famille (f,,) est dominée par g. La conclusion s’ensuit du théoreme de convergence
dominée, appliqué a la famille (f,,). O

REMARQUE IV-20. Les propriétés de mesurabilité et d’intégrabilité des intégrales
a parametre, a dépendance pas forcément continue, seront étudiées plus loin dans
ce chapitre ; voir le Théoreme IV-56.

Voici un corollaire pratique du Théoréme IV-19 :

COROLLAIRE IV-21 (Dérivation des intégrales & parametre). Soient (X, A, 1) un
espace mesuré, I un intervalle de R, et f: X x I — R. On suppose que

(i) Pour tout t € I, x — f(x,t) est mesurable et [ |f(x,t)| p(dx) < 400 ;

(ii) Pour tout x € X, t — f(x,t) est continiment différentiable ;

(iii) Pour tout (x,t) € X x I,

)] < ato),

ot g est une fonction mesurable telle que [ g(x) p(dz) < +oo.
Alors F : t — [ f(x,t) pu(dx) est dérivable sur I, et pour toutt € I on a

o

F(t)= | Gyt uld)

DEMONSTRATION. Soit ¢ € [ fixé, et € > 0 tel que [t —¢,t+¢] C I. Pour z € X
et s € [—¢,¢] on définit

f(x>t_5)_f($)

S

si0<|s| <e
h(z,s) =
of
—(x,t) sis=0.
La fonction h(zx, s) est alors mesurable en x, continue en s, et majorée uniformément
par g(z) en vertu du théoreme des accroissements finis. D’apres le Théoreme IV-19,
limg o [ h(z,s) p(dzx) = [ h(zx,0) p(dz), ce qui équivaut au résultat recherché. O

EXERCICE IV-22. Enoncer et prouver une variante du Corollaire IV-21 qui s’ap-
plique a des fonctions convexes plutot que lipschitziennes, et qui soit basée sur le
Théoreme de Convergence Monotone plutot que sur le Théoreme de Convergence
Dominée.
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IV-1.4. Que penser de ’hypothése de domination ? Dans le théoreme de
convergence dominée, la condition de domination peut sembler un peu forte, mais
les Exemples IV-11 montrent qu’on ne peut I’éliminer purement et simplement de
I’énoncé du Théoreme IV-12. Peut-on cependant la remplacer par une hypothese
moins contraignante ? Existe-t-il des situations ou la convergence des intégrales est
vraie sans qu’il y ait domination? Voici deux exemples de telles situations, faisant
intervenir la mesure de Lebesgue sur R :

EXEMPLES IV-23 (la convergence peut avoir lieu sans domination). (i) Soit (ay)
une famille de nombres positifs, tendant vers 0, dont la somme diverge, et soit,
sur R, la fonction f, = a, 1 nq1)- Alors f,, converge vers 0, et I'intégrale de
fn également ; cependant la fonction sup f,, est la fonction constante par mor-
ceaux valant a,, sur l'intervalle [n,n+ 1[, qui n’est pas intégrable, la suite (f,,)
n’est donc pas dominée.

En revanche, on peut extraire de (f,,) une sous-suite qui vérifie I’hypothese

de domination. Et méme, de toute sous-suite de (f,) on peut extraire une
sous-suite qui soit dominée (exercice).

(ii) Soit f,, définie sur R par

( o1
—n si——<zx<O0;
n

_ 1
fulz) = +n si0<a < —;
n

L0 sinon.

Alors chaque f, est sommable, d’intégrale nulle, et f,, converge simplement
vers la fonction nulle, mais la suite (f,) n’est pas dominée, ni aucune de
ses sous-suites extraites. En effet, si une sous-suite extraite, toujours dénotée
(fn), était dominée, alors il en serait de méme de (f,1.>0), et 'intégrale de
fn sur R, convergerait vers 0; or elle est toujours égale a 1.

Dans le deuxieme exemple, on peut attribuer le phénomene de non-domination au
fait que de grandes valeurs positives et de grandes valeurs négatives se compensent.
La théorie de Lebesgue est impuissante a exploiter de tels phénomeénes. En revanche,
des que l'on exclut cette possibilité, par exemple en minorant f par une fonction
intégrable, la domination devient la regle, pourvu que 'on autorise I'extraction de
sous-suites comme dans le premier exemple ci-dessus.

THEOREME IV-24 (en I’absence de fortes compensations, la domination est néces-
saire pour passer a la limite). Soit (f,,) une famille de fonctions mesurables, définies
sur un espace mesuré (X, A, ), d valeurs dans R, convergeant presque partout vers
une fonction sommable.

(i) On suppose que la famille (f,) est uniformément minorée par une fonction
intégrable, et que im([ f,) = [(lim f,,). Alors, il existe une sous-suite extraite de
(fn), notée (fn), et une fonction g intégrable, telle que |fn/| < g presque partout.

(ii) Si
lim /IntZ/I lim £,
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I

Ja

FIGURE 2. compensation entre grandes valeurs positives et négatives

alors il existe une sous-suite extraite de (f,) qui vérifie l’hypothése de domination.

Il est clair que ’énoncé (ii) découle de (i). On démontrera ce théoreme dans la
section suivante, comme conséquence du Théoreme d’Egorov.

REMARQUE IV-25. L’énoncé (ii) du Théoréme IV-24 peut se démontrer, dans le
cas particulier ou les f,, tendent vers 0, comme une conséquence de la complétude
de lespace L', dont on reparlera au Chapitre VIII.

En combinant les Théoremes IV-12 et IV-24, on obtient facilement le corollaire
suivant.

COROLLAIRE IV-26 (en I'absence de fortes compensations, I’échange limite--
somme est quasiment équivalent & la domination). Soient (X, A, 1) un espace me-
suré, et (fn)nen une famille de fonctions mesurables, définies de (X, A,pn) dans R,
uniformément minorée par une fonction sommable. On suppose que f, converge
presque partout vers une fonction sommable. Alors les deux énoncés

<t [ fadp= [ de

et
“De toute suite extraite (f,/) on peut extraire une sous-suite dominée”

sont équivalents.
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IV-1.5. Théoréme d’Egorov. Comment faire le lien entre la notion naturelle
de convergence dans la théorie de Lebesgue, c’est-a-dire la convergence presque par-
tout, et la notion naturelle de convergence des fonctions continues, c’est-a-dire la
convergence uniforme ? Par définition, la convergence uniforme implique la conver-
gence simple, en particulier presque partout. Du point de vue des fonctions continues,
la différence entre les deux notions est considérable : par exemple, une limite simple
de fonctions continues n’est en général pas continue. Mais du point de vue de la
théorie de la mesure, la différence n’est pas si grande, au sens de I’énoncé suivant.

THEOREME IV-27 (Théoréme d’Egorov). Soit (X, A, n) un espace mesuré, tel
que p[X] < 400, et soit (fn)nen une famille de fonctions mesurables, définies sur X,
d valeurs dans R. On suppose que (f,) converge presque partout dans R. Alors, (f,)
converge uniformément en-dehors d’un ensemble de mesure arbitrairement petite.
En d’autres termes, pour tout € > 0 il existe un ensemble mesurable A. C X tel que
plAd] < e et (fn) converge uniformément vers sa limite sur X \ A..

ExXEMPLE IV-28. Un exemple classique de suite qui converge simplement mais
non uniformément est la famille des fonctions f, :  —— 2™ sur [0, 1]. Cette suite
converge simplement vers la fonction valant 1 en 1, et 0 ailleurs; pour tout n on
a supjqy | fn — f| = 1, la convergence n’est donc pas uniforme. Cependant, elle est
uniforme sur tout intervalle [0, 1 — €], si petit que soit £ > 0.

REMARQUE 1V-29. Puisque la convergence uniforme laisse stable la classe des
fonctions continues, le théoreme d’Egorov admet, dans un cadre topologique, le
corollaire suivant :

COROLLAIRE IV-30 (une limite de fonctions continues est presque continue).
Soit X un espace topologique, muni de sa tribu borélienne, et soit p une mesure
de Borel finie sur X. Soit (f,)nen une suite de fonctions continues d valeurs dans
R, convergeant simplement vers une fonction f : X — R. Alors f est continue
en-dehors d’un ensemble de mesure arbitrairement petite.

On retrouve ainsi un énoncé tres proche du Théoreme I11-69 de Lusin. Le Corol-
laire TV-30 n’implique pas le théoreme de Lusin, car il ne s’applique qu’aux limites
de fonctions continues, et pas a des fonctions mesurables arbitraires; en revanche il
est valable sans hypothese topologique sur X.

REMARQUE IV-31. On ne peut se passer de I’hypothese de finitude de p dans le
Théoreme IV-27; pour s’en convaincre, on peut considérer le cas ou p est la mesure
de comptage sur N, et la suite de fonctions f,, est définie par f,(k) = Ly>,.

PREUVE DU THEOREME D’EGOROV. Quitte a poser f,(z) = 0 sur le complé-
mentaire de I'ensemble ou (f,,) ne converge pas, on peut supposer que (f,) converge
partout vers une fonction mesurable f a valeurs dans R. Soit, pour tout k € N,
n € N, I’ensemble mesurable

Suwi= (V{z € X5 1f5(0) = fil@)| < 1/k}.
ij>n
Pour tout k, la famille (S, ) est croissante en n, et par hypothese,

Vk, | Suk =X
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Pour tout k, on peut donc trouver n = n; tel que
p[X N\ Snpk] < 27k,

S=1{) Suru-

k>1

Posons

Siz e S, alors x € S, pour tout k, ce qui veut dire que pour tout k il existe ny,
dépendant seulement de k et pas de z, tel que pour tous i,5 > ny, |f;(z) —
fi(z)] < 1/k. En faisant tendre ¢ vers l'infini dans cet énoncé, on voit que pour tout
k il existe ny tel que pour tout j > ng, |fj(z) — f(x)] < 1/k. En d’autres termes,
(fn) converge uniformément sur S. D’autre part,

plX\ 8] < Zu[X \ Skl < 5(2 27%) =e.

keN

L’ensemble A, = X \ S vérifie donc la conclusion du théoreme. 0J

Pour illustrer I'efficacité du théoreme d’Egorov, montrons comment on peut en
déduire le théoreme de convergence dominée de Lebesgue, et comment on peut 1'uti-
liser pour démontrer le Théoreme IV-24. En fait on aurait pu présenter toute la
théorie du passage a la limite en prenant comme point de départ le théoreme d’'Ego-
rov plutét que le théoreme de convergence monotone.

NOUVELLE DEMONSTRATION DU THEOREME IV-12. Soit (f,) une suite de fonc-
tions convergeant presque partout, dominée par la fonction intégrable ¢g. Soit Z 1’en-
semble négligeable o g vaut 400, on redéfinit f,,(z) = 0 et f(x) = 0 pour tout x € Z,
sans changer les valeurs des intégrales des f,, ou de f, ni 'hypothese de convergence
presque partout. D’autre part, de la domination il s’ensuit que f,(x) = 0 dés que
g(x) = 0. On peut donc appliquer la Proposition IV-9 :

/fnd,u:/hndz/, /fd,u:/hdy,

= &, h = i, V= gp.

g g
L’ensemble des points ot g s’annulle est de mesure nulle pour v; en-dehors de cet
ensemble, h,, converge vers h := f/g. Par ailleurs, v est une mesure finie. On peut
donc appliquer le théoreme d’Egorov a la famille (h,,) et a la mesure v, et on trouve
que pour tout £ > 0 il existe A, tel que v[A.] < ¢, et h,, converge uniformément vers
h sur X \ A.. Par hypothese de domination, h,, est borné par 1, donc h également.

D’ou
/ h,, dv / hdv
X\Ae X\Ae

/hndu—/hdy / (hp — h)dv
X\A.

Pour tout ¢ fixé, grace a la convergence uniforme on a

/ (hy — B) dv
X\A.

ou

B,

<eg, <e.

On en déduit

< + 2e.

< ( sup |h, — h|> v[X] — 0,

TeX\ A, n—reo
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donc
lim sup /hn dv — /hdu < 2e.
n—oo
On conclut en faisant tendre ¢ vers 0. O

DEMONSTRATION DU THEOREME IV-24. Comme on 'a déja dit, il suffit de
démontrer la partie (i) de ce théoreme. On se donne donc une famille (f,)nen de
fonctions positives, convergeant presque partout vers une limite f, intégrable, telle

que f fn— f f.
Soit A un ensemble mesurable arbitraire. En appliquant le Lemme de Fatou et
I'inégalité lim inf a,, + liminf b,, < liminf(a, + b,), laissée en exercice, on a

/fZ/f—i- fgliminf/fn—i—hmmf fngliminf/ fn:/ f.
X A X\A n—00 =00 Jx\ A n—oo [y X

Les deux membres étant égaux, il y a égalité a chaque étape, d’ou

(24) / fdp =1lim inf/ fn dp.
A n— oo A

Soit v = fu; comme f est sommable, la mesure v est finie. Pour tout £ € N, on

pose
By, = {x; f(z) < 1/k}.

Les By, forment une famille décroissante, dont l'intersection est I’ensemble ou f s’an-
nule, de mesure nulle pour v. Pour € > 0 arbitrairement petit, on peut donc choisir
k assez grand pour que v[By| < e. Par le Théoréeme d’Egorov, on sait également
qu’il existe E tel que v[E] < € et f, converge uniformément vers f en-dehors de E.
Si I'on pose C. = B, U E, on a construit un ensemble de v-mesure plus petite que
2e, tel que pour tout x € X \ C on ait f(x) > 1/k et f,, converge uniformément vers
fsur X \ C. En particulier, pour tout n > m assez grand, on aura

reX\C= fu(x) <2f(x).

D’apres (24), appliqué & A = C, on sait que liminf [, f, < 2e. En particulier,
on peut trouver N > m tel que
/ fN S 4e.
c

Récapitulons : pour tout € > 0, pour tout p € N, nous pouvons construire un
ensemble C' et un entier N > p tels que fcg fv < de, et fv < 2f en-dehors de C.

On répete cette construction avec € = 27% : n étant donné, on construit C' = Cj, et
N =ny1 > ny tels que

/ fop <4278 € X\ Cy= fo,(x) <2f(x).
Ck

On définit alors
g:=2f+ anklck.

keN
Par construction, g majore tous les f,,, ; d’autre part, g est sommable car f elle-méme

est sommable, et
[ S hta =X [ usayrt <o

keN keN keN
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O

IV-1.6. Les quatre faces de la convergence. Les énoncés de Beppo Levi,
Fatou, Lebesgue et Egorov sont finalement trés proches les uns des autres; c’est
seulement 'usage qui leur a attribué des statuts différents de lemme ou théoreme, et
chacun d’entre eux pourrait étre choisi comme base dans un exposé sur le passage
a la limite dans la théorie de Lebesgue. C’est en fonction de la situation que 1’on
choisit d’appliquer I'une ou 'autre de ces quatre faces du probléme de la convergence
des intégrales.

IV-1.7. Formule de sommation par tranches. Voici maintenant une ap-
plication importante et parlante des résultats de la section précédente. Soit A la
mesure de Lebesgue sur R, définie dans la section I1-8. Si f est mesurable, on notera

{f >ty = {a; f(x) > t}.

THEOREME IV-32 (Formule de sommation par tranches). Soient (X, A, u) un
espace mesuré, et f une fonction mesurable positive ; alors

| t@utin = [ Bl > ]2
_Jlnio%%n“ va f(z) = 2%}] :

REMARQUE 1V-33. Cet énoncé justifie en un sens le dessin de la figure 1 dans
I'introduction.

DEMONSTRATION DU THEOREME IV-32. Dans le cas ot f = 14, A étant un
ensemble mesurable quelconque, les trois quantités ci-dessus valent p[A] et sont donc
égales.

Considérons ensuite le cas ou f est une fonction simple, prenant donc un nombre
fini de valeurs non nulles, toutes de la forme k/2". Pour n fixé, on pose A, =
{f = k/2"}. Dés que n > ng, on peut écrire f = > 27"1y, , et pour tout t €
[(E—1)27" k27" ona {f >t} = p[Akn]. Alors il est facile de se convaincre que les
trois quantités apparaissant dans I’'énoncé du Théoreme IV-32 sont encore égales.

Soit enfin f une fonction mesurable positive. Par le Théoreme I11-36, on peut
construire une suite (f,) de fonctions simples telles que 0 < f,, < f, f, converge en
croissant vers f, et f,, prend ses valeurs dans N/2". D’apres le résultat précédent,
on sait que

/X fodp = / ul{fa >t ().

Par le Théoréme de convergence monotone, [ f, du converge vers [ fdu. D’autre
part, il est équivalent de dire que f(x) >t ou que f,(z) > t pour n assez grand ; en
particulier, {f > t} est I'union croissante des { f,, > t}. Par o-additivité,

pllf >3] = lim p[{fn > t}].

On peut alors appliquer le Théoreme de Convergence Monotone une seconde fois, a
la suite de fonctions (dans la variable t!) u[{f, > t}], pour découvrir que

[ttt > @) —= [ s > o aga),
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On conclut que

/fdu / [{f > £} A(db).

Enfin, posons ¢(t) = p[{f > t}], et soit ¢,(t) la fonction (constante par mor-
ceaux) égale & ¢(k27") sur chaque intervalle |(k — 1)27", k27"] (on pose ¢,(0) =
»(0)). La fonction ¢ étant décroissante, on a 0 < ¢, < ¢, et on vérifie facilement
que ¢, converge en croissant vers ¢. On peut donc encore appliquer le Théoreme de
convergence monotone pour obtenir

/¢> ) = T [ 9,(6) M)

n—o0

ce qui revient a

/ ul{f >t} A dt—hmZ_NH (z) >

Mk

f

La formule de sommation par tranches admet une généralisation importante :

OJ

THEOREME IV-34 (Sommation par tranches, encore). Soient (X, A, 1) un espace
mesuré, f une fonction mesurable positive, et v une mesure de Borel sur R,. Pour
tout v > 0, on définit (r) = v[[0,r[]. Alors,

[ ot ntan) = [ ity > ] vian
JE&Z k—1)27" k27" u [{x f(z) > 2£”H

REMARQUE IV-35. On retrouve le Théoreme IV-32 via le cas particulier v = \.

EXEMPLE IV-36. Soit ¢ une fonction positive continue par morceaux sur R, et
® sa primitive (avec ®(0) = 0). Alors

/X B(f(x)) ulde) = / Wl{f > 1] 6(0) Mdt).

Par exemple,

(25) /X P = / ul{f > )] ptr =t dt.

Je démontrerai le Théoreme 1V-34 plus tard. Il est clair qu’il suffit d’établir
Pégalité [, ©(f(x)) p(dx) = [, pl{f >t} v(dt); la suite de la conclusion en découle
facilement. On donnera d’abord une démonstration dans le cas particulier ou X est
o-fini, comme conséquence du Théoreme de Fubini; ¢’est la preuve la plus simple. Le
cas général, sans hypothese de o-finitude, sera ensuite prouvé grace a un théoreme
de changement de variables.

IV-2. Intégration sur les espaces produits

La théorie abstraite de I'intégrale de Lebesgue aborde efficacement les intégrales
multiples, pourvu que l'on prenne garde a quelques subtilités.
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IV-2.1. Rappels et compléments sur la tribu produit.

DEFINITION IV-37 (tribu produit). Soient (X, A) et (Y,B) deux espaces mesu-
rables. On appelle tribu produit de A et B, et on note A® B, la o-algébre engendrée
par les pavés, c’est a dire les parties de la forme A X B, ou A et B sont des parties
mesurables de X et'Y respectivement.

PROPOSITION IV-38 (génération de la tribu produit). Soient X et Y deux en-
sembles. On se donne F une famille de parties de X, et G une famille de parties de
Y. On suppose que X est union dénombrable d’éléments de F, et Y union dénom-
brable d’éléments de G. Alors la famille F @ G des pavés AX B, ou A € F et B € G,
géneére la tribu produit o(F) ® o(G). En d’autres termes,

o(F®G)=0c(F)®a(G).

PREUVE DE LA PROPOSITION IV-38. Une inclusion est immédiate : o(F ® G)
est la tribu engendrée par la famille des pavés de la forme A x B, ou A € F et
B € G; alors que o(F) ® o(G) est engendrée par la famille des pavés de la forme
Ax B,ou A€ o(F)et Beo(G). Donc

o(F®G) Ca(F)®a(G).
C’est I'inclusion réciproque qu’il faut établir. Pour cela, il suffit de montrer que
VAeo(F), VBeoa(G), AxBeo(F®G).

Pour cela, on remarque tout d’abord que pour tous A € F, B € G, les ensembles
A XY et X x B appartiennent a o(F ® G) : en effet, on peut les écrire comme
unions dénombrables d’éléments de F ® G. A partir de la, la démonstration suit un
schéma classique, déja utilisé dans la preuve du Théoreme II-77. On montre dans un
premier temps que A X B € o(F ® G) pour tous A € o(F) et B € G; pour cela on
vérifie que, B étant fixé dans G, 'ensemble des A tels que A x B € o(F ®G) est une
o-algebre contenant F. Dans un second temps on montre que A x B € o(F ® G)
pour tous A € o(F) et B € 0(G), par un argument similaire. O

Dans un cadre abstrait, la tribu produit peut étre tres difficile a décrire. Mais
pour les tribus boréliennes, le probleme se simplifie grace a la proposition suivante.

PROPOSITION IV-39 (produits de tribus boréliennes). Soient X etY deux espaces
topologiques, munis de leurs tribus boréliennes respectives B(X) et B(Y). Si X et Y
sont des espaces métriques séparables, alors

B(X x Y) = B(X) ® B(Y).

DEMONSTRATION. 1. Appliquons la Proposition 1V-38 avec F la famille des
ouverts de X, et G la famille des ouverts de Y : on obtient que B(X) ® B(Y') est la
tribu engendrée par les ouverts de la forme A x B, ou A est un ouvert de X et B
un ouvert de Y. En particulier,

B(X)®B(Y)CB(X xY).
Cette conclusion ne fait pas appel a I'hypothese de séparabilité, qui sera utilisée
seulement pour établir I'inclusion inverse.

2. Comme X est métrique séparable, il contient une base dénombrable d’ou-
verts : les boules ouvertes B(zg,1/n), ou (xx) est une suite dense. Cela veut dire
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que tout ouvert O est réunion dénombrable de telles boules : comme dans la preuve
du Théoreme I1-39, il suffit d’écrire

O = U B(xg,1/n).

B(zg,1/n)CO

Soient maintenant O un ouvert de X X Y, et (z,y) € O. Par définition de la
topologie produit, il existe un ouvert O" = U x V inclus dans O et contenant x, ou
U est un ouvert de X et V un ouvert de Y. En particulier, (z,y) € B(xy, 1/n) X
B(ye, 1/m) pour k, ¢, m,n bien choisis. Donc O s’écrit comme une union dénombrable
de B(zg,1/n) x B(ye, 1/m); en particulier O appartient a la tribu produit B(X) ®
B(Y'). Par définition de la tribu borélienne, B(X xY') C B(X)®B(Y), ce qui conclut
la preuve. O]

EXEMPLE IV-40. B(R™") = B(R™) ® B(R").

REMARQUE IV-41. La complétion en revanche passe mal au produit tensoriel.
Soient A et B deux tribus sur X et Y respectivement, et A, B leurs tribus complétées,
construites a 'aide du Théoreme 11-93. Soit d’autre part A ® B la complétion de la
tribu produit A ® B. En général,

A®B# (A® B).

On verra au Chapitre VI que méme dans le cas simple ou A = B est la tribu boré-
lienne sur [0, 1], la complétion de la tribu produit n’est pas identique au produit des
tribus complétées (ou tout au moins qu’il est impossible de prouver cette identité).

IV-2.2. Applications partielles. On parle ici d’application partielle dans le
méme sens que “dérivée partielle”, i.e. quand on considere une fonction de deux
variables comme fonction d’une seule de ces variables, 'autre étant fixée.

La terminologie suivante n’est pas universelle, mais sera bien commode pour
préciser les idées.

DEFINITION IV-42 (section). Soit C' un ensemble mesurable dans un espace
produit X X Y, muni de la tribu produit. Pour tout x € X, on appelle section (ou
coupe, ou tranche) de C en x le long de Y [’ensemble

C,={yeY;(z,y) €C}.

PROPOSITION 1V-43 (les sections sont mesurables). Soient (X, .A) et (Y, B) deux
espaces mesurables, on munit X XY de la tribu produit A ® B. Alors, pour toute
partie C mesurable de X x Y, et pour tout x € X, la section C, est une partie
mesurable de Y .

DEMONSTRATION. Soit z € X, on définit
C={CcXxY;C,eB}.

I est clair que C est une tribu; en fait c’est la tribu image de A par 'application
wr Yy — (z,y). Si P = A X B est un pavé, alors P, vaut soit B (si z € A), soit
0 (si z ¢ A), et dans les deux cas c’est une partie mesurable de Y. Donc C contient
tous les pavés, et partant, toute la tribu produit. 0

REMARQUE IV-44. La conclusion de la proposition précédente est mise en défaut
par des tribus d’usage courant qui sont plus grandes que la tribu produit — ne serait-
ce que la tribu des ensembles Lebesgue-mesurables dans R x R, comme on le verra
au chapitre suivant.
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Le théoreme simple ci-dessous est le premier pas vers la construction des in-
tégrales multiples : étant donnée une fonction de plusieurs variables, il permettra
d’intégrer d’abord par rapport a une variable.

THEOREME IV-45 (mesurabilité par rapport a une composante). Soient X et Y
deuz espaces mesurables, et f : X x Y — R une fonction mesurable pour la tribu
produit sur X x Y. Alors, pour tout x € X, la fonction y — f(x,y) est mesurable
de X dans R. Le méme résultat reste vrai si R est remplacé par un espace métrique
complet.

DEMONSTRATION. On sait que f est limite d’une suite de fonctions simples f,,.
Chaque f,, s’écrit sous la forme ) Ax1le,, Papplication partielle y — f,,(z,y) n'est
autre que Y A\yl(c,),. Par la Proposition IV-43, cette application est mesurable sur
Y ; comme elle ne prend qu’un nombre fini de valeurs elle est simple. En conséquence,
f(z,-) =lim f,(z, ) est également limite de fonctions simples, donc mesurable. [

IV-2.3. Définition de la mesure produit. Dans R?, il est naturel de définir
I’aire d’un rectangle comme le produit des longueurs des cotés, et c’est la base de la
mesure d’aire dans le plan. On généralise cette démarche a un cadre abstrait avec
la notion de pavés.

THEOREME IV-46 (mesure produit). (i) Soient (X, A, i) et (Y, B,v) deux espaces
mesurés, o-finis. On munit X x Y de la tribu produit A ® B. Alors il existe une
unique mesure 0 sur X xY telle que

V(A,B) € Ax B, 0[A x B] = ulA] x v[B].
Cette mesure est appelée mesure produit de i par v et notée p ® v.

(ii) En outre, si F (resp. G) est une famille de parties de X (resp. Y ), stable
par intersection finie, telle que A = o(F) (resp. B = 0(G)), et si X est union
dénombrable croissante d’éléments de F (resp. Y est union dénombrable d’éléments
de G), alors la mesure produit sur X x Y est caractérisée par la propriété

V(A,B) € FxG,  0]Ax B]=pulA] x v[B].

REMARQUE IV-47. La notation de produit tensoriel traduit 'idée que les va-
riables x € X et y € Y sont “indépendantes”. Quand on consideére 4 ® v/, on conserve
toute l'information sur p et toute l'information sur v, on les apparie ensemble de
facon bilinéaire.

NOTATION IV-48 (intégrale produit). Soient (X,.A,u) et (Y,B,v) sont deux
espaces mesurés, et f une fonction mesurable de (X x Y, A® B) dans R. Alors, des
que [ fd(p® v) est bien défini, on notera indifféremment

fd(pev) = flz,y)dp@v)(z,y)

XxY XxXY

:/X Yf(q;,y) (n @ v)(dedy) :/X Yf(x,y)u(dx) v(dy),

la valeur de cette intégrale produit. (On peut aussi utiliser le symbole [[ dans les
deux premieres expressions si I'on souhaite insister sur la nature produit de cette
intégrale.)
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DEMONSTRATION. C’est, comme d’habitude, le Théoréme de prolongement I1-82
qui permettra de construire la mesure 6. Il va s’agir de prolonger la mesure produit
de l'algebre faite des unions finies de pavés, a la o-algebre engendrée par ces pavés.

On définit donc P comme ’ensemble de tous les pavés P = A x B, ou A € A et
B € B, et [P] = p[A] xv[B]. Clairement, P est stable par intersection. D’autre part,
si (Xg) (resp. Yi) est une suite croissante d’ensembles mesurables dont 1'union est
X (resp. Y), alors X x Y est réunion croissante des ensembles X x Yy, qui vérifient
0[ X\ x Yi] < +o00. L'unicité du prolongement éventuel de 0 est donc assurée par la
partie (i) du Théoreme I1-82.

Soient A; X By et Ay X By deux pavés; leur intersection (A; N Ay) x (B; N By)
est un pavé; et leur différence est I'union de deux pavés disjoints, (A; \ Az) X By,
et (Ag \ A1) X (B \ Bz) (faire un dessin ou se rappeler la figure 1!). Les hypothéses
de la partie (iii) du Théoreme II-82 sont donc vérifiées, et il ne reste a vérifier que
la o-additivité de 6 sur P.

Soit P = A X B un pavé, et (Py)ren un recouvrement de P par des pavés disjoints
de la forme Ay X By (comme suggéré sur la figure IV-2.3) ; notre but est de prouver

que O[P] = 0[F].

FIGURE 3. Recouvrement (infini) de P par des pavés Py

Pour tout k£ on définit sur X
fe(@) = v[Bi] 14, (2).
Clairement, f; est une fonction mesurable positive, et

En outre pour tout x, la fonction 1, ,)cp, est clairement mesurable sur B (si x € Ay,
c’est la fonction indicatrice de Ay, sinon c’est la fonction nulle), et

fulx) = / 1y (1) La, () v(dy) = / 1, (2, ) (dy).

Pour tout x fixé, par convergence monotone, appliquée a la mesure v,

(27) > ful@) Z/lpkwy (dy) = /lekxy dy).
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Puisque chaque (z,y) de P appartient & un et un seul des Py,

Z lp, = 1p,
%

donc (27) devient
S fule) = [ 1n(e ) = [ 1a@)1(0) o) = 1B La(a).

%
En appliquant a nouveau la convergence monotone, cette fois pour la mesure p, on
échange a nouveau somme et intégrale :

S [ edu= [ 3 fedu= [viBILada = viB )
kX Xk
En appliquant (26) et la définition de la mesure produit, cette derniére égalité devient
> 0[P =6[P],
k

ce qui acheve la démonstration du point (i).

Pour prouver le point (ii), il suffit de remarquer que la famille F ® G génere
la tribu produit d’apres la Proposition IV-38, et que X X Y est réunion croissante
d’une suite d’éléments de cette famille. On peut alors appliquer le Théoreme 11-82
(ii) pour conclure a 'unicité d’une mesure satisfaisant aux conditions requises. [

REMARQUE [V-49. La démonstration du point (i) n’est pas tres intuitive. Voici
une esquisse d’argument plus intuitif, mais qui ne marche pas! Introduisons une
partition de A plus fine que tous les ensembles A, et une partition de B plus fine
que tous les By. Chaque pavé A, X By peut se redécouper en une union (au plus
dénombrable) disjointe de pavés obtenus & partir des partitions plus fines : P est donc
recouvert par une union dénombrable de pavés A} x By, ot tous les A} sont disjoints,
et tous les Bj sont disjoints. Tous les couples (k, £) sont forcément représentés, sinon
I'union de tous les A) x By ne recouvrirait pas A x B. On se ramene alors a montrer
que

> nlA VB = ulA]v[B],

ce qui est vrai puisque toutes deux quantités sont égales a
O ulA)) O vIiB)).
k ¢

L’erreur dans ce raisonnement est qu’il est impossible en général de définir une
partition dénombrable qui soit plus fine qu’une famille dénombrable de partitions
finies. Ainsi, sur [0, 1], la seule partition qui soit plus fine que toutes les partitions
[0, ¢u[U]gn, 1], 0 (gn)nen est une énumération des rationnels de [0, 1], est la partition
triviale, non dénombrable, de tous les singletons.

REMARQUE IV-50. La mesure produit a une importance considérable en théorie
des probabilités, ou elle est associée a la notion d’indépendance. C’est assez natu-
rel : pour calculer la probabilité jointe de deux événements A et B qui n’ont rien a
voir I'un avec 'autre, il est conforme a 'intuition de multiplier les probabilités res-
pectives de ces deux événements. Et finalement c¢’est la définition de I'indépendance :
si A et B sont deux ensembles mesurables (appelés événements) dans 1'espace €2 des
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possibles, et P une mesure de probabilité, on dira que A et B sont indépendants si
P[AN B] = P[A] P[B]. Dans le cas ou P[B] > 0, cela se reforme de fagon encore plus
parlante avec la notion de probabilité conditionnelle : la probabilité que A se réalise
“sachant que B est vrai” (ou simplement “sachant B”) vaut P[A N B|/P[B], dite
probabilité de A conditionnée a B. Avec cette notion, dire que A et B sont indépen-
dants, c’est dire que la probabilité de A conditionnée B est égale a la probabilité de
A; et aussi, si P[Q2\ B] > 0, a la probabilité de A conditionnée au complémentaire
de B. Autrement dit, la probabilité de A reste la méme que B soit vrai ou pas, la
méme indépendamment de la réalisation de B. Et plus généralement, en probabilité
on dit que deux fonctions mesurables (deux variables aléatoires) f et g sur un espace
de probabilité (X, C, ) sont indépendantes si (f, g)xm = (fam) ® (gam).

EXEMPLE IV-51. Soit Ay = A la mesure de Lebesgue sur R; on peut définir
X2 = A ® A, c’est une mesure borélienne sur R?, appelée mesure de Lebesgue 2-
dimensionnelle. Alors que A; mesure les longueurs, Ay mesure les aires. On reviendra
par la suite sur les propriétés de cette mesure et de ses analogues en dimension plus
grande.

IV-2.4. Généralisation : mesures dépendant d’un parametre.

PROPOSITION IV-52 (produit tensoriel par une famille de mesures). Soient (X, 1)
un espace mesuré, et Y un espace mesurable. Soit une famille (v,).ex de mesures
définies sur'Y . On suppose que x — v, est mesurable, au sens ot pour tout B C'Y
Uapplication

xr — U, B]

est mesurable sur X. On suppose également que Y = UY}, ou chaque Y, est un
ensemble mesurable de v,-mesure finie pour tout x. On peut alors définir sur la tribu
produit une mesure p ® v, par la formule

(1 ® 1) [A] = /X Vel Au] pu(dz).

REMARQUE IV-53. Dans cette notation la variable x au membre de gauche est
formelle. 1l serait plus correct mais moins parlant de noter u ® v. cette mesure.

PREUVE DE LA PROPOSITION IV-52. Il y a deux choses a vérifier : (i) que la
fonction © — v,[A,] est mesurable, et (ii) que la formule précédente définit bien
une mesure. Sans perte de généralité, on peut supposer les Y, disjoints; alors les
ensembles A N'Y}, induisent des sections (Y}), disjointes, et

V:U[A:v] = Vg [Uk(A N Yk‘):v} = Z V$[(A M Yk)z]

11 suffit donc de vérifier que chaque application z — v,[(A N Yy),] est mesurable;
on supposera donc, sans perte de généralité, que v, est finie pour tout x.

Pour 'assertion (i), soit A I'ensemble des éléments de la tribu produit tels que
v;[Az] soit mesurable. Par hypothése, A contient tous les pavés. Il est facile de voir
que A est stable par union disjointe : deux ensembles disjoints A et A% donnent lieu
a des sections distinctes Al et A2 le long de Y, pour chaque z, d’ou v, [(A'UA?),] =
vp[AL]41v,[A2]. On montre de méme que cet ensemble est stable par limite croissante.
En utilisant la finitude de v,, on montre également qu’il est stable par différence :
siA,Be€ A, BC A, alors B\ A € A. En particulier, A contient la classe monotone
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engendrée par les pavés. Comme I’ensemble des pavés est stable par intersection finie,
le Lemme de classe monotone (Théoreme II-77) assure que cette classe monotone
coincide avec la tribu produit tout entiere.

Pour 'assertion (ii) on note que, si (A") est une famille d’ensembles mesurables
disjoints, alors pour tout z les sections A} sont disjointes, d’ou

/X[(UA" p(dz) /Z%A" (da) Z/%An (da).

0J

REMARQUE IV-54. Si u[A] = 0 alors (p ® v,)[A x Y] = 0; je montrerai dans
la Section 77 que sous certaines hypotheéses peu contraignantes, cette propriété
caractérise les mesures qui peuvent s’écrire sous la forme p ® v,.

EXEMPLE IV-55. Soit f une fonction intégrable positive sur R? par rapport a la
mesure A®A (mesure de Lebesgue 2-dimensionnelle). Alors la mesure f(z, y) A(dx) A(dy)
peut étre considérée de deux manieres qui sont rigoureusement équivalentes : soit
comme la mesure de densité f par rapport a A ® A, soit comme le produit tensoriel

Adx) & vy, ot vy (dy) = f(z,y) Mdy).

IV-2.5. Théoréme de Fubini—-Tonelli-Lebesgue. On nomme théoreme de
Fubini, de fagon générique, tout énoncé permettant d’échanger des opérations d’inté-
gration, ou plus généralement de définir des intégrales multiples, que ce soit dans la
théorie de Riemann, dans celle de Lebesgue ou dans une autre. On utilise parfois le
nom de théoréme de Tonelli quand on considere des fonctions positives mesurables.
Accoler les trois noms de Fubini, Tonelli et Lebesgue est donc le plus juste pour le
présent cours; en pratique et par commodité, on dit le plus souvent “théoreme de
Fubini”.

THEOREME IV-56 (Théoréme de Fubini-Tonelli-Lebesgue). Soient (X, A, ) et
(Y, B,v) deux espaces mesurés, o-finis. On munit X x'Y de la tribu produit A® B.
Alors

(i) Pour toute fonction mesurable f définie sur X XY, a valeurs dans [0, +o0],
les fonctions

xH%Aﬂ%wWM> yH%Aﬂ%wMW)

sont mesurables sur X et'Y respectivement. En outre,

/Xxyfxy)(u@@ v)(dz dy) = /(/fxy dy),u(dx):
([ s ntas)) v

(ii) Soit f une fonction mesurable définie sur X x Y, a valeurs dans R. Si

J[ 1t e vdray < s

alors, pour p-presque tout x, la fonction f(x,-) est v-sommable ; et pour v-presque
tout y, la fonction f(-,y) est u-sommable. La fonction

¢w~+4ﬂawmm
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est alors v-sommable sur l’ensemble Sy des y tels que f(-,y) est u-sommable; et la
fonction

i /Y f(x,y) v(dy)

est p-sommable sur l’ensemble Sx des x tels que f(x,-) est v-sommable. En outre,
st l’on redéfinit arbitrairement les valeurs de ¢ (resp. V) sur le complémentaire de
Sx (resp. Sy ), on a 'égalité

@ [ tepwenea- [ ( / f<x,y>u<dy>) ()

= [ ([ s utin) v,

REMARQUE IV-57. Sil'on applique ce théoreme dans le cas particulier o Y = N
et v est la mesure de comptage, on retrouve les énoncés d’interversion somme-série
déja vus en section IV-2 comme corollaire des théoremes de convergence monotone, et
de convergence dominée. Ce n’est cependant pas vraiment une nouvelle démonstra-
tion car la convergence monotone joue un réle clé dans la construction de l'intégrale
produit.

DEMONSTRATION DU THEOREME IV-56. Il est facile de se convaincre que (ii)
est une conséquence de (i). En effet, en appliquant (i) a la fonction positive | f(z, y)|,
on constate que les fonctions

x»—)/y|f(x,y)]1/(dy), y'—>/X’f($ay)’M(d$)

sont sommables ; en particulier, elles sont finies presque partout, donc pour p-presque
tout z, la fonction f(z,y) est v-sommable; et de méme, pour v-presque tout y,
cette fonction est u-sommable. Les fonctions ¢ et ¢ sont donc bien définies presque
partout. La fonction

P /X ()| w(dy)

étant mesurable, I'ensemble Sx des x pour lesquels f(z,-) est non sommable est
mesurable; de méme pour Sy. On peut donc redéfinir ¢ et 1 en-dehors de ces
ensembles, sans altérer leur mesurabilité. L’inégalité

[ 1) u(dy>] < [ .l

assure alors que la fonction v est effectivement p-sommable sur Sx ; par symétrie, il
en est de méme pour ¢. Enfin, pour établir (28) on décompose f en partie positive
et partie négative, et on applique (i) a chacune de ces fonctions.

Il reste a établir (i). La preuve en est assez laborieuse et utilise des schémas
déja rencontrés : remplacer les fonctions mesurables par des fonctions indicatrices,
remplacer les ensembles mesurables par des pavés. On va démontrer en méme
temps l'assertion de mesurabilité et la formule d’échange des intégrales. Soit G
I'ensemble des fonctions f vérifiant (i), et A 'ensemble des parties mesurables de
X x Y dont la fonction indicatrice appartient a G. Dans un premier temps, on
supposera que p et v sont finies.
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1. A contient les pavés. En effet, dans ce cas application x — [ f(z,y) v(dy)
est un multiple de la fonction indicatrice d’un ensemble mesurable, donc mesurable.
En outre, le théoreme de Fubini se réduit alors a la définition de la mesure produit
sur les pavés.

2. A est stable par limite croissante. Pour le montrer, on écrit, pour tout x

[ ton, ) vldy) = Jim [ Lay(og) vidy)
Y - Jy

ce qui est une conséquence du théoréme de convergence monotone; et une rela-
tion similaire en échangeant les roles de X et Y. On applique une deuxieme fois le
théoreme de convergence monotone pour établir la formule de Fubini.

3. A est stable par soustraction. Pour le voir, on écrit simplement que 1p\4 =
lp — 14 si A C B, et on applique les régles d’addition de l'intégrale : [(f — g) =
[ f—J g. On note que la finitude de ;1 et v est utilisée ici; sans cette hypothese
nous aurions des indéterminations du type (+00) — (+00).

4. A contient donc toute la tribu produit. C’est une conséquence du Lemme de
classe monotone (Théoreme II-77). En termes équivalents, G contient toutes les
fonctions indicatrices mesurables.

5. G contient toutes les fonctions simples. C’est évident par linéarité de l'inté-
grale (on utilise ici la linéarité des deux intégrales, par rapport a p et par rapport a
V).

6. G contient toutes les fonctions mesurables. Pour le voir, on approche f mesu-

rable par une suite croissante de fonctions simples, et on passe a la limite dans toutes

les expressions en jeu en utilisant le Théoréme de Convergence Monotone comme en
2).

Pour conclure la preuve, il ne reste plus qu’a remplacer 'hypothese de finitude
par celle de o-finitude. Par hypothese, X est une union d’ensembles mesurables X},
de mesure finie, et Y une union d’ensembles mesurables Y, de mesure finie. Pour
tout k, les conclusions de (i) sont donc vérifiées si I'on remplace X et X par Y et
Y} ; ou, de maniére équivalente, si I'on remplace f par flx,xy,. Puisque f est la
limite croissante des flx,xy,, on conclut par application répétée du Théoreme de
Convergence Monotone, comme en 2). 0J

REMARQUE IV-58. Dans I’énoncé, j’ai pris soin de définir (arbitrairement) les
fonctions ¢, 1) en-dehors de certains ensembles négligeables ou leur valeur n’était pas
définie (on ne définit pas I'intégrale d’une fonction non sommable dont le signe n’est
pas constant). Une alternative classique consisterait a admettre que les fonctions
v, 1 ne sont définies qu’en-dehors d’un ensemble négligeable. Dans le contexte pré-
sent, peu importe, tant qu’on a les idées claires! Dans d’autres situations, travailler
avec des fonctions définies partout (et pas seulement presque partout) peut éviter
certaines confusions.

Voici maintenant quelques remarques sur le Théoreme de Fubini—Tonelli-Lebesgue,
que l'on pourra illustrer grace a la mesure de Lebesgue A sur R.

REMARQUE IV-59. La o-finitude de X et Y est une hypothése importante dans
le Théoreme IV-56. Un contre-exemple classique consiste a considérer la mesure
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de Lebesgue A sur [0, 1] d’une part, la mesure de comptage C' sur [0, 1] d’autre part
(clairement, la mesure de comptage n’est pas o-finie, sinon [0, 1] serait dénombrable).
Si l'on integre la diagonale A := {(z,z); = € [0,1]} de deux fagons différentes, on
trouve

Yy, /1A(a:,y) A(dz) = 0; vz, /1A(x,y) C(dy) = 1.

En particulier,

[ [1s@oranca =0 [ [1a6)cn ) -1

Noter que A est mesurable puisque intersection d’une famille dénombrable d’union
de pavés (comme suggéré par la figure 4). Noter également que nos hypotheses ne
garantissent pas que la mesure produit A ® C' soit bien définie; est bien définie en
revanche la mesure extérieure (A ® C)* associée aux recouvrements par des pavés.
En l'occurrence, on se convainc facilement que (A ® C)*[A] = +oc.

FIGURE 4. La diagonale est limite d’une union de petits carrés

REMARQUE IV-60. Il est également important que la fonction f soit mesurable
pour la tribu produit! Un contre-exemple surprenant da a Sierpiniski [Rudin, p. 167],
sous hypothese d’axiome du choix, montre que les quantités

/[o,u ( o f (fcvy)k(dy)) A(dz); /[0 ; ( o flz,y) )x(dx)) A(dy)

peuvent étre toutes deux bien définies comme intégrales de fonctions positives me-
surables, et pourtant différentes! On peut toutefois exclure ce type de pathologie
par des hypothéses topologiques : par exemple, si f : R? — R est telle que les appli-
cations partielles f(z,-) et f(-,y) sont respectivement Borel-mesurables en y pour
tout x, et continues en x pour tout y, alors f est automatiquement Borel-mesurable
[Rudin, p. 176].

Avec le Théoreme de Fubini, on peut démontrer la formule de sommation par
tranches généralisée qui avait été annoncée dans la Section IV-1.7, du moins sous
hypothese de o-finitude :
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DEMONSTRATION DU THEOREME IV-34 QUAND X EST o-FINI. Puisque ®(f) =
v[[0, f[], on peut écrire, en utilisant Fubini-Tonelli-Lebesgue,

[ ot@)du) = [ [ v vd) duo

- [ ([ vosnoanto) vian

- / ul{f > 1) v(dr).
]

On verra plus tard (Section IV-3.3) comment se passer aussi de ’hypothese de
o-finitude.

IV-2.6. Généralisation : intégrales multiples. Il n’y a aucune difficulté a
généraliser les constructions précédentes a un produit fini d’'un nombre quelconque
d’espaces mesurés; on obtient ainsi le théoreme ci-dessous, dont la preuve pourra
étre traitée en exercice.

THEOREME IV-61 (produits multiples et intégrales multiples). (i) Soient (X1, A1, u1),
ooy (X, Ap,y i) des espaces mesurés. Alors la tribu (((A; @ As) @ A3) ... ® A,) est

la tribu engendrée par les pavés multiples, de la forme Ay X ... x A, ou A; € A;
pour tout i. On Uappelle tribu produit de Ay, ..., A, et on la note
A1 A...QA,.

(ii) Soient X1,...,X,, des ensembles quelconques, et Fi,...,F, des familles de
parties de Xi,...,X, respectivement. On suppose que X; est réunion dénombrable
d’éléments de F;, pour touti € {1,...,n}. Alors la tribu produit o(F1) @0 (F3)...®
o(F,) est engendrée par les pavés de la forme Ay X ... X A,, ou A; € F; pour tout
i.

(iii) Soient X.,...,X, des espaces métriques séparables, munis de leurs tribus
boréliennes respectives. Alors la tribu produit sur X1 X ... x X, coincide avec la tribu
borélienne sur X1 X ... x X,,.

(iv) Soient (X1, A1), ..., (X, Ay) des espaces mesurables, et soit A C [[X; un
ensemble mesurable pour la tribu produit. Alors pour tout k les (n — k)-sections

{(z1,.. . ) € X1 X ... X Xpp (21,...,2,) € A}
sont mesurables pour la tribu produit Ay @ ... ® A,_.

(iv) Soient (X1, A1, 1), ..., (X, An, pin) des espaces mesurés o-finis. Alors sur
X1 X ... x X, muni de la tribu produit, il existe une unique mesure u telle que pour
tout pavé P = Ay x ... x A,, ou A; € A; pour tout 1,

M[P] = HMz[Az]

Cette mesure coincide avec ((u1 @ p2) @ ...) & p ; on Uappelle mesure produit de
(1, .-, [y et on la note

p1 @ 2 & ..o & L.
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St Fi,...,Fn sont des familles de parties de Xi,...,X, telles que pour tout 1,
A; = o(F;), F; est stable par intersection finie, et X; est union dénombrable d’une
famille croissante d’éléments de JF;, alors la mesure produit est caractérisée par la
propriété

Vi, A € Fi = plAy x ..o x A = [ [ milAi]-

i=1
(v) Soient (Xo,Ao), ... (Xn, An)nen des espaces mesurables. On se donne une
mesure o sur Xo; et pour tout j € {1,...,n — 1} on se donne une famille de

mesures vy, sur X;y1, dépendant mesurablement de x; € X;. On pose X := [] X;
et on le munit de la tribu produit. Alors il existe une unique mesure p sur X telle
que pour toutes parties mesurables A; de X;,

Wl A = /A 0 /A /A / (0] v (d2) i) )

On la note jig @ Vgy @ ... @y, , (étant entendu que dans cette notation les x; sont
des symboles formels rappelant juste la dépendance en la variable).

(vi) (Fubini pour des intégrales multiples) Soient (X1, A1, p1), .., (Xn, An, pin)
des espaces mesurés o-finis. On munit X* = X, x ... x X}, de la tribu produit
A ® ... ® Ag. Alors, pour tout k € {1,...,n — 1} et toute fonction mesurable f
définie sur X", da valeurs dans [0,400], la fonction

(Tpaty ooy Tn) —> floy, . o xn)d(pn ® ... @ ) (a1, ..., Tk)
X1 XXXy

est mesurable sur X1 X ... x X,,. En outre

f(:zcl,...,xn)d(m@...@un)(m,...,xn):/ flxy, ... xy) pa(day) ... (dxy,),
X n X1

ot le membre de droite peut étre vu soit comme une suite d’intégrations successives
par rapport aux mesures ji;, soit comme une seule intégration par rapport a la mesure
1 Q... Q py ; le résultat peut aussi étre dénoté par

/ flz, .o xn) 1 @ ... @ pp(dey ... dxy,)
Xn

En outre, si f est une fonction mesurable définie sur X", d valeurs dans R, telle
que

/ |f<x177xn>|d(:ul®®Mn)<x177$n)<+oou
Xn

alors pour chaque k la fonction

(xk-i-la"'ax’fL) — f('rlv"'axn>d(lul ®. .. ®Mk)(x17axk>
X1><..A><Xk

est bien définie et sommable hors d’un ensemble négligeable Zy, ; quitte a la redéfinir
arbitrairement sur Z, on a

f(xl,...,xn)d(m@...®un)(x1,...,:vn):/ flxy, ..o xy) pa(dey) .. pn(day,)
X n X1

= / . fl@, .. 20) o) (dZeq)) - - - fom) (dZam))
Xo(n) Xo(1)
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pour toute permutation o de {1,...,n}.

EXEMPLE IV-62. On peut définir la mesure de Lebesgue en dimension n par
An = A&

REMARQUE IV-63. On verra en fin de chapitre que 'on peut, sous certaines
conditions, définir aussi des produits infinis de mesures. Cette opération n’est pas
toujours permise, ainsi le produit A¥> n’a pas de sens.

IV-3. Changement de variable

Le changement de variable est le remplacement d’un espace d’intégration par un
autre. Les théoremes classiques de changement de variable s’écrivent dans un cadre
différentiable : R™, ou un ouvert de R", ou une variété riemannienne. L'un d’entre
eux dit que si ¢ est un C'-difféomorphisme entre ouverts O et U de R”, alors

/ fly) dy = / f(o(x)) | det V()]
U O

ou dzr désigne la mesure de Lebesgue dans la variable x, et Vi est la matrice ja-
cobienne de . Cette formule permet de passer d'une intégrale dans la variable y a
une intégrale dans la variable z, ou y = ¢(x).

Mais le changement de variable peut aussi se formuler dans le cadre bien plus
général des espaces mesurés et des fonctions mesurables. Il ne sera plus question
alors de difféomorphisme ou de déterminant jacobien, qui n’ont pas forcément de
sens. C’est donc une formule bien plus abstraite qui sera au cceur de cette section,
basée sur la notion importante de mesure image. On verra plus tard comment faire
le lien avec les formules classiques de changement de variable dans R™.

IV-3.1. Image d’une mesure par une fonction mesurable. La proposition
qui suit se contente de rappeler une notion introduite dans la Remarque I1I-3(i).

PROPOSITION 1V-64 (Tribu image). Soient (X, .A) un espace mesurable, Y un
ensemble quelconque, et f : X — Y. On peut définir une tribu, notée fx A (ou f#A,
ou f.A, ou fA) surY, par

faA={BCY; fT1(B)ec A}.

Cette tribu est appelée tribu image de A par f, et c’est la plus grande tribu qui rende
f mesurable.

SiY est au départ un espace mesurable, muni d’une tribu B, et si f est une
application mesurable, alors B C fuA.

DEFINITION IV-65 (Mesure image). Soit (X, A, 1) un espace mesuré, et f : X —
Y. Alors la formule

v[B] = ulf~(B)]

définit une mesure sur la tribu image f4A appelée mesure image de p1 par f et notée

far (ou fH#p, ou fupu).

Si (Y, B) est au départ un espace mesurable, et f est une application mesurable,
alors fup définit par restriction une mesure sur B.

La preuve des assertions énoncées ci-dessus est un exercice simple de maniement
des axiomes de théorie de la mesure.
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REMARQUE IV-66. On rencontre parfois la notation fu pour la mesure image
de f par u, mais il y a alors risque de confusion avec la notion tres différente de
mesure de densité f par rapport a pu.

IV-3.2. Théoreme de changement de variable.

THEOREME IV-67. Soient (X, A) et (Y, B) deux espaces mesurables, et p : X —
Y une application mesurable. Soit ;v une mesure sur ’espace mesurable X . Alors
(i) Pour toute fonction f mesurable sur'Y, a valeurs dans [0, +0o0],

(29) / fd(ppp) = / (f o) du.

(ii) Pour toute fonction f mesurable surY, a valeurs dans R, la fonction f o ¢
est p-sommable si et seulement si la fonction f est (@up)-sommable, et I'égalité
ci-dessus est alors vérifiée.

DEMONSTRATION. Il est facile de voir que (i) implique (ii) ; on va donc se conten-
ter de démontrer (i). Si f est une fonction simple, ’égalité (29) découle de la défi-
nition de pxp. En effet, quand B est une partie mesurable, et que f est la fonction
indicatrice de B, alors les deux membres de (29) se ramenent a u[f~!(B)].

Dans le cas général ou f est seulement supposée mesurable, on peut approcher
f par une famille croissante de fonctions simples f, ; alors f,, o ¢ est une famille
croissante de fonctions simples convergeant vers f o ¢, et on passe a la limite par le
Théoreme de convergence monotone de Beppo Levi (Théoréme IV-1). 0J

REMARQUE IV-68. Il peut se produire que f o ¢ soit mesurable sans que f le
soit. Par exemple c’est le cas, dés que ¢(X) n’est pas mesurable, pour la fonction

[ =1ox)-

IV-3.3. Morphismes d’espaces mesurés. La formule de changement de va-
riables vue précédemment ne suppose aucune régularité et s’applique donc dans des
problémes théoriques abstraits.

Soit la situation ou (X, A4, 1) est un espace mesuré, ¢ une application X — Y, et
Y est muni de la tribu image px.A et de la mesure image ¢4 p. Tout énoncé faisant
intervenir la mesure p et des ensembles mesurables, ou des intégrales de fonctions
mesurables, se traduira en un énoncé similaire sur (Y, pxA, pxu). On peut dire que
© réalise un morphisme entre les espaces mesurés X et Y.

Si maintenant f est bijective, de réciproque mesurable (on parle de fonction “bi-
mesurable”), alors f~! réalisera également un morphisme entre Y et X, et les énoncés
de théorie de la mesure faisant intervenir (X, A, u) seront équivalents aux énoncés
correspondants faisant intervenir (Y, fx A, f#u). On dit que f réalise un isomor-
phisme entre les espaces mesurés X et Y. Cette notion permet parfois de ramener
des problemes définis sur un espace en apparence compliqué, a des problemes défi-
nis sur un espace beaucoup plus familier ; ¢’est tout simplement un changement de
variable abstrait.

A titre d’exemple, voici un surprenant résultat de classification selon lequel tout
espace polonais est isomorphe a [0, 1].

THEOREME IV-69 (représentation des espaces polonais). Soit (X, A, ) un espace
polonais muni d’une mesure de Borel finie. Soit I l'intervalle [0, 1] muni de sa tribu
borélienne B. Alors
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(i) 1l existe une mesure finie A sur I, et une application mesurable f : [ — X
qui réalise un morphisme entre (I,B,\) et (X, A, u). Autrement dit, toute mesure
finie sur un espace polonais est image d’une mesure finie sur [0, 1].

11) St est sans atome, alors on peut choisir la fonction [ bijective. Autrement

H )
dit, toute mesure finie sans atome sur un espace polonais est isomorphe a une mesure
finie sans atome sur [0, 1].

REMARQUE IV-70. On rappelle que la réciproque d’une bijection mesurable entre
espaces polonais est automatiquement mesurable (Théoreme 111-24).

EXEMPLE IV-71. Comme on le verra au Chapitre VI, I'espace [0, 1], muni de la
mesure de Lebesgue, est isomorphe & l'espace {0,1}N, muni de la mesure produit
(infini) v obtenue par produit tensoriel dénombrable de la mesure de Bernoulli sur
{0, 1}, i.e. la mesure qui attribue un poids identique 1/2 a {0} et & {1} :

1. 1. \*"
vV = (550 + 551) .

Pour autant, R et {0, 1} ne sont pas topologiquement isomorphes : ainsi, le premier
est connexe, alors que le second est totalement discontinu (ses composantes connexes
sont tous ses points, il y en a une infinité non dénombrable). On voit sur cet exemple
que la théorie de la mesure selon Lebesgue est insensible a la topologie.

On va maintenant appliquer le théoreme de changement de variable pour prou-
ver le Théoreme 1V-34 dans le cas général (rappelons que ce théoreme a déja été
démontré dans le cas ou X est o-fini a I'aide du Théoréme de Fubini).

DEMONSTRATION DU THEOREME 1V-34. Appliquons le Théoréme IV-32 4 la
fonction positive ® o f : ainsi

/ o fdy _/ W@ o f > Y] A(dE).

b's Ry

De par sa définition, la fonction ® est croissante et continue a gauche (en effet,

V[0, z[ = limy_,0o [0,z — k7![. On définit son inverse généralisé par la formule
O7'(t) :==inf{s > 0; @(s) > t}.

Il est facile de vérifier que ®~! est croissante et continue & droite. Par définition de
o1 si f > ®7(t) alors ®(f) > t. Si maintenant ®(f) > ¢, par continuité de ® a
gauche on peut trouver € > 0 tel que ®(f —¢) > t, et par définition de ®~! on a
¢ 1(t) < f—e< f.Onadonc

O(f)y>te f>d (1)

Il s’ensuit
[ u@o £ > 1A = [ il > )M = [ 4l(f > ) [@ )] (@)
Pour conclure, il suffit d’établir que

((I)il>#)\ = V.

Or la tribu borélienne sur R, est engendrée par les intervalles de la forme [0, s|; il
suffit donc de vérifier que
M{®™! < s} =v[0,s]
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Or la premicre quantité est A[0, ®(s)[= ®(s), puisque ®~1(t) < s équivaut a t <
®(s); et la deuxieme quantité est par définition ®(s). O

IV-4. Inégalités intégrales élémentaires

Pour établir des majorations sur des quantités faisant intervenir des intégrales,
on utilise le plus souvent un petit nombre d’inégalités souples et puissantes, qui
apparaissent dans un nombre incalculable de contextes différents. Les trois inégali-
tés fondamentales, valables en toute généralité, sont les inégalités de Tchebychev,
Jensen et Holder. Deux autres inégalités viennent compléter le tableau : les in-
égalités de Young intégrées, plus générales que celle de Holder ; et les inégalités de
Minkowski, qui joueront un réle majeur au Chapitre VIII.

Toutes ces inégalités, pour I'essentiel antérieures a la théorie de Lebesgue, ont
été découvertes, redécouvertes et améliorées par des analystes et statisticiens ac-
tifs durant la seconde moitié du dix-neuvieme siecle : Viktor Bouniakovski, Her-
mann Amandus Schwarz, Leonard James Rogers, Otto Holder, Johan Jensen, Paf-
nouti Tchebychev, William Henry Young, Andrey Andreyevitch Markov, Irénée-Jules
Bienaymé, Hermann Minkowski... La paternité est particulierement brouillée : par
exempe, l'inégalité de Jensen est d’abord établie par Holder, et I'inégalité de Holder
par Rogers... En outre elles sont toutes étroitement liées, et relevent d’une méme
philosophie : utiliser la convexité pour borner une intégrale faisant intervenir un
produit de deux fonctions, par des intégrales faisant intervenir chaque fonction sé-
parément. Elles s’appliquent pareillement & des sommes discrétes (et dans ce cadre
remontent au moins a Augustin-Louis Cauchy) et & toute notion acceptable d’inté-
grale ; de sorte que la théorie de Lebesgue n’a eu aucun souci a les inclure quand elle
s’est développée.

Avec le développement de la théorie de I'information, sont venues s’ajouter a la
liste les inégalités intégrales entropiques, qui sont a la fois un cas particulier des
inégalités de Young et un cas limite des inégalités de Holder ;

Une certaine familiarité avec les propriétés des fonctions convexes sera utile pour
lire cette section; en cas de besoin on pourra se reporter aux rappels contenus dans
I’Appendice en fin de chapitre.

IV-4.1. Inégalité de Thebychev. L’inégalité de Tchebychev (un nom que 'on
orthographie de multiples autres manieres, comme Chebisheff) est aussi élémentaire
qu’utile, particulierement dans le domaine des probabilités.

THEOREME IV-72 (inégalité de Tchebychev). (i) Soient (X, A, u) un espace
mesuré et f: X — R, une fonction mesurable positive. Alors, pour tout a > 0,

(30) plle e X: f(@) > a}] < / fd.

(ii) Soient (X, A, u) un espace mesuré, f : X — R, une fonction mesurable
positive, et & : R, — R, une fonction mesurable croissante. Alors, pour tout a > 0,

1
nllee X £ 2 0] < o [ @) nda).
®(a) Jx
REMARQUES IV-73. (a) Dans le cas dégénéré o a = 0 et f est nulle presque
partout, I'inégalité (30) est a priori fausse (sous la convention habituelle 0/0 =

0).
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(b) L’énoncé (i) est souvent appelé inégalité de Markov ; ’énoncé (ii) est souvent
appelé inégalité de Bienaymé-Tchebychev quand ®(r) = r?, et inégalité de
Tchebychev exponentielle quand ®(r) = e*”. Si 'on peut choisir des fonctions
® croissant tres vite a l'infini, mais telles que ® o f soit toujours intégrable,
on peut obtenir des estimations de décroissance tres rapide de la mesure
de {z; f(z) > a} quand @ — oo. En fait, dans la plupart des situations
concretes, on obtient des estimations de décroissance presque optimales par
un choix convenable de .

(¢) En corollaire de I'inégalité de Tchebychev, si [|f|du < +o00 on a

(31) ¥ >0 ul{|f] =6} < +oo.

Quand f vérifie (31) on dit parfois que f “s’annule a l'infini”. La méme
conclusion est vraie si [ ®(f)dpy < 4oo pour ® une fonction R — R,
dont les restrictions a R, et R_ sont strictement croissantes; par exemple
si [|f|Pdp < 400 pour un certain p €0, +-o0|.

DEMONSTRATION DU THEOREME IV-72. Posons A := {z € X; f(z) > a}.
Comme f est positive, on a

(32) f>ala.

L’ensemble A est mesurable puisque f l'est; donc al, est étagée, et son intégrale
est au[A]. La définition méme de I'intégrale implique donc [ fdp > ap[A], d’ou (i).

Pour en déduire ’énoncé (ii), il suffit d’appliquer (i) avec f remplacé par ® o f,
et de noter que, ® étant croissante,

{5 f(@) > a} < {w; @(f(2)) > ®(a)}.
0

REMARQUE IV-74. Il est facile de vérifier que 1’énoncé est en général faux si f
n’est pas positive! (exercice) Dans la pratique, on cherchera donc toujours a se rame-
ner a des fonctions f positives, par exemple en prenant la valeur absolue. En utilisant
des normes, on peut aussi appliquer ce théoreme a des estimations de fonctions a
valeurs vectorielles.

IV-4.2. Inégalité de Jensen.

THEOREME IV-75 (inégalité de Jensen dans R™). Soient (X, A) un espace mesuré
équipé d’une mesure de probabilité u, f : X — R™ une fonction mesurable dont
chaque composante est p-sommable, et ® : R — R U {400} une fonction convexe
semi-continue inférieurement. On note [ fdu le vecteur de R™ dont la composante

d’ordre i est [ f;du. Alors
CD(/fdu) < [@opn

De plus, si les deux membres de l'inégalité sont finis, il y a égalité si et seulement si
® coincide, fyp-presque partout, avec une fonction affine; en particulier, si ® est
strictement conveze, f doit étre égale a une constante, u-presque partout.
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COROLLAIRE IV-76 (inégalité de Jensen pour des puissances). Soient (X, A) un
espace mesurable, p une mesure de probabilité sur X, f : X — R"™ une fonction
mesurable dont chaque composante est ji-sommable, et p € [1,+o0o[. On note [ fdp
le vecteur de R™ dont la composante d’ordre i est [ f; du. Alors

‘/fdupﬁ/lflpdﬂ-

De plus, si le membre de droite de l'inégalité est fini et p > 1, il y a égalité si et
seulement si il existe une constante a € R™ telle que, u-presque partout, f = a.

REMARQUES IV-77. (i) Si @ est continue a valeurs réelles, elle est automati-
quement continue, 'hypothese de semi-continuité inférieure dans le Théoreme
IV-75 devient donc superflue.

(ii) Quand g = Ao, + (1 — A)d,, I'inégalité de Jensen se réduit a la définition de
la convexité. Plus généralement, si 'on pose X ={1,..., N}, u = > \J; et
f(i) = x;, I'inégalité de Jensen se réduit a I'inégalité

i)\i =1= @(Z >\z‘1‘i) < Z/\z‘q)(l‘z‘)a

que l'on peut également adopter comme définition de la convexité. L’inégalité
de Jensen n’est donc qu’une “version continue” ou “limite continue”
de l'inégalité ci-dessus.

(iii) L’inégalité de Jensen s’étend a n’importe quelle notion “raisonnable” d’inté-
grale a valeurs vectorielles, méme si 1’espace d’arrivée de f est de dimension
infinie ; voir le Théoreme ?77. En fait, compte tenu de son importance dans
des contextes tres divers, on pourrait ajouter 'inégalité de Jensen au cahier
des charges d’une intégrale abstraite.

DEMONSTRATION DE L’ INEGALITE DE JENSEN. Je vais d’abord présenter une
démonstration générale, qui ne craindra pas les valeurs infinies, mais ne permettra
pas de traiter les cas d’égalité.

Considérons d’abord le cas ou f prend un nombre fini de valeurs yq, ...,y € R”,
et notons Ay = f~1(yx), ar = p[Ag]. Les ensembles Ay sont mesurables et > oy = 1.
Par convexité de @,

‘P(/fdﬂ> Z@(Zakyk) Szakq)(yk):/q)ofdﬂ'

Supposons maintenant que ® est lipschitzienne. Par hypothese f € L(u), donc

chaque composante f; de f peut étre approchée dans L'(u) par une famille (g§€)) teN

de fonctions prenant un nombre fini de valeurs réelles. On en déduit

/g“)due—>/fd/~b,
— 00

() ()

donc
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et par lipschitzianité de P,
] [ ot utdn [ @) i)

<19l [ 170) = 9 0) ) — 0

{—00

< [12(/(@)) - (" )| (i)

On peut donc passer a la limite dans 1'inégalité de Jensen appliquée a chaque fonction
g9, et obtenir I'inégalité de Jensen pour la fonction f.

Pour conclure, on note que si ® est convexe semi-continue inférieurement, a va-
leurs dans RU{+o0}, on peut écrire ® = sup,y Px, out chaque @, est lipschitzienne.
On a donc

o ([ ran) =spen ([ ran) <sup [arosins [ooran

Pour obtenir les cas d’égalité, nous devrons travailler un peu plus. Sans perte de
généralité, on peut supposer que f(z) =z : pour s’y ramener, il suffit de remplacer
(o par fup. L'inégalité devient alors

29 < [@dn, €= [autin)

(En d’autres termes, £ est le barycentre de p1.) Supposons donc que ®(§) = [ @ dp.
Plagons-nous dans I’espace affine E engendré par le support de p. Soit 2 = &~ H(R)N
E le domaine de ®, ou plutdt de sa restriction & E. Si [ ®du < 400, forcément
p[EN\ Q] = u[® = +oo] =0, autrement dit p peut étre considéré comme une mesure
de probabilité sur Q. Par le lemme IV-79 ci-dessous, £ est intérieur a ) (dans E);
le sous-différentiel 0P (&) est donc non nul (on démontrera plus tard ce résultat sous
des hypotheses plus générales, voir le Corollaire ?7?). Soit y € 9P(&); pour tout
z€ FE,ona

®(z) = ®(€) = (y,2—&) = 0.
Comme l'intégrale de cette fonction vaut

Joau-2© - [tz-gutis = ([oau-20) - [we-g

=0—-0=0,
elle est forcément nulle. On conclut que

®(z) = (&) + (v, 2 = &),

p-presque partout, ce qui démontre la conclusion. O

REMARQUE IV-78. Dans la preuve des cas d’égalité, on a en fait redémontré
I'inégalité de Jensen, sous I'hypothese supplémentaire que ® est finie u-presque par-
tout.

LEMME IV-79. Soit Q C R™ un conveze (non nécessairement ouvert ou fermé),
et soit p une mesure de probabilité borélienne sur Q, telle que [ || p(dz) < 4o0.
On note E Uespace affine euclidien engendré par le support de p, et & = [ p(dx)
le barycentre de . Alors & est intérieur a QYN E dans E.
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DEMONSTRATION. On note ' = QNE. Supposons que £ € 9 ; par le Théoréme
de séparation de Hahn—Banach (dont la démonstration sera rappelée plus tard dans
un cadre général, voir le Théoreme ?7?) il existe une forme linéaire A € E*, et a € R,
tels que A < a sur Q' et A(§) = a. On considere v = Ayp : c’est une mesure sur
(—o0, a] dont le barycentre est égal & «; elle est donc forcément égale a J,. On en

déduit que p est concentrée sur un hyperplan de F, ce qui est en contradiction avec
la définition de E. 0

Il faut prendre bien garde, quand on applique I'inégalité de Jensen, a I’hypothese
sur la mesure y : ce doit étre une mesure de probabilité. Il existe cependant
un cas intéressant ou cette hypothese peut étre omise : c’est celui ou la fonction ®
est homogene de degré 1, au sens ou

(33) YA>0, VzeR",  ®(\z)=\D(z).

THEOREME IV-80 (inégalité de Jensen pour des fonctions convexes 1-homo-
genes). Soient X un espace mesuré, p une mesure sur X, f: X — R™ une fonction
mesurable dont chaque composante est p-sommable, et ® : R" — R U {400} une
fonction convexe, semi-continue inférieurement, homogene de degré 1 au sens de

(33). Alors
<I>(/fdu) S/@Of)du,

ot l’on convient que le membre de droite vaut +oo si ® o f n’est pas sommable.

REMARQUE IV-81. La convention sur le membre de droite est tres naturelle :
on peut montrer que ® est minorée par une fonction affine, et il s’ensuit que ® o f
est minorée par une fonction intégrable; ® o f est donc la somme d’une fonction
sommable et d'une fonction positive.

DEMONSTRATION DU THEOREME IV-80. La p-sommabilité de chaque compo-
sante de f implique celle de |f|. Pour tout entier £k > 1, notons A, = {z €
X |f(z)] > k~'}. L’inégalité de Tchebychev implique

) <k [ 1f1du

En particulier, u[Ayg] est fini. Soit i la mesure de probabilité définie par

_ MAN B
il B = plA]

L’inégalité de Jensen implique

@(/fduk) < [@o sa.

En utilisant ’homogénéité de ®, on en déduit

@ <u[z4k] / fduk> — u[A] @ ( / fduk) <ulit) [ @o fdu.

En résumé,

(34) @(/Akfdu)g/AkCI)ofd,u.
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En distinguant les cas f(x) = 0 et f(x) # 0, on voit que f1,4, converge partout vers
f quand k — oo. Par convergence dominée,

/ fduk—>/fdu,
Ay, - JXx

et par semi-continuité inférieure de P,

(35) @(/fd,u) Shﬁiﬂ}f/A Do fdu.

D’autre part, ’homogénéité de ® impose ®(0) = 0, ce qui permet de montrer que
la fonction (® o f)1,4, converge partout vers ® o f. Si cette fonction est intégrable,
alors, par convergence dominée,

/Akfdum/deu-

Cela conclut 'argument. O

REMARQUE IV-82. Soit ¢ une fonction convexe sur R"!; alors la fonction définie
sur R"! x R, par

x
O(x,2)=2z¢ <—>
z
est convexe, comme on peut le voir en revenant a la définition de la convexité (exer-
cice) ; et elle est homogene de degré 1.

IV-4.3. Inégalités de Young intégrées. Pour toutes fonctions f et g a va-
leurs réelles, définies sur un espace X quelconque, et toute fonction convexe ® sur
R, on peut écrire

f(x) g(x) < &(f(x)) + 2" (g(x)),

ou ®* est la transformée de Legendre de . Si X est muni d’'une mesure u et que
toutes ces fonctions sont intégrables, on a alors

/fgd/iﬁ/‘bofdu—i-/fb*ogd,u.
X X X

Plus généralement, si f et g sont a valeurs dans R", on peut écrire
(36) /(f,9>du§/<1>0fdu+/@*ogdu,
X X

des que ces intégrales sont bien définies dans R.
Ces inégalités aussi élémentaires que cruciales peuvent parfois étre améliorées,
en particulier quand ® est homogene, comme on va le voir.

IV-4.4. Inégalité de Holder. Tres souvent, quand on majore des produits de

fonctions, on cherche a exploiter des intégrabilités différentes pour les deux facteurs.
Un exemple évident est l'inégalité utile

|f| < C p-presque partout —- ‘/fgd/t’ < C/ |g] dp.

L’inégalité de Holder affine cette inégalité grace a 1'usage de fonctions puissances.
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THEOREME IV-83 (inégalité de Holder). Soit (X, A, ) un espace mesuré, soit
€|l, +oo, et soit p' = p/(p — 1) Uexposant conjugué de p. Soient [ et g deux
fonctions mesurables sur X, a valeurs dans R. Alors

/fgdu‘ < </|f|”du)l/p (/W’ du) "

ot l’on convient que le membre de gauche vaut 400 si fg n’est pas intégrable. De
plus, si le membre de droite de l’inégalité est fini et non nul, il y a égalité si et
seulement si il existe « > 0, e € {£1} tel que, p-presque partout, f et € g ont méme
signe et |f|P = a|g|”’, ce qui revient a g = |f[P72f.

Les mémes conclusions valent si f et g sont a valeurs dans R™, quitte a remplacer
le produit fg par le produit scalaire (f, g), et a interpréter | f| et |g| comme les normes
euclidiennes de f et g.

(37)

REMARQUES 1V-84. (i) Dans le cas ou p = p’ = 2, I'inégalité de Holder est
appelée inégalité de Cauchy—Schwarz ; on peut alors la démontrer par un
argument abstrait, et cette inégalité revient a dire que la fonction f — [ |f|?
est une forme quadratique positive. On reviendra sur cela dans les chapitres
VIII et ?77.

(ii) L’inégalité de Minkowski fait aussi intervenir des fonctions puissance et
de la convexité ; elle sera introduite dans le Chapitre VIII,

(iii) L’inégalité de Holder reste vraie pour p = 1 ou p = oo, si l'on convient de
poser

1/00
(/ \g|°°d,u> = inf{C € R; |g| < C p-presque partout}.

Cette derniere quantité est appelée le supremum essentiel de |g|; il s’agit
de la définition habituelle du supremum, a laquelle on a ajoutée les mots
“u-presque partout”.

(iv) Pour 0 < p < 1, il existe une inégalité de Holder renversée : I'exposant p’ est
remplacé par ¢ = p/(1 — p) = —p/, le signe d’inégalité dans (37) est renversé,
et les fonctions f et g sont supposées positives :

(33) foz0 = [reduz (/f”du) " (/quu)l/q-

Cette inégalité, d’usage beaucoup moins fréquent que (37), repose sur les
mémes bases que I'inégalité habituelle, et elle est laissée en exercice.

DEMONSTRATION DE L’ INEGALITE DE HOLDER. Sil’une des intégrales du membre
de droite est nulle, alors, u-presque partout, fg = 0, et I'inégalité est satisfaite. Si
I'une de ces intégrales est infinie et I’autre non nulle, alors 'inégalité est bien siir
satistaite. Supposons donc que les deux intégrales sont strictement positives et finies.

On pose alorsf I/ 1f1P) WP G =g/( f|g[” Rk onaalorsf\f]p—f\g\p =1et

on doit prouver
‘ / 19, du‘ <1

’/fﬁdu‘ < [ 173l dn

On sait déja que
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et si le membre de droite est fini, I’égalité n’est possible que si, u-presque partout,

f g=1\f g| c’est-a-dire si f et g ont méme signe, ou de fagon équivalente, si f et g
ont méme signe.

Pour récapituler, on s’est ramené, par cet argument d’homogénéité, au cas par-
ticulier suivant : montrer que, si f et g sont deux fonctions positives,

[r=[e=1 = [n<

avec égalité si et seulement si f = g presque partout. On écrit alors 'inégalité du
Lemme IV-126 avec a := f(x), b := g(z), et on intégre par rapport & p : on trouve

1 1
[fodus e =1,
p D
avec égalité si et seulement si f = g presque partout, ce qui conclut 'argument. [J

L’inégalité de Holder admet plusieurs avatars simples et intéressants.

THEOREME IV-85 (variantes de 'inégalité de Holder). (i) Soit (X, A, u) un
espace mesuré, soit p €]1,+oo[ et soit p' =p/(p — 1) son exposant conjugué. Soient
f et g deux fonctions mesurables sur X, da valeurs dans R. Alors, pour tout A > 0,

AP 1
/fgdﬂ‘ < ?/|f|pdﬂ+ Ap,p,/lglqdu,

ot l'on convient que le membre de gauche vaut +00 si fg n’est pas intégrable.

(ii) Soit (X, A, 1) un espace mesuré, soient py,...,pr €)1, +00[ tels que

G|
2.5~ h

et soient f1,..., fr des fonctions mesurables sur X, a valeurs dans R. Alors

|/(1:[f¢)du < H (/!fi“du>1/m,

ot l'on convient que le membre de gauche vaut +oo si [| fi n'est pas intégrable.

(#ii) Soient (X, A, 1) un espace mesuré o-fini et (Y, B, ) un espace de probabilité.
Alors, pour toute fonction F mesurable de X XY dans Ry U{+o0}, on a

/XeXP </Y log F(x,y)ﬂ(dy)) pu(dx) < exp (/y log (/X F(z,y) u(dw)> W(dy)) :

(iv) Soient X et Y deur ensembles quelconques, et L un opérateur linéaire, défini
sur un sous-espace vectoriel de ’ensemble des fonctions de X dans R, a valeurs dans
I’ensemble des fonctions de Y dans R. On suppose que L est positif, i.e. Lf > 0 si
f > 0. Soient f,g > 0 dans le domaine de L, soit p €]1,+o0[ et p' =p/(p —1) son
exposant conjugué. Alors

L(fg) < [L(f")]"/? [L(g")]"7"

ce qui est une inéqgalité entre deux fonctions de 'Y dans R.
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(v) Soient (X, 1) un espace mesuré, E un espace vectoriel normé, et E* l’espace
des formes linéaires continues sur E, muni de sa norme naturelle. Soient f : X — E*
et g : X — FE des fonctions mesurables, soit p €]1,+o0[ et q := p/( 1). Alors

[t 90e e < (/uf\E*) (/ngp) ,

ot 'on convient que le membre de gauche vaut +oo si (f,g) n'est pas intégrable.

(vi) Soit (X, A, i) un espace mesuré, f,g: X — C deux fonctions mesurables da
valeurs complezes, p €]1,+oo[ et ¢ :==p/(p —1). Alors

s = ([ )" ([ w) ™

ot l'on convient que le membre de gauche vaut +oo si fg n’est pas intégrable. De
plus, si le membre de droite de l’inégalité est fini et mon nul, il y a égalité si et
seulement si il existe a > 0 et 0 € R tels que, pu-presque partout, fg € R et

|17 = algl”.
DEMONSTRATION. (i) Il suffit de remarquer que

)\p 1 ’ 1/17 / 1/p
. A p Pl _ P P
ity vy [y = (Juras) ([ o o)

Cette facon de procéder fournit d’ailleurs la base d’une autre démonstration de
I'inégalité de Holder : on commence par appliquer I'inégalité du Lemme IV-126 avec
a:= Af(x), b:= g(x)/\, ou A > 0 est arbitraire. On integre I'inégalité obtenue par
rapport a u, puis on optimise par rapport au parametre .

(ii) Sans perte de généralité, on peut supposer que toutes les fonctions f; sont
positives ; I'inégalité a démontrer s’obtient alors a partir de 'inégalité de Holder par
récurrence.

(iii) Par homogénéité, on peut supposer que

Yy €Y, / F(z,y)dp(z) =1,
X

auquel cas l'inégalité a établir est

[ e ([ 1os (e ntan) ) uta) <1

C’est alors une conséquence immédiate de l'inégalité de Jensen pour la fonction
convexe — log et pour la mesure de probabilité m, combinée avec le théoreme de
Fubini.

Les énoncés (iv), (v) et (vi) se démontrent sans difficulté en adaptant la preuve de
I'inégalité de Holder ou en s’y ramenant, par exemple en écrivant que (f, g)prxp <
1/ 1|2 lgll - O

E*

REMARQUE IV-86. Pour comprendre en quoi ’énoncé (iii) est une variante de
I'inégalité de Holder dans le cas ou les fonctions f et g sont strictement positives,
il suffit de poser Y := {0,1}, 7 := (1/p)do + (1/p")01, F(x,0) := f(x)?, F(x,1) :=
g(x)”". En fait, on peut facilement se convaincre que 1’énoncé (iii) est une “limite
continue” de I’énoncé (ii). L’énoncé (iii) n’est pas tres utile en pratique, son principal
intérét pour nous est de mettre en évidence un lien étroit entre les inégalités de
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Holder et de Jensen. L’énoncé (iv) quant a lui a le mérite de montrer que I'inégalité
de Holder est vraie dans un cadre beaucoup plus général que celui de 'intégration ;
noter que 'inégalité de Holder correspond au cas ou Y est réduit a un point.

IV-4.5. Inégalités entropiques. L’inégalité de Holder fait intervenir des puis-
sances des fonctions en jeu, ce qui est largement suffisant pour la majorité des pro-
blemes. Cependant, il arrive que I'on considere d’autres fonctions, par commodité
ou par nécessité. L'une de ces fonctions est I’entropie d’'une mesure ou d’une den-
sité, un concept introduit au dix-neuvieme siécle par Ludwig Boltzmann, le héros
de la théorie atomique, et redécouvert dans les années 1940 par Claude Shannon,
pere fondateur de la théorie de l'information et de la communication, et 'un des
peres de I'informatique. Les propriétés numériques de ’entropie ont été étudiées au
milieu du vingtieme siecle par des spécialistes d’information et statistique comme
Mark Semonovitch Pinsker, Richard Leibler, Imre Csiszar, Johannes Kemperman,
Solomon Kullback.

DEFINITION IV-87 (entropie). Soient (X, p) un espace mesuré et f : X —
R, U {400} une fonction positive. On appelle entropie de f par rapport a p la
quantité

Su(f) == [ flog fdu
b's
On appelle information de Kullback de fu par rapport a p la quantité

H(fulw) = [ (Flogf =1+ 1)du

REMARQUE IV-88. La fonction f —— flog f — f + 1 est positive, et donc I'in-
formation de Kullback toujours positive, alors que l’entropie peut prendre I'un ou
I’autre signe.

En physique statistique, si f est une densité de probabilité par rapport a la me-
sure p := L, mesure de Lebesgue sur R", on appelle S,(f) 'entropie de Boltzmann ;
en théorie de I'information, on appelle S, (f) I'entropie de Shannon. Par ailleurs, I'in-
formation de Kullback, aussi appelée divergence de Kullback—Leibler, coincide avec
l'opposé de D'entropie dés que [ fdu = [du, ce qui est trés souvent le cas. Dans
chacun de ces domaines, I’entropie joue un role fondamental. L’inégalité suivante
remplace alors I'inégalité de Holder :

THEOREME V-89 (inégalité de convexité pour 'entropie). Soit (X, A,u) un
espace de probabilité, et soient f,g : X — R, U {400} deux fonctions mesurables
positives. Alors,

/fgd,uS/(flogf—f+1)du+log/egdu.

DEMONSTRATION DU THEOREME IV-89. Par homogénéité, on peut se ramener
au cas ou [ e9dp =1, et il s’agit alors de prouver que

/fgdﬂé/(flogf—erl)du.

Pour cela on écrit I'inégalité de Young logarithmique ci-dessus avec a = f(z),
b:= g(z), et on I'integre contre p. Il vient

[ todu< [(frog =+ du+ [(er-1)dn.
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et la derniére intégrale s’annule car [ e =1 et u est une mesure de probabilité. [

Une autre question naturelle que 1’on peut se poser est la facon dont l'entropie
se compare aux fonctions définies par des puissances. On ne peut bien siir espérer
controler par I'entropie aucune puissance de f strictement supérieure a 1. L’inégalité
suivante répond de maniere assez précise a cette question.

THEOREME IV-90 (inégalité de Pinsker). Soit (X, i) un espace de probabilité, et
soit f une densité de probabilité, i.e. fu est une mesure de probabilité sur X. Alors

/ ’f—l\dﬂﬁ\/2/(f10gf—f+1)du.
X X

REMARQUE IV-91. Cette inégalité se rencontre aussi sous le nom de Csiszar—
Kullback—Pinsker, ou diverses combinaisons de ces trois noms.

DEMONSTRATION. Par formule de Taylor avec reste intégrale,

1 R
flogf—f+1=(f—1)2/0 %

La mesure p étant finie, on est en droit d’appliquer le Théoreme de Fubini, d’ou

/(flogf—f+1)du=/01(1—t) VX%M dt.

Par inégalité de Cauchy-Schwarz, pour tout ¢ € [0, 1],

(/\f—lldu)2§ (/let(;flfl)du) (/(Ht(f—l))du)—/X%du,

puisque p et fu sont toutes deux des mesures de probabilité. On conclut que

(/ol(l_t)dt) (/’f_”d“)zS/(flogf—fﬂ)du,

ce qui est équivalent a la conclusion souhaitée. O

IV-5*Equi-intégrabilité et tension

Cette section plus technique aborde les deux criteres majeurs de compacité liés
a 'intégration de Lebesgue; elle pourra étre omise en premiere lecture.

IV-5.1. Equi-intégrabilité. On dit qu'un ensemble F de fonctions définies sur
un espace métrique est équicontinu s’il admet un module de continuité uniforme :
pour tout € > 0 il existe & > 0 tel que pour tous x,y distants d’au plus 4, les images
f(x) et f(y) soient distantes d’au plus ¢, et ce pour tout f € F. Ecrit autrement

Ve>030>0; Ve,ye X, VfeF dxy) <6 = |f(y)— f(z)| <e.

Bien noter que dans cette écriture § est indépendant de f € F : c’est en ce sens que
le module de continuité est dit uniforme. Bien évidemment, si F est équicontinu,
alors tout f € F est uniformément continu; et la réciproque est fausse.

La notion d’équicontinuité joue un réle important, par exemple dans I’étude de
la compacité dans des espaces de fonctions continues. Ainsi, le théoréeme d’Ascoli
indique si K est un espace métrique compact, alors les ensembles précompacts dans
C(K) sont exactement les ensembles équicontinus.

En théorie de la mesure, un concept analogue est 1’ équi-intégrabilité :
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DEFINITION 1V-92 (Equi-intégrabilité). Soit (X, A, 1) un espace mesure.
(i) On dit qu’un ensemble F de fonctions f : X — R est équi-intégrable si pour
tout € > 0 il existe d > 0 tel que

(39) WA <6—  VfeF /Alflduéa

(ii) On dit que F est équi-intégrable a l'infini si pour tout € > 0 il existe une
partie Y. C X, de mesure finie, telle que

(40) VfeF, |fldp < e.

X\Yz
L’équi-intégrabilité se prouve le plus souvent grace au critere suivant :

PROPOSITION IV-93 (Equi-intégrabilité : reformulation). Soient (X, A, ) un
espace mesuré, et F un ensemble de fonctions mesurables de X dans R, tel que

sup / [l dp < +oo.
feF

Alors

(i) F est équi-intégrable si et seulement si il existe une fonction ® : Ry, — R,
telle que
o
(41) lim (r) = 400 et sup/ O(|f|) dp < 4o00.

T—00 T fE]: b'e

En outre, sans perte de généralité, on peut choisir la fonction ® convexe et réguliere.

(ii) F est équi-intégrable a linfini s’il une fonction ¢ : X — Ry telle que
Vr >0, pl{e <r}] < 4o et sup/ |f] pdp < +oo.
feFJx

DEMONSTRATION. Commengons par la propriété (i). Supposons (41) réalisé, et
soit € > 0. On pose I := sup;cz [ ©(|f])], dp, et on choisit R assez grand pour que

a(r) O
ro T 2
On pose ensuite § := ¢/(2R). Alors, pour tout f € F,

/|}C<R|f|dﬂ_%/f>R/ (1) dye <

Donc, pour tout ensemble A de mesure u[A] < 6 et pour tout f € F,

19
Jundesse [ e S RaA <545
AN{|fI<R}

r>R—

l\Dlm

2 2

et F est bien équi-intégrable. (Cette implication n’utilise pas la borne sur les inté-
grales [ |f]dpu.)

Réciproquement, supposons que F est équi-intégrable, et f |f] dp < C. Par I'in-
égalité de Tchebychev, pour tout N > 1 on a

allflz N < [ Iflde< S
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Pour € > 0, soit § comme dans (39), et N tel que C'/N < §. Alors on a, pour tout

fewr,
/ |fldp < e.
FI=N

Ve>0, 3IN(E)>1 VfeF, Ifldp < e.
=N )

En conséquence,

On pose Ny = 0 et on construit par récurrence une suite d’entiers (N )i>1 tels que
pour tout k > 1,

Ny > 2Nj_q, et sup/ |f|dp < 27,
FEF J|fI>Ny,
La suite (N )ren tend bien siir vers U'infini, et pour tout x > 0 il existe un nombre
fini d’indices k tels que Ny < x. On définit

O(z):==x Z k.

ngm

Il est clair que ®(x)/x — +o00 quand = — oo. D’autre part, pour tout f € F on a

_ _ § —k '
Jootan= [ 103 k=3t [ 1len, dus Y k2" < o0

|f1> Nk keN kEN

En particulier, les quantités [ ®(|f]) dp sont bien majorées uniformément pour f €
F.

La fonction ® ainsi construite est affine par morceaux, et discontinue. On définit
®. comme son “enveloppe affine continue”, i.e. la plus grande fonction affine par
morceaux et continue qui minore f, obtenue en joignant les points (Ny, ®(Ny—)).
Sur l'intervalle [Ny, Ni41] cette fonction varie d'une quantité kNg 1 — (k — 1)Ng, sa
pente est donc

_ kNgpr— (B—=1)Np - N,
N1 — Ny Njt1 — Ny
Par construction, N1 > 2Ny, donc Ni/(Njy1—Ni) < 1. Onadonc k < pp < k+1,
ce qui montre que la suite py est strictement croissante, et la fonction @, est donc
convexe.

Pour conclure, il suffit de vérifier qu’on peut trouver une fonction convexe positive
U, de classe C°, telle que &, — 1 < ¥ < . C’est un exercice d’analyse réelle
classique, laissé a la lectrice.

Pk

On passe ensuite a la partie (ii), qui est plus simple. Cette partie n’utilise pas non
plus la borne uniforme sur les [|f|du. Soit F un ensemble de fonctions vérifiant
la condition indiquée, on pose C' = sup{[|f|pdu; f € F}. Soient r = C/e et
A, = {z; ¢ > r}. Pour tout f € F, on applique l'inégalité de Tchebychev a la
fonction ¢ et a la mesure | f|u :

[indn = <
A, r

Puisque A, est de mesure finie, ’ensemble F est bien équi-intégrable a 'infini.

Réciproquement, supposons que F est équi-intégrable a I'infini. Par récurrence,
on peut construire une suite croissante d’ensembles Yj, de mesure finie, tels que
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fX\Yk |fldp < 27% pour tout f € F. Posons Y = UY;. Si f € F est fixé, on a par
convergence monotone

[ ifldu= i [ fidn=o
X\Y -

% J X\Ys

Il s’ensuit que f est nulle presque partout en-dehors de Y.

On pose

keN

En outre on définit ¢(x) = 400 sur X\ Y. Si p(z) < k, alors x n’appartient a aucun
des Y; pour j > k, et n’appartient pas non plus a X \ Y ; x appartient donc a Y}, qui
est un ensemble de mesure finie. Autrement dit, I'ensemble {p < k} est de mesure
finie. D’autre part, pour tout f € F,

k
/Xsofdﬂz/ysofduzzk/flklflduézkjﬁ<+oo.

keN

O

On sait bien qu’une fonction continue sur un espace métrique compact X est
automatiquement uniformément continue, et que donc un singleton dans C'(X) est
équicontinu (ce qui, via le critere d’Ascoli, revient a dire qu'un singleton est bien
compact!) Un énoncé analogue est valable dans le cadre de I’équi-intégrabilité :

PRrROPOSITION 1V-94. Soit f wune fonction sommable dans un espace mesuré
(X, ). Alors f est uniformément intégrable, au sens ot 'ensemble {f} est équi-
intégrable, et équi-intégrable a l’infini.

DEMONSTRATION. Soit fy; := max(—M, min(f, M)) (on tronque f aux hauteurs
—M et M). Par convergence dominée,

o0 = [ = fldu 0.
[f1>M oo
Il s’ensuit que, pour toute partie mesurable A avec u[A] < 0,

/\f!dué/\fM!du+€(M)§M5+n(M)-
A A

Si e > 0 est donné, on choisit donc M assez grand pour que n(M) < £/2, et
0 =¢/(2M). Ceci prouve I'équi-intégrabilité.

Pour obtenir 1’'équi-intégrabilité a 'infini, si € > 0 est donné, on pose Ay = {x €
X |f(z)| > k7'}. L’inégalité de Tchebychev entraine que Ay est de mesure finie
pour tout k. D’autre part, la fonction |f|1)f<x—1 converge vers 0 partout, et elle est
majorée par la fonction intégrable | f|. Donc, par convergence dominée,

[ it = [l fldn —o
X\Ak — 00

On peut donc trouver k assez grand pour que cette quantité soit majorée par €. [J
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REMARQUE IV-95. Ce résultat, de démonstration simple, est conceptuellement
subtil!! Il entraine que si une fonction f est intégrable, alors il existe une fonction
® positive, avec ®(r)/r — oo, telle que

/X (| f1) du < +oo.

En un certain sens, “si une fonction est intégrable, alors elle est un petit mieux
qu’intégrable”... !

REMARQUE IV-96. On verra au Chapitre 7?7 que I’équi-intégrabilité est associée
a un critere de compacité, ce qui est en accord avec le fait que cette propriété soit
automatiquement vérifiée par les singletons, ou plus généralement par les ensembles
finis ; et approfondit le parallele avec la propriété d’équi-intégrabilité.

IV-5.2. Tension. La tension est 'analogue naturel de la propriété d’équi-intégrabilité
quand on parle de familles de mesures sur une o-algebre donnée, et non plus de
familles de fonctions intégrables sur un espace mesuré. Elle s’exprime en termes
d’ensembles compacts et non en termes d’ensembles de mesure finie.

DEFINITION IV-97 (tension). Soient X un espace topologique, muni de sa tribu
borélienne, et M un ensemble de mesures de Borel sur X. On dit que M est tendu
si, pour tout € > 0 on peut trouver un compact K. dans X tel que

sup ulX \ K] <e.
HEM

La notion de tension n’est pas sans rapport avec I'équi-intégrabilité a l'infini :
si v est une mesure de référence qui attribue une mesure finie aux compacts, alors
la tension d’'une famille de mesures de la forme fv implique son équi-intégrabilité
a I'infini ; et en fait les deux concepts sont équivalents modulo le remplacement des
compacts par les ensembles de mesure finie. Le lien entre les deux notions est clarifié
par la formulation équivalente de la tension que voici :

PROPOSITION IV-98 (tension : reformulation). Soient X un espace métrique,
muni de sa tribu borélienne, et M un ensemble de mesures de Borel sur X. Alors
M est tendu si et seulement si il existe une fonction p : X — R, tendant vers
Uinfini a Uinfini (au sens ot pour tout r > 0 il existe un compact K, tel que
r ¢ K, = p(x) >r), et telle que

sup [ @dp < +oo.
HEM J X

En outre, si X est localement compact, on peut sans perte de généralité choisir la
fonction ¢ continue.

DEMONSTRATION. Supposons 'existence de ¢ tendant vers 'infini & D'infini, et
telle que pour tout p € M, [pdu < C. On pose r = C/e : par inégalité de
Tchebychev,

p{pzri] <C/r=e.
Soit K, comme dans ’énoncé; on a alors X \ K, C {¢ > r}, dou u[K,] <e.

Réciproquement, soit M un ensemble tendu. Par récurrence, on peut construire
une suite croissante de compacts K, tels que pour tout u € M,

plE,] <277
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On pose alors ¢ = ) nlx\k,, et on effectue un raisonnement similaire & celui de la
démonstration de la Proposition IV-93(ii).

La derniéere assertion (on peut choisir ¢ continue si X est localement compact)
est laissée en exercice. OJ

IV-6*Produits infinis

Cette section pourra étre omise en premiere lecture. La théorie de la mesure
dans des produits infinis a une importance considérable en théorie des probabilités.
Les outils de la section IV-2 permettent de démontrer les principaux résultats de ce
sujet.

IV-6.1. Tribu et topologie d’un produit infini. Commencons par rappe-
ler la définition de la tribu produit dans le cas d’un produit infini (pas forcément
dénombrable) d’espaces mesurés.

DEFINITION IV-99 (cylindre). Soit T un ensemble arbitraire et (X;)ier une
famille d’ensembles indexés par le paramétre T ; on pose X = [[X;. Pour toute
partie finie F C T, on pose Xp = [[,cp Xi. Pour tout sous-ensemble Ap de Xp, on
définit le cylindre Cr(Ar), aussi noté abusivement C(Ar), par

C(Af) = {(%)teT? (Tt)ter € AF}-

REMARQUES IV-100. Comme dans le langage courant, un cylindre n’est pas
forcément un pavé. D’autre part, le concept n’a d’intérét que pour un ensemble
d’indices infini : si T est fini, alors tout ensemble mesurable est un cylindre.

DEFINITION IV-101 (tribu produit infini). Soit T un ensemble arbitraire et
(Xy, Ap)er une famille d’espaces mesurables, indexés par le paramétre T ; on pose
X = [I X:. Pour toute partie finie ' C T, on pose Xp = [[,cp X, que 'on munit
de la tribu produit. Pour toute partie mesurable Arp de Xp, on appelle C(Ar) le
cylindre mesurable de base Ap. Si Ap est de la forme [[,.p As, avec Ay € Ay, on dit
que C(Ar) est un cylindre mesurable produit.

On définit alors la tribu produit sur X comme la tribu engendrée par les cylindres
mesurables, ou de maniére équivalente comme la tribu engendrée par les cylindres
mesurables produits.

Cette définition est formellement analogue a celle de la topologie produit, rap-
pelée ci-apres :

DEFINITION IV-102 (topologie produit infini). Soient T un ensemble arbitraire
et (X, Ap)ier une famille d’ensembles mesurables, indexés par le paramétre T ; on
pose X = [[ X;. Pour toute partie finie F' C T, on pose Xp = [[,cp Xi, que l'on
munit de la topologie produit. Pour tout ouvert Op de Xp, on appelle C(Op) le
cylindre ouvert de base Op. Si Op est de la forme [[,. O, ot chaque Oy est un
ouvert de X, on dit que C(Op) est un cylindre ouvert produit.

On définit alors la topologie produit sur X comme la topologie engendrée par les
cylindres ouverts, ou de manicre équivalente comme la topologie engendrée par les
cylindres ouverts produits.

REMARQUES IV-103. (i) Soit C'(Ap) un cylindre produit ; alors c¢’est l'inter-
section des cylindres C'(A;) pour ¢t € F'. Aussi bien les tribus que les topologies
étant stables par intersection finie, on pourrait donc, dans les définitions pré-
cédentes, se limiter a des familles F' ne contenant qu’un élément.
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(ii) Soit S C T'; pour tout s € S on se donne A, une partie mesurable (resp.
ouverte) de X,. En général, on ne peut rien dire de Ag = [],_¢ As. Si la famille
S est dénombrable et les A, sont mesurables, alors Ag est mesurable. Si la
famille S est finie et les A, sont ouverts, alors Ag est ouvert.

(iii) Sit € T, on peut définir un opérateur de projection 7, qui & = € X associe
x5 et si I’ est une partie finie de 7', on peut définir un opérateur de projection
TF, qui a toute partie de (X;)er associe par restriction une partie de (X;)ser-
La tribu produit est alors la plus petite tribu qui rende mesurables toutes les
applications 7, ou, de maniere équivalente, la plus petite tribu qui rende
mesurable toutes les applications 7;. De méme, la topologie produit est la
plus grossiere topologie qui rende continues toutes ces applications.

La tribu produit sera 'objet de la suite de ce chapitre.

IV-6.2. Produit infini de mesures. Dans le Chapitre I, nous avions prouvé
le Théoreme I1-87 uniquement dans le cas particulier ot les espaces considérés étaient
de cardinal fini. On va maintenant proposer une démonstration dans le cas général.
On pourra consulter [Dudley, pp. 257-259] pour une variante.

THEOREME IV-104 (produit dénombrable de mesures). Soient (X, p)ren une
famille d’espaces mesurés, tels que

[T ielX] < 4.
k>1

Alors il existe une unique mesure p> sur X = [[ Xy telle que pour tout n > 1, et
pour toutes parties mesurables A; de X;, 1 <i <mn,

plAL % ox Ay T Xl = mlAd xox [ An] x T il Ad).
i>n+1 i>n+1

On a alors, pour toutes parties mesurables Ay de Xy,

p([T A = T mlAx).

EXEMPLE IV-105. Soit v(dz) = (27)~"/? ¢=*"/2 dx la mesure gaussienne standard
sur R. On peut définir la mesure gaussienne standard -, sur R" par v, = v®", mais
aussi la mesure gaussienne standard v,, = 7% sur R> (que l'on peut identifier a

).

DEMONSTRATION DU THEOREME IV-104. Si A;,..., A, sont des parties me-
surables de X1, ..., X, respectivement, on note
C(A; x ... xAn):{xEX; Vi <n, :EZ-EAZ}
le cylindre produit de Ay, ..., A,, et on note C I’ensemble de tous ces cylindres, pour

toutes valeurs de n € N.

Il est facile de vérifier que C engendre la tribu produit, est stable par intersection
finie, et que le complémentaire de tout élément de C est une réunion finie disjointe
d’éléments de C. Comme p[X] < o0, le Théoréme II-82(i) garantit l'unicité du
prolongement éventuel. Pour prouver 'existence de ce prolongement, en vertu du
Théoreme 11-82(iii) il suffit de vérifier la o-additivité de p sur C.

Soient donc C' un cylindre produit, et (Cy)ren une famille de cylindres produits;
on suppose que les Cy sont disjoints et d’union égale a C', et on cherche a montrer que
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p>[Cl = >, p*°[Cy]. Quitte & restreindre chaque mesure ji; & la k-¢me composante
de C, on peut supposer que le cylindre C' est 'espace tout entier; on fera cette
hypothése dans la suite.

Supposons par 'absurde que

(42) > uC < plX].

Sans perte de généralité, on supposera tous les C, non vides.

Un cylindre produit (ou pavé) Cy étant donné, on définit son ordre comme le plus
petit entier K tel que Cj s’écrive sous la forme C(Ay,..., Ak); et sa composante
d’ordre ¢ comme A,. On vérifie facilement, grace a I'existence de la mesure produit
Q. ..y, que pour tout K, 4> est o-additive sur I'ensemble des cylindres d’ordre
inférieur ou égal a K. En particulier, la relation ) u>[C] < pu>[X] implique qu’il
y a des O} d’ordre arbitrairement grand. Il est également clair que la mesure de la
projection d’un cylindre est au moins égale a la mesure du cylindre lui-méme.

La mesure de I'union des cylindres C} d’ordre 1 est la somme des mesures de
ces cylindres, strictement inférieure a u[X]. Soit Z; le complémentaire de 1'union
des bases de ces cylindres : ¢’est un sous-ensemble mesurable, de mesure €; > 0. il
est recouvert par les cylindres d’ordre 2 ou plus, et la somme des mesures de ces
cylindres est strictement inférieure a My ey, ot My = [],, p;[X;] (sinon (42) serait
contredit).

Chaque cylindre Cj, s’écrit comme un produit infini de A, pour j € N, A) € A;.
Soit, pour x; € 77,

¢1(1) =D [ wilAl Lorear-

k=1 j=2
La fonction ¢, est mesurable, et son intégrale vaut

g o= [T milAd) mlAL 0 2],

k=1 j=2

Pour tout pavé Cy d’ordre 1, A} N Z; = 0; et pour tout pavé Cy d’ordre 2 ou plus,
A}, C Z;. On en déduit que [ Z ¢1 vaut la somme des mesures des pavés d’ordre 2
ou plus. En particulier,

¢1(z1) pa(dey) < pa[Z1] = My ey.
Z
Il existe donc au moins un x; dans Z; tel que ¢1(x;) < My = Hj22 1i1X;]. On
décompose chaque pavé Cy, dont la premiere projection contient z;, en AL x C}. Les
Cy, recouvrent alors X' := [[72, X, et, si 'on note /[Cy] = [[72,[Ax], on trouve

S HICH < WX,

On note que les composantes d’ordre ¢ des C) sont exactement les composantes
d’ordre ¢ 4+ 1 des C%, et que z; a été construit de telle sorte qu’il n’est premiere
composante d’aucun cylindre C} d’ordre 1. En particulier, il est équivalent de dire
que x; et xy appartiennent respectivement aux deux premieéres composantes d’un
des cylindres (%, ou de dire que x; appartient a la premiere composante de C}, que
C se décompose en A; x C}, et que x, appartient a la seconde composante de Cy,.
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On peut alors recommencer le méme raisonnement avec X' et les C}. en place
de X et des Cy. Par récurrence, on construit une suite z = (x1,2s,...) telle que
pour tout K, (z1,...,7x) ne sont les K premiéres composantes d’aucun cylindre
d’ordre K. Comme x appartient nécessairement a 1'un des cylindres C}, on aboutit
a une contradiction. Ceci acheve la preuve de l'existence de ™.

La derniere assertion de 1’énoncé s’obtient sans peine par o-additivité, si l'on
note que les ensembles A; x ... x A, x [] P X, décroissent vers [] Ax quand
n — 0o, et que pu[X] < +oo. O

Pour généraliser ce résultat a un produit infini quelconque d’ensembles mesurés
Xy, il est naturel d’imposer des conditions plus fortes sur les mesures des X, ; par
exemple, pour que ce produit ne soit ni 0 ni +o00, il est nécessaire qu’au plus une
infinité dénombrable des nombres pu;[X;] soit différente de 1. Il est donc naturel,
dans ce cadre général, d’imposer toutes ces mesures égales a 1, autrement dit de se
restreindre a des espaces de probabilités.

THEOREME IV-106 (produit infini de mesures de probabilités). Soient T un
ensemble quelconque, et (X, Ay, p)ier une famille d’espaces mesurés de probabilités ;
on pose X := [ X3, et on le munit de la tribu produit. Pour toute famille finie I C T,
et pour toute famille d’ensembles mesurables Ap = (Ay)wer, on définit le cylindre
produit de base Ap, noté Cr(Ar), ou par abus de notation C(Ar), par

C(Ap) :={z € X; Vt € F, z, € As}.

Alors il existe une unique mesure de probabilités y sur X telle que pour toute famille
finie F C T, et tout cylindre produit C(Ar), on ait

ple(Ar)] = [T mlAlL

tel

En d’autres termes, si mp désigne la projection de Xp dans Xp = [[,cp Xy, et
pr = [Licp i, alors pour toute famille finie F CT on a

(Tr) gk = pr.

En outre, si pour chaque t € T on se donne une famille F; qui engendre la tribu
Ay, alors p est caractérisée par les valeurs qu’elle attribue auz cylindres produits

C(Ar) pour Ap € [[,ep Fr-

DEMONSTRATION. La preuve de 'unicité est facile : les cylindres dont la base
est choisie parmi les produits d’éléments de F; (¢ € F) engendrent les cylindres
dont la base est choisie parmi les produits d’éléments de A;, grace a la partie (ii)
du Théoreme IV-61 (noter que chaque X; est de mesure finie) ; on en déduit que ces
cylindres particuliers suffisent a engendrer toute la tribu produit, et 'unicité découle
du résultat d'unicité dans le Théoreme I1-78.

Pour démontrer I'existence, il nous suffit encore une fois de vérifier la o-additivité
sur les cylindres produits. Comme cette propriété ne concerne qu’une famille dénom-
brable de cylindres, dont la définition ne fait intervenir qu’une famille dénombrable
d’indices t, on peut toujours, quitte a changer les notations, supposer que T  est
dénombrable. (Comme toujours en théorie de la mesure, on se ramene a la dénom-
brabilité.) La o-additivité est alors une conséquence du Théoreme IV-104. 0J
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Quand le nombre de variables d’intégration est infini, la signification méme d’un
énoncé du type du Théoreme de Fubini n’est pas treés claire; on conserve cepen-
dant I'invariance par permutation et/ou regroupement des variables, ce que traduit
I’énoncé suivant, assez abstrait. Sa preuve est une conséquence presque immédiate
de I'unicité dans le Théoreme IV-106.

PROPOSITION IV-107 (invariance de I'intégrale produit par permutation ou re-
groupement des variables). Soient T un ensemble arbitraire, et (Xy, uy)ier une fa-
mille d’espaces de probabilités.

(i) Soient T' un ensemble en bijection avec T, et ™ une application bijective de T"

dans T ; m induit alors par permutation des coordonnées un isomorphisme d’espaces
mesurables entre [[,o.r Xt et [Tyep Xaw), de telle sorte que

TH# H Mty = H,Ut-

t'eT’ teT

(i) Si T = [],cs(ILier, X¢), alors

- T IT)

teT seS \teTs

Un exemple simple d’application de la régle précédente est

Huk=M1®M2®~--®MN®< H Mk)a

keN k>N+1

ou l'on a décomposé le produit infini en N + 1 facteurs; on peut alors appliquer le
théoreme de Fubini a ces facteurs, en les permutant, etc.

IV-6.3. Approximation cylindrique. Il n’est pas facile en général de se re-
présenter les éléments de la tribu produit infini, et on cherche le plus souvent a se
ramener par approximation a un nombre fini de variables.

THEOREME IV-108 (approximation cylindrique pour la mesure produit). Soit
(Xn)nen une famille d’espaces mesurés; on munit X = [[ X,, de la tribu produit, et
on se donne une mesure finie p sur X. Alors, pour toute partie mesurable A de X
il existe une suite (Cy)nen de cylindres tels que

(43) ulCn \ Al + p[AN\ Gy PR 0.

DEMONSTRATION. Soit C I'ensemble des parties mesurables A de X telles qu’il
existe une suite (A, )nen de cylindres satisfaisant (43). Il est clair que C contient les
cylindres ; pour conclure il suffit de montrer que c’est une tribu.

Le complémentaire d'un cylindre étant un cylindre, il est évident que C est stable
par passage au complémentaire. De méme, 'union de deux cylindres étant un cy-
lindre, C est stable par union finie. Soit maintenant (A*),en une suite d’éléments de
C, et A leur union. Soit € > 0, notre but est de prouver qu’il existe un cylindre C
tel que

plC\ Al 4+ p[A\C] <e.

Puisque p est finie, par o-additivité il existe N tel que

plAN UseenAh)] < /2
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D’autre part, puisque C est stable par union finie, il existe un cylindre C tel que
p[CN UrnenA®)| + 1| (Uisren 49\ €] < e/2
On en déduit la conclusion souhaitée. 0

IV-6.4. Lois du 0-1. Les lois du 0-1 concernent des probabilités définies sur
des produits infinis, et énoncent que dans certaines circonstances, la probabilité de
certains événements est forcément “triviale”. Il y a trois lois du 0-1 célebres; la plus
ancienne est celle d’Emile Borel (1909), défrichant alors I'application des mesures
au calcul des probabilités; la seconde, la plus connue, est celle d’Andrei Kolmo-
gorov (1933), partie de son grand ceuvre sur I'axiomatisation des probabilités; et
la troisieme, la plus générale, due aux mathématiciens américains Edwin Hewitt
(spécialiste de théorie des représentations) et Leonard Savage (théoricien des statis-
tiques) en 1955. On commencera par établir la loi de Hewitt—Savage pour en déduire
celle de Kolmogorov, qui a son tour impliquera celle de Borel.

DEFINITION IV-109 (permutation finie). Soit o : N — N une bijection; on dit
que o est une permutation finie s’il n’y a qu’un nombre fini d’entiers j tels que
o(j) #J-

DEFINITION IV-110 (ensemble symétrique). Soit X un ensemble quelconque ;
une partie A C X" est dite symétrique si pour toute permutation finie o,

(xn)nGN S A = (xa(n)>n€N S A.

DEFINITION IV-111 (tribu asymptotique). Soit (X, )nen une suite d’espaces me-
surables. On définit la projection w,, de X = [[ Xy dans X,,, par restriction. On
définit A,,, comme la plus petite tribu qui rende mesurables toutes les applications m,
pour n > m. On définit la tribu asymptotique, A, comme l’intersection de toutes
les tribus A,,.

REMARQUE IV-112. Intuitivement, la tribu asymptotique est celle qui rassemble
tous les ensembles dont la définition peut s’exprimer en fonction de variables d’ordre
arbitrairement grand.

EXEMPLES IV-113. On pose X = R, de sorte que X est I'ensemble des suites
réelles positives. L’ensemble des suites (x,) pour lesquelles > nz, = 1 n’est pas
symétrique. L’ensemble des suites (x,) dont la somme vaut 1 est un ensemble sy-
métrique, mais non mesurable pour la tribu asymptotique : sa définition fait inter-
venir la valeur x;. L’ensemble des suites qui convergent, ou l’ensemble des suites
qui convergent vers 1, ou I'’ensemble des suites dont la somme converge, sont des
ensembles symétriques et mesurables pour la tribu asymptotique.

Dans tous les exemples précédents, les ensembles asymptotiques se trouvaient
également étre symétriques. La proposition suivante assure que c’est la regle.

PROPOSITION 1V-114 (asymptotique implique symétrique). Soit X un espace
mesurable, et soit A un ensemble mesurable pour la tribu asymptotique sur XV.
Alors A est symétrique.

DEMONSTRATION. On note, comme ci-dessus, A,, la plus petite tribu qui rende
mesurable les projections 7, pour m > n; de maniere équivalente, c’est la tribu
engendrée par les cylindres

C(m,B) := {x € X"; =, € B},
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oum > n et B décrit I’ensemble des parties mesurables de X.

Pour prouver la Proposition IV-114, il suffit de montrer que si A € A,,, alors A est
invariant par les permutations finies qui n’affectent que les entiers {0, ..., n—1}. Soit
donc C I'ensemble des parties de A, qui sont invariantes par de telles permutations.
Il est clair que A laisse invariants tous les cylindres C'(m, B); il suffit donc de vérifier
que C est une algebre.

Soit A € C, et soit ¢ une permutation n’affectant que les entiers {0,...,n}. Si
re X\ A alorsx ¢ A, douo(z) ¢ A, ie o(x) € X\ A De méme, siz ¢ X\ A,
alors o(x) ¢ X \ A. On voit donc que X \ A € C.

Soit (Ag)ren une suite d’éléments de C, et soit o une permutation n’affectant que
les entiers {0,...,n}. Si x € (UAg), alors il existe k tel que z € A, d’ou o(x) € Ay,
en particulier o(x) € (UAy). La réciproque est identique, et on conclut que UAy € C.
L’ensemble C est bien stable par passage au complémentaire et union dénombrable,
ce qui acheve la preuve. O

Considérons maintenant les lois du 0-1 proprement dites.

THEOREME IV-115 (loi du 0-1 de Hewitt—Savage). Soit (X, A, u) un espace de
probabilité ; on munit X~ de la tribu produit, et de la probabilité produit p=N. Soit
A une partie mesurable symétrique de X", alors u®N[A] vaut soit 0, soit 1.

En combinant cet énoncé avec la Proposition IV-114, on obtient le

COROLLAIRE IV-116 (loi du 0-1 de Kolmogorov). Soit (X, A, ) un espace de
probabilité ; on munit X~ de la tribu produit, et de la probabilité produit p=~. Soit
A un élément de la tribu asymptotique de XY, alors u®N[A] vaut soit 0, soit 1.

DEMONSTRATION DU THEOREME IV-115. Soit € > 0; par le Théoréme IV-
108, il existe un cylindre C' tel que

(44) HENAN C) + p®N[C N A] < e,
Le cylindre C est de la forme B x [],-,,.; X, ot B est une partie mesurable de X" ;
et 1*"[C] = p"[B].

Soit ¢ une permutation finie qui échange {1,...,n} et {n+1,...,2n}. On fait
agir o sur les éléments de X®N par permutation des coordonnées. L’invariance de
p®N par permutation (Proposition IV-107) se traduit par

pMo(A) \ a(C)] + u*o(C) \ o(A)] < e.
Par hypothese o(A) = A, d’otu en fait
pMAN o (O)] + ™Mo (C)\ A < e.
En combinant cela avec (44), on obtient
PO\ a(O)] + 1o (C) \ €] < 2.
Autrement dit,
KB x X7)\ (X" x B)] + p®[(X" x B)\ (B x X")] < 2,
Chacun des deux termes du membre de gauche est égal a
P2 B x (X" \ B)] = p®"([B] p®" X"\ B] = u®"[B] (1 — p*"[B]).

On a donc montré que
p Bl (1= p*"[B]) <e.
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Posons b := u®"[B], a := u®*N[A]. On a donc
a(l—a) < (b+e)(1—b+e)=0b1—0b)+ec+e* <2+
En faisant tendre € vers 0, on trouve a(l — a) = 0, ce qui conclut la preuve. 0

REMARQUE IV-117. On peut aussi établir la loi du 0-1 de Kolmogorov direc-
tement, par un argument assez similaire a celui qui est présenté ci-dessus. Il est
également possible, mais beaucoup plus délicat, de déduire la loi de Hewitt—Savage
de celle de Kolmogorov, de sorte qu’en un sens ces deux lois sont équivalentes [Dud-
ley, p. 272].

Concluons avec la loi de Borel, dans un énoncé qui va un peu plus loin que juste
la regle 0-1. Elle repose sur la notion de limite supérieure d’une famille d’ensembles :
si (Ap)nen sont des ensembles, alors limsup A, est I’ensemble des éléments x qui
appartiennent a une infinité de A,,.

THEOREME IV-118 (Loi du 0-1 de Borel). Soient (A,)nen une famille de parties
mesurables indépendantes d’un espace de probabilité (X, A, p). Alors p[limsup A,] €
{0,1}. En outre, cette probabilité vaut 1 si et seulement si Y u[A,] = +oo.

PREUVE DU THEOREME IV-118. Soit f,, = 14, ; la mesure produit (f,,)xu est
la mesure sur {0, 1} qui attribue u[A,] a {1}, et 1 — u[A,] & {0}. Par indépendance,
la mesure image de p par f = (fn)nen est le produit infini des (f,)xp, que 'on
peut aussi noter fup. Dire que x € limsup A4, c’est dire que la suite f(x) prend
une infinité de fois la valeur 1. Dans {0, 1}, I'événement B défini par “(y,)nen
appartient a B si et seulement si gy, prend une infinité de fois la valeur 1”7 est
bien évidemment asymptotique, la loi du 0-1 de Kolmogorov implique donc que
ullimsup A,] = (f410)[B) € {0,1}.

Jusqu’ici I’énoncé est juste un corollaire de la loi de Kolmogorov. Mais on va
maintenant aller un peu plus loin en précisant ’alternative via la nature de la série
> u[A,]. Supposons d’abord que ) u[A,] converge, alors pour tout k € N,

p[limsup A,] < ,u[U A,] < Z,u[An].

n>k n>k
En faisant tendre n vers I'infini, on trouve

1 [lim sup An] — 0.

n—oo

Supposons maintenant que > u[A,] diverge. Dire que = ¢ lim sup A, ¢’est dire qu’il
existe un entier £ au-dela duquel x n’appartient a aucun X,,. D’ou I'union croissante

X \ limsup 4,, = U ﬂ(X\An)

keNn>k

Par convergence monotone et indépendance,

p[X \limsup A, ] = klggo H w[X \ A,
n>k
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D’ou
log pu[X \ limsup 4,,] = klim Zlog w[X \ Al
—00
n>k
= ,}Lrilo;klog(l — nlAa))
< limsu —ulA,] = —o0,
< Hoopgc plAn]
ou l'on a utilisé log(1l — u) < —u et > u[A,] = +o00. Soit pllimsup A,] = 0. O

IV-6.5. Théoreme de prolongement de Kolmogorov. Pour conclure cette
section sur les produits infinis, démontrons le Théoreme II-90. Pour le confort de
la lectrice, je vais commencer par rappeler son énoncé, sous une forme équivalente
mais légerement différente et un peu plus précise.

THEOREME IV-119 (théoréme de prolongement de Kolmogorov). Soit T' un en-
semble arbitraire, et (Xy)ier une famille d’espaces polonais; on définit

X =[x,

teT

que 'on munit de la tribu produit. Pour toute partie finie F = {t1,...,tx} C T, on
définit Xp = Xy, X ... x Xy, ; et pour tout borélien Ap de X, on définit le cylindre
Cr(Ar), noté abusivement C(Ar), par

C(Ap) :={z € X; (m4,,...,21,) € Ap}.

Pour toute partie finie F' de T' on se donne une mesure de probabilité prp sur Xg.
On suppose que les pp sont compatibles, au sens ot pour toutes parties finies F' et
F', et pour tous boréliens Ar et Bp de Xp et Xp respectivement,

[C(Ar) = C(Br)] = pr[Ar] = pr|Be.

Alors on peut définir une unique mesure de probabilité u sur X, telle que pour toute
partie F' finie de T, et pour tout Borélien Ar de Xp,

n[C(AF)] = prlAr].

Si pour tout t la tribu Borélienne sur X, est engendrée par une famille F;, alors
i est caractérisée par la valeur qu’elle attribue aux ensembles élémentaires, i.e. les
ensembles C'(Ar) avec

AF:Atlx...XAtK,

chacun des Ay appartenant a F;.

PREUVE DU THEOREME IV-119. On vérifie facilement que ’ensemble A de
tous les cylindres C'(Ap) est une algebre, qui contient X. La condition de com-
patibilité nous permet de définir p sur cette algebre, et de prouver qu’elle y est
additive. Par le Théoreme I1I-78, 'existence et 'unicité du prolongement de p seront
assurées si I'on prouve la o-additivité de p sur A. Pour établir la fin de I’énoncé, il
suffit de remarquer que les cylindres élémentaires engendrent la tribu compleéte, et
que tous les espaces X; sont de mesure finie.
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Soient donc (A)r>1 des cylindres disjoints, dont I'union A = UAj est aussi un
cylindre ; on doit prouver que

ulA] = 37 ulA

Pour tout N, les cylindres A, Ay,..., Ay peuvent s’inclure dans un méme cylindre,
et comme on sait que p est o-additive sur les cylindres on aura

> ulA < plA]

1<k<N

En passant a la limite quand N — oo, on obtient

S lA < plA]

k>1

Notre probléme est maintenant d’établir I'inégalité inverse, beaucoup plus délicate.

La définition des cylindres A, Aj, et de leur mesure, ne fait intervenir qu'une
partie dénombrable des espaces (X;)er ; quitte a changer les notations, on peut ou-
blier les autres espaces, et supposer que 1" est dénombrable ; sans perte de généralité
T = {1,2,...}. On définit alors u,, = pp pour F' = {1,...,n}. La condition de
compatibilité implique bien sir que 1 prolonge fi,.

On conviendra qu’un cylindre C' est d’ordre n si n est le plus petit indice tel que
la définition de C ne fasse intervenir que les n premiers espaces X;. Un tel cylindre
est de la forme B x (]] isntl X;); on dit alors que B est sa base. En particulier,
p[C] = pn[B]. On introduit ny U'ordre de A, et ny l'ordre de Ay, pour tout k > 1;
on définit également B comme la base de A, et By comme la base de A;. On pose
enfin X" = X; x ... x X,,.

L’espace X™ est produit fini d’espaces polonais, donc polonais lui-méme. Par le
Théoreme de régularité I1-62, la mesure p,, est réguliere, et en particulier on peut
trouver un compact K, contenu dans B tel que

i [Kno] 2 ping[B] — & = p[A] —e.
En particulier,
:uno-i-l[Km) X Xno—i-l] > :U[A] - &
Par régularité de la mesure p,,11[K X -], on peut trouver un compact K,, 1 de
Xno+1, tel que
,uno—i-l[Kno X Kno—l-l] > M[A] - 35/2'
Par récurrence, on construit ainsi une famille de compacts K,, C X,,, n > ng, tels

que pour tout n
fn[ Ky X ... X K| > plA] — 2e.

Le produit infini de ces compacts est un compact K contenu dans A.
De méme, 'espace X™ étant polonais, pour tout k£ on peut trouver un ouvert
Oy, contenant By et tel que

1[Ok] < fin, [Bi] +27% = p[Ay] + 27",
On définit alors Uy, = Oy x [] e X, : c’est un cylindre ouvert, qui contient Ay,

tel que u[Uy] < p[Ay] + 27",
Puisque K € A C UA, C UUy, que K est compact et que les U, sont ouverts,
on peut extraire des U, un sous-recouvrement fini, soit Uy, ..., Uy. Leur union est
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un cylindre, d’ordre fini M ; comme ils recouvrent K, ils recouvrent également le
cylindre d’ordre M

CM(K) ::Kno XKnl X .. XKM XXM+1 XXM+2 X ..
En particulier, u[Cy(K)] < S°n_, u[Ux]. Mais, par construction,
ulCu(K)] = paa[Kng X ... x Ky] > plA] = 2e

S uUk > plA] +e.

et

On conclut que
plA] < 3 ulA + 32
k

Comme ¢ est arbitraire, il s’ensuit que p[A] < >, u[Ag], ce qui était notre but. O

REMARQUE IV-120. Comme on l'a vu, méme si 1" est un ensemble arbitraire, on
se ramene dans la preuve a ne considérer qu’'une famille dénombrable.

On pourra trouver dans [Dudley, p. 441-443] une version légerement différente
de I'argument présenté ci-dessus, et des hypotheses topologiques légerement plus
souples, sans gain de généralité significatif toutefois.

EXERCICE 1V-121. Montrer que le Théoreme de Kolmogorov implique le résultat
suivant, qui fonde la théorie des chaines de Markov en probabilités :

THEOREME IV-122 (Théoréme de Tonescu Tulcea). Soient (X, A,)nen des es-
paces mesurables. On se donne une mesure de probabilité pg sur Xy ; et pour tout
n € N on se donne une famille de mesures de probabilités v, sur X,.1, dépendant
mesurablement de x,, € X,,. On pose X :=[[ X,, et on le munit de la tribu produit.
Alors il existe une unique mesure de probabilité > sur X telle que pour tout cylindre

C:=Agx Ay x Ay x ... x A, x (] X;) de X,

j>n+1<*J

HC] = /A 0 /A /A / o (d0) v (d2) i ) )

Voici maintenant un exemple ou 'espace T n’est pas dénombrable.

THEOREME IV-123 (Existence de processus stochastique). Soient T =R, et X
un espace Polonais, muni de sa tribu borélienne. On se donne une probabilité pg sur
X, et une famille de mesures (Viz)i>0,zex, dépendant mesurablement du paramétre
(t,x) € Ry x X, satisfaisant

/ f)/s,y ’Yt—s,x(dy) = ’Yt,x
X

pour tous (s,t) in Ry x Ry, 0 < s < t, et pour tout x € X. Pour toute famille
finie F' = {to,...,tn}, 0 =ty < t; <ty <...<tyn, pour toutes parties mesurables
Ag, Ay, ..., Ax de X, on défnit le cylindre

CF(A(),...,AN)Z {IEXR+; Vk € {0,...,N}, Xy, EAk}

Alors il existe une unique mesure de probabilité i sur X®+ telle que pour tout cylindre

Cr(Ao, ..., AN),

¥ [CF(A(% <o 7AN)} = / Mg (dl‘o) Yt1—to,x0 (dml) Vta—t1 (de) s Min—tnoa (de>
AoX..XAN
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En outre, si F est une famille de parties de X engendrant la tribu borélienne,
telle que X est union dénombrable d’une suite croissante d’éléments de F, alors p
est uniquement déterminée par sa valeur sur les cylindres Cr(Ay, ..., An), ot F est
une partie finie arbitraire de T, et les A; sont des éléments arbitraires de F.

EXEMPLE 1V-124. L’exemple le plus célebre est celui ou X =R, g = dg, F est
(par exemple) la famille des intervalles compacts, et

_ly—z|?

%,x[[mbﬂ:/ e\/;—; dy.

Dans ce cas, la mesure . est appelée processus stochastique brownien sur R¥+ :
c’est une mesure de probabilité définie sur I’ensemble de toutes les trajectoires, qui
sont les de R, dans R.

Le théoreme précédent est cependant loin d’impliquer I'existence de la mesure
de Wiener : en effet, la probabilité que nous avons construite est définie sur R¥+ ; il
est bien plus délicat de prouver qu’elle est en fait concentrée sur 'espace C (R ) des
trajectoires continues.

Appendice : Rappels sur les fonctions convexes

Les fonctions convexes, jouent un role aussi important dans des espaces vectoriels
généraux, que les fonctions croissantes sur R. Elles apparaissent naturellement des
que 'on veut estimer numériquement des intégrales. C’est I'occasion de faire quelques
rappels sur la théorie des fonctions convexes dans R"™. Le traité de référence en la
matiere est [Rockafellar|. On se limitera ici aux fonctions convexes sur R"; plus tard
dans le cours, on parlera de convexité dans des espaces plus généraux.

On dit que C' C R™ est une partie convexe de R” si, pour tous z,y € C, A € [0, 1],
la “combinaison convexe” (1 — X)x 4+ Ay est un élément de C. On dit que ¢ : R" —
R U {400} est une fonction convexe si, pour tous z,y € X, A € [0, 1],

P((1=Nz+Ay) <(1—=X)d(z)+ AD(y).

Du point de vue géométrique, cela veut dire que pour tous points = et y, “le graphe
de @ est situé en-dessous de la corde joignant [z, ®(z)] et [y, P(y)]”
Il est équivalent dimposer que pour tout N € N, et tous z1,...,xny € R",

)\1,...,)\]\[20, Z)\Z:L

L’ensemble des x tels que ®(x) < +00 est appelé domaine de ®. C’est un convexe
(qui peut étre ouvert, fermé, ou ni I'un ni 'autre).

Il est équivalent de dire qu'une fonction est convexe dans R™, ou que sa restriction
a tout segment [x,y] de R™ est convexe.

Une fonction convexe sur R" est automatiquement continue dans l'intérieur de
son domaine. En particulier, si elle est a valeurs dans R, elle est continue sur tout
R™. Dans le cas ou cette fonction prend la valeur +oo, il est naturel d’imposer que

(a) ® ne soit pas identiquement +00;

(b) ® soit semi-continue inférieurement. Comme ¢ est continue dans 'intérieur

de son domaine €2, et vaut +oo identiquement a ’extérieur, cette hypothese
ne concerne en fait que le bord 02 du domaine. Elle revient a imposer que
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pour tout segment [xg, x|, avec xy dans l'intérieur de Q et x; € 99, on ait
O (zy) — P(xy) quand t — 1, ot @y := (1 —t) xg + t 21.

Si une fonction est donnée par un supremum de fonctions affines, elle est auto-
matiquement convexe et semi-continue inférieurement.

Une fonction convexe n’est pas forcément différentiable, mais toujours sous-
différentiable : en tout point x de 'intérieur du domaine de ® on peut trouver au
moins un vecteur z = z(z) tel que

(45) Vy € R", O(y) > O(x) + (z,y — z).

Géométriquement, cette inégalité exprime le fait que le graphe de ® est situé au-
dessus de I'hyperplan (dans R™*1) passant par (z,®(z)) et orthogonal au vecteur
(z,1). L’ensemble de tous les vecteurs z admissibles dans (45) est appelé sous-
différentiel de ¢ en z, et noté 9P(z).

Soit & dans 'intérieur du domaine de ®. Si ® est différentiable en x, alors 0®(z)
contient le vecteur V& (z) constitué des dérivées partielles de ® en z. En d’autres
termes,

vy eR",  By) = O(x) +(VO(z),y — ).

En fait, 0®(z) ne contient que ce vecteur : 0P (z) = {V®(x)}. Réciproquement, si
le sous-différentiel au point = se limite a un singleton z, alors ® est différentiable en
z, et VO(z) = z.

Soit ® une fonction deux fois dérivable dans un ouvert convexe de R™. Alors ® est
convexe si et seulement si sa matrice Hessienne V?® est positive en tout point
de 2. C’est bien siir la positivité au sens des matrices symétriques : explicitement,
cela veut dire

Ve e, VEeR", (V2®()€,€) > 0.

C’est le critere que 1'on utilise le plus souvent, en pratique, pour vérifier la convexité.

Une fonction @ : R” — RU{+o0} étant donnée, on peut définir sa transformée
de Legendre :

" (y) = sup ((w,9) — B(x)).
z€eR™

Comme supremum de fonctions affines, c’est une fonction convexe et semi-continue
inférieurement.

Si @ est une fonction convexe et semi-continue inférieurement, alors

O™ = .

(Réciproquement, si ®** = & alors ® est convexe et semi-continue inférieurement.)
C’est un cas particulier de la dualité de Fenchel-Rockafellar. Si ® est convexe
mais pas semi-continue inférieurement, alors ®** coincide avec ® dans l'intérieur
et I'extérieur du domaine de ¥, mais pas sur le bord de ce domaine. Si ® n’est
pas convexe, alors ®** est I’enveloppe convexe de ® : c¢’est la plus grande fonction
convexe (semi-continue inférieurement) qui minore .

Soit ® une fonction convexe semi-continue inférieurement. Par définition de la
transformée de Legendre, on a, pour tous z,y € R,

(z,y) < (x) + 2*(y).
Cette inégalité est appelée inégalité de Young. On a I'équivalence

(x,y) = ®(z) + ¢*(y) <= y € 0P(x).
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En particulier, si ® est différentiable en x, alors
(2, VO(z)) = &(z) + 2"(VO(2)),

et V®(z) est le seul vecteur possédant cette propriété.

Les fonctions V& et VO&* sont inverses I'une de I'autre : si ® est différentiable en
z et ®* différentiable en V& (x), alors VO*(V®(x)) = x. Clest cette propriété que
I’on utilise le plus souvent en pratique pour calculer les transformées de Legendre.

EXERCICE IV-125. Vérifier que, pour tout p € [1, 400,

lyl” ;D
= Py ==, pP=—"

p Y p—1

Cette identité est vraie dans R ou plus généralement dans R"™. Vérifier également

que, sur R,

_ el

()

O(x) =zxlogr —r = O*(y) = e’.
La proposition qui suit est une conséquence immédiate de I'exercice.

PROPOSITION 1V-126 (inégalités de convexité de Young pour les puissances).
Soient z,y € R", p € [1,+00] et p' :=p/(p—1). Alors

rlP 4
-y < u + |y|, ;
p p
sip & {1,400}, linégalité précédente est une égalité si et seulement si x ety sont
colinéaires et |x|P = |y|”', autrement dit |y| = |x|[P~2x.

Ces résultats sont d’usage constant, ce qui motive la définition suivante.

DEFINITION IV-127 (exposant conjugué). Soit p € [1,+00| ; on appelle exposant
conjugué de p le nombre p' = p/(p — 1) > 1, caractérisé par l'identité
1 1
p P
REMARQUE IV-128. L’exposant p’ est souvent noté ¢, ce qui a I'inconvénient de
ne pas imposer de lien notationnel avec p; en outre, en théorie des probabilités, il est

également fréquent de noter ¢ =1 — p si p € [0, 1]... C’est pourquoi je recommande
d’utiliser la notation p’ (également trés courante). Bien stir, (p') = p.

La deuxieme partie de 'exercice IV-125 mene a l'inégalité suivante, également
fort utile.

PROPOSITION IV-129 (inégalité de convexité de Young logarithmique). Soient
a,b deux nombres réels positifs. Alors

ab < (aloga —a+1) + (e’ — 1),

avec égalité seulement pour b = log a.






CHAPITRE V

Théorie descriptive des ensembles

Ce chapitre d’approfondissement, a réserver a une seconde lecture, aborde des
concepts plus techniques, indispensables dans certains probléemes d’analyse et de
probabilité. Il est motivé par quelques questions naturelles et liées entre elles, que
nous avons commencé a rencontrer dans les Chapitres II (nature des ensembles
boréliens), III (stabilité des fonctions boréliennes) et IV (boréliens dans les espaces
produits) ; par exemple

e Comment décrire, aussi constructivement que possible, les ensembles boréliens 7

e Si C est borélien dans un espace produit X x Y, on sait que ses sections selon
X ou Y sont mesurables (Proposition IV-43), mais que dire de ses projections ?

e Et peut-on choisir mesurablement une application y = y(z) telle que (x,y(x)) €
C pour tout z dans la projection de C'? De fagon équivalente, peut-on trouver un
graphe borélien inclus dans C' et avec méme projection ?

Ces questions ont initié la théorie descriptive des ensembles, une vingtaine
d’années apres les avancées de Baire, Borel et Lebesgue : tout un paysage mathé-
matique, a l'interface entre la logique et ’analyse, dont on ne soupgonnait pas la
richesse.

La naissance de la théorie est quelque peu dramatique et pleine de rebondisse-
ments. Lebesgue en 1905 avait cru prouver que la projection d’un borélien de R?
est un borélien de R. Mais en 1917, un jeune mathématicien russe, Mikhail Souslin,
fils de paysans pauvres, étudiant alors a Moscou sous la direction du célebre pro-
fesseur Nikolai Luzin, découvrit une faille dans 'argument de Lebesgue (méme les
meilleurs font des erreurs...). Pour résoudre le probléme qui avait berné Lebesgue,
Souslin introduisit une panoplie d’outils conceptuels (aujourd’hui appelés probléeme
de Souslin, schéma de Souslin, opération de Souslin, droite de Souslin, propriété
de Souslin, représentation de Souslin, arbre de Souslin etc), donnant naissance au
concept d’ensemble analytique et ouvrant tout un champ mathématique nouveau.
Souslin meurt prématurément de maladie, dans les affres de la guerre civile russe,
sans avoir eu le temps de rien publier ou presque; Luzin et d’autres continuent ses
travaux.

En écho dramatique, en 1936 le traitement réservé aux travaux de Souslin fait
partie du dossier monté a charge contre Luzin par ses jeunes collégues et anciens étu-
diants (dont Andrei Kolmogorov) dans le plus briilant épisode de proces politique sta-
linien touchant la communauté mathématique — épisode historico-scientifique d’une
grande complexité qui voit toute la communauté se déchirer, et contribue a isoler
la Russie (parmi les nombreux griefs faits a Luzin il y avait celui de trop publier
en langues étrangeres...). Au-dela de ces convulsions, la théorie de Souslin a ef-
fectivement prospéré, en particulier grace aux communautés mathématiques russe,
polonaise et japonaise, jusqu’a aboutir dans les années 1970 a un paysage cohérent et
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puissant, riche de problémes intrinseques et toujours actif, la théorie descriptive
des ensembles.

Le concept central dans cette théorie est celui d’ensemble analytique, parfois
appelé ensemble souslinien : une notion assez proche mais plus générale que celle
d’ensemble borélien, et tres stable. (Ce concept n’a rien a voir avec celui de fonc-
tion analytique d’une variable réelle ou complexe.) Il en existe plusieurs définitions
équivalentes dont voici la plus commode :

DEFINITION V-1 (ensemble analytique). On dit qu’un ensemble A dans un espace
polonais est analytique s’il peut s’écrire sous la forme f(NY), ou N est muni de la
topologie discréte, NN de la topologie produit, et f est continue.

On rappelle qu’'un espace est dit polonais quand il est métrique, séparable et
complet ; c’est le cadre dans lequel se déploie presque entierement la théorie des
ensembles analytiques.

On peut se représenter un ensemble analytique A comme étant “descriptible” au
moyen de NV : pour repérer un point y € A, il suffit de se donner une suite a valeurs
entieres : en gros, chacune des valeurs de cette suite indique ’appartenance de y a
I'un des ensembles d’une famille dénombrable de plus en plus fine. C’est ainsi une
suite de choix qui permet de repérer le point, un peu comme quand on cherche un
mot dans un dictionnaire en déterminant d’abord la premiere lettre, puis la seconde
et ainsi de suite (tenter de se représenter une infinité dénombrable de lettres, des
mots d’une longueur infinie, et une quantité non dénombrable de mots!).

Dans ce chapitre on va passer en revue certains des concepts centraux de la
théorie, concluant par les importants théoremes de sélection. Certaines preuves ne
seront pas données en intégralité ; on renvoie a [Dellacherie, Kechris, Melleray, Miller,
Parthasarathy, Tserunyan| pour des exposés plus complets.

V-1*Description d’un espace polonais

Si (X, d) est un espace polonais, alors on peut le recouvrir par une famille dé-
nombrable de boules (ouvertes ou fermées) de rayon r > 0 arbitrairement petit,
disons (B )nen. On peut aussi transformer ce recouvrement en partition en posant
B\ = By, By = By \ By, B} = B3\ (B; U By), etc. Les ensembles Bj ne seront plus
alors fermés, mais ils seront disjoints deux a deux. Si z € B, (ou x € B/), I'indice
n donnera une premiere indication grossiere de la position de x.

On peut ensuite itérer en raffinant ce recouvrement : chaque B; pourra étre
recouvert par des boules fermées B, ; de rayon r/2 (chaque B;; est une boule dans
I'espace fermé B;; cela n’en fait pas une boule dans X, mais tout de méme un
ensemble fermé de diametre au plus r). Ou bien chaque B] peut étre recouvert par
des boules ouvertes B;; dans X, de rayon 7/2, et en intersectant ces boules avec B,
puis en les transformant en partition par le procédé habituel, on aura alors recouvert
B! par des ensembles ng pas forcément fermés, mais disjoints et de diametre au plus
T.

On peut ainsi définir inductivement une famille d’ensembles A,,, ,,, . ., ot chaque
indice n; est un entier et k est un entier arbitraire ; tous ces ensembles appartenant
a ’algebre engendrée par les boules ouvertes ; leur union, pour chaque £ fixé, recou-
vrant X ; et leur diametre, pour k fixé, étant au plus de 27%.

Il y a bien des fagons de varier la construction. On est parti des boules, on aurait
pu choisir une autre famille dénombrable recouvrant X ; ou choisir une autre suite
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de diametres tendant vers 0 ; mais ce qui compte le plus, ce sont les deux propriétés
caractéristiques
® Anyn,... nper C Ay gy
o diam (A, np) — 0 pour toute suite (ny,ns,...),
—00

qui font des A,, un systéme souslinien régulier. Ici n varie dans 'espace N<V de
toutes les suites finies d’entiers.

Et selon que l'on travaille avec les familles B ou B!, ci-dessus évoquées, on peut
en outre imposer que pour chaque (ni,...,nx) les (An, neiy)ngsen forment une
partition de A,, ., (c’est alors un systéme de Lusin); ou encore que tous les
ensembles (A, . ,,) soient fermés.

Que l'on travaille avec 'une ou l'autre de ces variantes, ou d’autres encore,
cela permet de définir sans ambiguité tout point x € X par une liste des indices
des parties auxquelles il appartient : une suite (ny,ns,...,ng,...) € NV, telle que
x € Ap,...n. (que Pon notera aussi A, ,, », pour tout k). Avec un systéme sousli-
nien de fermés, 'intersection sera non vide pour tout choix de suite (n;) (grace au
théoréme des fermés emboités), mais un méme = pourra éventuellement étre repré-
senté par plusieurs suites. Si pour chaque £ fixé les ensembles A,,, ,, sont distincts
I'intersection pourra étre parfois vide, mais chaque x correspond a une seule suite
(n;). Et si c’est un systéme lusinien, on a finalement une bijection entre NN et X.
Dans tous les cas, cette technique de description permet de paramétrer X par une
partiec de NN, et le repérage de ce point s’apparente a une suite dénombrable de
choix dénombrables (on verra des énoncés plus précis dans quelques instants).

FIGURE

L’application qui & n = (ny,n,,...) associe x est continue si N est muni de la
topologie produit (chaque facteur N est muni de la topologie discrete). Cet espace
emblématique, appelé espace de Baire est une figure centrale de la théorie.

DEFINITION V-2 (espace de Baire). On appelle espace de Baire [’ensemble N =
NN de toutes les suites entiéres, muni de la topologie produit ; ¢’est un espace polonais
totalement discontinu.

Bien siir on n’a pas défini explicitement de métrique sur A/, mais on a de multiples
choix induisant la méme topologie, par exemple

—Y ot e —mye|

e 1 [ — i

ainsi la convergence de n’ vers n signifie que pour tout % il existe J tel que niz =Ny
pour j > J; et (N, d) est bien un espace séparable et complet. Il s’ensuit naturel-
lement une base dénombrable de voisinages : tous les {mq,...,my} x N, ou k € N
et m; € N. L’espace dénombrable qui les indexe naturellement est I’ensemble des
suites finies d’entiers, qui jouera un role important dans la suite :

(46) NV = N

keN

On peut se représenter le processus de description (la correspondance avec 1'es-
pace de Baire) de plusieurs fagons équivalentes : avec des unions et intersections de
parties comme on vient de le faire; ou bien par un processus de repérage le long des
branches d’un arbre (chaque nouvel indice correspond & un branchement de 1’arbre),
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ou encore par des familles de conditions logiques (conjonction pour l'intersection
de parties, etc). Dans ce chapitre on se contentera de la premiere approche, mais
les arbres et les familles de conditions font aussi partie de la panoplie de la théo-
rie descriptive de la mesure, de méme que les jeux ensemblistes (on imagine que
deux joueurs, en compétition I'un avec 'autre, font des choix successifs d’ensembles
de fagon a atteindre un certain objectif, et on se demande si I'un ou 'autre a une
stratégie gagnante).

Pour les espaces métriques compacts (qui sont a fortiori polonais), la méme
construction s’applique évidemment ; mais en outre, par compacité, on peut se limi-
ter a un nombre fini de parties a chaque étape. Quitte a ajouter des étapes inter-
médiaires, on peut en fait se ramener a la situation ou a chaque étape ’ensemble
Ap,...n,, est subdivisé en seulement deux parties A, . n,.,. Ainsi, pour décrire un
compact, on peut se limiter a un espace plus petit que N, qui lui ressemble beaucoup
mais qui est compact : c’est 'espace de Cantor.

DEFINITION V-3 (espace de Cantor). On appelle espace de Cantor l’ensemble
C = {0, 1} de toutes les suites de 0 et de 1, muni de la topologie produit; c’est un
espace métrique compact totalement discontinu.

Une base de voisinages de C est fournie par les ensembles {ay,...,ar} x C ou
les a; appartiennent a l’ensemble {0, 1}, que I'on peut aussi noter 2; ainsi ’espace
dénombrable qui indexe cette base de voisinages est

(47) 2N = | J{o,1}*.
keN
L’espace de Baire et I'espace de Cantor ont méme cardinalité (il n’est pas difficile
de trouver une surjection de C dans N), a savoir ¢, la méme que R (¢ comme
“continu”). Par opposition, NN et 2<N ont la cardinalité de N, soit N.

Nous avons maintenant tous les outils conceptuel pour démontrer le

THEOREME V-4 (description des espaces polonais).

(a) Tout espace polonais est image par une application continue de [’espace de
Baire N ;

(b) Tout espace polonais est image par une bijection continue d’un fermé de N ;

(c) Tout espace métrique compact est image par une application continue de
I’espace de Cantor C.

REMARQUES V-5. (i) La bijection en (b) est continue mais son inverse a
priori ne 'est pas : il s’agit donc d'un plongement continu, mais pas d'un
homéomorphisme. Par exemple, R n’est homéomorphe a aucun sous-espace
de I'espace de Baire (pourquoi?).

(ii) Tout espace métrique compact n’est pas image par une bijection continue
d’un fermé de C. En effet, si cette bijection f existait, d'un sous-espace fermé
F de C dans X, alors F' serait compact, donc f enverrait les fermés de F' dans
les fermés de X, donc les ouverts aussi; donc f~! serait continue, et f serait
un homéomorphisme, préservant toutes les propriétés topologiques de C. Or
C est totalement discontinu, ce qui n’est pas le cas des compacts en général.
Noter que 'application naturelle de C dans [0, 1], a savoir x — 27"z, est
continue mais non bijective (pourquoi?)

EXERCICE V-6. Dans le cas oun X = R, construire une bijection satisfaisant (b).
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EXERCICE V-7. Construire une application mesurable surjective de C dans N ;
vérifier directement qu’elle est discontinue.

PREUVE DU THEOREME V-4. Ces résultats sont obtenus par des variantes de
schémas de Souslin.

Pour (a) on recouvre le polonais X par des boules ouvertes B;; quitte a répéter
une infinité de fois certaines boules, on peut supposer que c’est une famille dénom-
brable infinie; puis on recouvre chacune de ces boules par des boules ouvertes B;;
telles que B_U C By, et ainsi de suite; a chaque étape k on impose que le rayon
de ces boules soit majoré par 27%. Ainsi le théoréme des fermés emboités garantit
que l'intersection des B;, ;, est réduit a un point, et ce pour tout suite d’entiers
(i1,12,...). Pour n € N on définit alors f(n) par

{f(n)} = () Brunsns-

keN

Pour (b) on modifie la construction en prenant une partition borélienne & chaque
étape; il y a une subtilité. Voici une premiere tentative. Pour la premiere étape : si
(B;) est un recouvrement par des boules de diametre au plus 1, on pose B} = By,
B! = B;\ (B{UB}...UB!_;). On peut continuer ainsi en recouvrant chaque Bj en
boules ouvertes de rayon plus petit et en transformant ce recouvrement a nouveau

/ /

en partition Bj; de Bj. Et ainsi de suite, de sorte que By ;, ;, = Ujen Biriy iy, s €

on impose de méme que le diametre des ensembles B . soit au plus 27%. Ainsi

tout x € X est repéré par une suite unique (iy, is, . ..), et 'on peut définir

F={neN; (Bln #0}.

keN

Mais on se retrouve alors dans une impasse pour prouver que F' est fermé!
On modifie donc la construction des partitions pour imposer la condition sup-
plémentaire

le'l...z‘k = U Bz{l...ikﬁ‘
teN
Pour cela on suppose par induction que chaque B; ; est une union dénombrable
de fermés (un F,). La propriété élémentaire que l'on utilise est que : Si C' est un
F,, alors il peut s’écrire comme union dénombrable disjointe de F, de diamétre
arbitrairement petit, dont l’adhérence est incluse dans C'.
Pour cela on écrit C' = |J F}, ou chaque Fj est un fermé; sans perte de généralité

cette union est croissante; alors C' est I'union disjointe des Cj41 \ Cj, qui a leur
tour peuvent s’écrire comme 1'union des fermés Cj 4, \Cj(m), ou C’J(-m) est le voisinage
ouvert de Cj; fait des boules ouvertes de rayon 1/m centrées en C;; on décompose
chacun de ces fermés en une quantité dénombrable de fermés de diametre au plus
e par le procédé habituel, on les transforme en partition constituée de F, par le
procédé habituel, les adhérences de tous les ensembles ainsi formés sont inclus dans
Cj, et donc dans C. On ne garde bien stir que les ensembles non vides.

Une fois que cette condition supplémentaire est assurée, I'argument va de soi.
Pour tout n € F, I'intersection (),cy By, ., & un diametre nul, donc elle est réduite

a un point, que l'on note f(n). Par construction f(F) = X, et il est facile de vérifier

que f est une bijection continue. Par construction [ B} =NB, cela et le

11...ik ...... ik7
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théoreme des fermés emboités montre que toute suite de Cauchy d’éléments de F
converge dans N, ainsi F' est bien fermé.

Enfin pour (c¢) on raisonne comme en (a), mais par compacité chaque étape k
ne fait intervenir qu'un nombre fini d’ouverts, disons Ni; on choisit alors my tel
que 2™ > Nj, et on choisit une surjection de {0,1}™ dans {1,..., Ni}. Alors la
construction précédente réalise X comme image continue de [, {0, 1}, mais cela
est en fait la méme chose que C. OJ

On traduit le Théoréeme V-4 en disant qu’un espace polonais, et a fortiori un
espace métrique compact, sont analytiques. Cette notion sera développée dans la
section suivante, mais notons d’ores et déja un corollaire a la fois surprenant et utile
sur la nature des boréliens :

COROLLAIRE V-8 (Boréliens comme plongements de fermés). Tout borélien d’un
espace polonais X est l'image d’un fermé F de N par une injection continue de F
dans X.

PREUVE DU COROLLAIRE V-8. Soit B un borélien de X. Par I’Exercice 111-6,
B est image d’'un fermé F; (de X muni d’une structure polonaise enrichie) par une
injection continue. Ce fermé F} est lui-méme un espace polonais, donc image d’un
fermé de N par une injection continue, d’apres le Théoréme V-4. O

V-2*Ensembles analytiques

DEFINITION V-9 (analyticité). Soit X un espace polonais. Une partie A de X est
dite analytique s’il existe une application continue f : N — X telle que f(N) = A.

Plus généralement, un espace topologique Y est dit analytique (ou souslinien) s’il
est homéomorphe a une partie analytique d’un espace polonais.

Au vu du Théoreme V-4, il est équivalent de définir les ensembles (ou les espaces)
analytiques comme les images des applications continues définies entre espaces po-
lonais ; de sorte que le choix de 'espace N dans la définition précédente n’est pas
aussi arbitraire qu’il semble.

On peut décrire les ensembles analytiques par des systemes de Souslin réguliers
(Py)nen<r, avec un procédé similaire a celui de la Section V. Et réciproquement, si
I'on se donne un systeme de Souslin régulier dans X, on peut en reconstituer un
ensemble analytique, par 'opération (A) de Souslin :

(48) AP = ) Porror:

neN keN

Noter que méme si les P, sont ouverts (ou fermés), A(P) n’est pas a priori borélien,
puisque 'union est prise sur un ensemble non dénombrable. Il existe une quantité
vertigineuse de systémes (P) qui aboutissent au méme ensemble A(P), parfois appelé
le noyau du systeme.

Il y a de la flexibilité dans les hypotheses sur les parties P,, que 1'on peut choi-
sir dans une classe commode I' : par exemple I'ensemble des boules ouvertes, ou
I’ensemble des boules fermées, ou I’ensemble des ouverts, ou I’ensemble des fermés,
ou l’ensemble des intersections dénombrables d’ouverts, ou méme ’ensemble des
parties analytiques : tout cela méne toujours, via I'opération (A), aux ensembles
analytiques. En fait I'opération de Souslin est idempotente : partant d’une famille
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quelconque I, on a
AAT) = A(T).

Cela vient de ce que si l'on itere 'opération (A), on va étre amené a choisir, pour
chaque n € N, une suite de parties indexées elles-mémes par N ; autrement dit le
résultat sera indexé par A" x N ; mais cet ensemble (encore un paradoxe de 'infini!)
est lui-méme homéomorophe a N

On a aussi de la flexibilité dans la convergence de ces suites de parties. Quand
on se donne un systéme régulier de Souslin, on impose seulement que le diametre de
P,, ..., tende vers 0 le long de chaque n € N; mais quitte a subdiviser, on peut aussi
imposer une convergence uniforme en k, par exemple diam (B, . ,,) < 27k Si les
P, sont fermés, I'intersection est automatiquement non vide par principe des fermés
emboités. Méme sans I’hypothese de fermeture, on peut choisir les P, de facon a ce
que l'intersection soit non vide : si f est une application continue surjective de N
dans A, il suffit de choisir

(49) Pn1 ..... nk:f({n177nk}xN)’
ainsi on a bien

YneN,  f(n) € () Pu-

Noter que dans ce cas le diametre de P, ,, tend bien vers 0 (mais pas forcément
uniformément) car les {ny, ..., n;} x N constituent une base de voisinages de n pour
la topologie produit.

En maniant les propriétés de restriction et de recollement des fonctions boré-
liennes induits (Proposition I11-8), on démontre que la notion d’analyticité est in-
trinseque : Si A est une partie quelconque d’un espace polonais (X, d), c’est équi-
valent de dire que A est un espace souslinien, ou qu’il est analytique dans (X, d), ou
qu’il est obtenu par application du schéma (A) de Souslin & partir d'une famille de
parties fermées (ou ouvertes, ou boréliennes, ou analytiques) dans X.

On peut avoir une autre intuition de l'opération (,A) en examinant le cas parti-
culier d’un systeme lusinien : alors (exercice)

(50) A(P) = ﬂ U P

keN meNk

qui est une intersection décroissante d’unions d’ensembles élémentaires de plus en
plus fins (imaginer qu'on commence par une description grossiére de ’ensemble,
puis de plus en plus fine, et ainsi de suite). Noter que si les P, sont boréliens, alors
(50) définit un ensemble borélien ; mais cela est 1ié & 'hypothése que le systéme est
lusinien.

La force des ensembles analytiques tient a ce que, tout en étant plus généraux et
plus stables que les boréliens, ils en restent “assez proches”, tant par les liens entre
les deux notions que par la similitude de leurs propriétés.

THEOREME V-10 (Propriétés des ensembles analytiques). (a) Si X est un espace
polonais, les parties analytiques de X forment une famille de cardinalité au plus c,
la puissance du continu.

(b) Si f: X =Y est une application continue entre espaces polonais, alors les
images par f des ensembles analytiques sont analytiques, et les images réciproques par
f des ensembles analytiques sont analytiques ; de méme si f est seulement supposée
borélienne et définie sur une partie borélienne B de X.
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(¢) Une union dénombrable de parties analytiques est analytique ; de méme pour
une intersection dénombrable de parties analytiques.

(d) Si X est un espace polonais, tout borélien de X est aussi analytique ; mais
des que X est non dénombrable, il existe des ensembles analytiques non boréliens.

(e) Si X etY sont deux espaces polonais, et B un borélien de X x 'Y, alors la
projection de B sur X est analytique ; en outre les parties analytiques de X sont
exactement les projections sur X des boréliens de X x N .

REMARQUE V-11. (i) L’énoncé (e) implique en particulier que les projections
des boréliens de R? dans R sont des ensembles analytiques, a défaut d’étre
boréliens ; ¢’était le point de départ de la réflexion de Souslin ;

(ii) On a déja vu (Exercice III-6) que tout borélien est image d'un fermé, et
méme d’un ouvert fermé, par une injection continue. On a maintenant une
généralisation partielle : de par leur définition, tous les analytiques sont des
images continues d’ensembles ouverts fermés.

(iii) En résumé, la propriété d’analyticité est stable par union, intersection dé-
nombrable, image réciproque (par une fonction continue, ou borélienne), comme
les boréliens ; mais elle est aussi stable par image directe. En revanche, elle
n’est pas stable par passage au complémentaire. On appelle coanalytiques
les complémentaires des ensembles analytiques; ils vérifient des propriétés
bien différentes des analytiques et ce n’est pas la méme intuition qui leur
est associée. Boréliens, analytiques et coanalytiques sont les trois premieres
classes de la classification de Lusin : Classe 0, les boréliens ; classe 1, les images
continues des boréliens (donc les analytiques) ; classe 2, les complémentaires
des analytiques (donc les coanalytiques) ; classe 3, les images continues de la
classe 2; classe 4, les complémentaires de la classe 3; etc.

PREUVE (PAS TOUT A FAIT COMPLETE) DU THEOREME V-10. 1. Un espace po-
lonais admet une base dénombrable de voisinages, disons (Vi )ren. Un ouvert O est
décrit par les voisinages Vj, qu’il contient ; la cardinalité de la topologie de I’espace
est donc au plus celle de I'ensemble {0, 1}N. Cela est vrai en particulier des ouverts
de V.

2. Une fonction continue de f : N'— X est déterminée par les ouverts f~1(V4),
ou les V) forment une base dénombrable de voisinages de X. Donc il y a au plus
autant de fonctions continues de N dans X, que de suites & valeurs dans les ouverts,
ou de facon équivalente & valeurs dans {0, 1}. Mais cela est aussi ¢, la puissance du
continu (car {0, 1}"*N ~ L0, 11N). Cela prouve (a).

3. Il est évident, par la Définition V-9, que I'image continue d’un ensemble ana-
lytique est aussi analytique.

4. Maintenant si f : X — Y est seulement borélienne, on peut toujours enrichir la
topologie de X en lui ajoutant tous les f~1(V},), pour V,, dans une base de voisinages
de Y. L’espace ainsi enrichi par la topologie engendrée reste polonais, et la fonction
f devient continue grice a sa nature borélienne (c’est 'Exercice I11-6). Par I'étape
3, il en resulte que I'image directe d’un ensemble analytique par f est analytique.

5. Siles A; = f;(N) (i € N) sont analytiques, on se donne des copies disjointes
N; de NV, alors Uf; (définie sur 'union des N; et coincidant avec f; sur chaque Nj)
envoie continiment UN; sur UA;. Mais UN; ~ NxN peut aussi s’écrire comme image
continue de . Cela prouve la stabilité par union dénombrable. De facon similaire,
on définit Nf; sur l'espace polonais Y = {(x1,z2,...); fi(x1) = fo(z2) = ...} par
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(Nfi)(z1,...) = fi(z1) (qui est en fait fi(x)) pour tout k) et cela envoie contintiment
Y sur NA;. Cela conclut le point (c).

6. Les analytiques sont stables par union et intersection dénombrables, et contiennent
bien siir les ensembles fermés (qui sont des espaces polonais!) et les ensembles ouverts
(union dénombrables de boules fermées). Par I’'Exercice 11-14, la classe des ensembles
analytiques contient la classe des boréliens. Cela montre la premiere partie de (d);
je ne prouverai pas la seconde partie, mais citerai des exemples particuliers en fin
de section.

7. La projection est continue de X x Y dans X (ou dans Y'), les projections sur
X (ou sur Y) des boréliens dans 'espace produit sont donc analytiques.

8. Si f est continue N/ — X, son graphe est borélien, et la projection de ce
graphe est f(N) : cela prouve que tout analytique de X est la projection d’un graphe
borélien dans N x X (ou d’un borélien dans X x N, en inversant les facteurs).

9. Soit f mesurable. Par le Corollaire I11-13, son graphe G(f) est mesurable dans
X xY.Si A est analytique, f~1(A) est la projection sur X de I’ensemble analytique
G(f) N X x A, c’est donc un ensemble analytique. Cela avec 1'étape 4 achéve de
prouver (b). O

Comme on I’a vu, les ensembles analytiques forment une classe plus générale
que les ensembles boréliens, mais ils ne sont pas plus nombreux; pour exhiber des
ensembles analytiques non boréliens, on ne peut donc se contenter d'un argument
de cardinalité. On a déja mentionné en passant un contre-exemple :

EXEMPLE V-12 (analytiques non boréliens). L’ensemble de Lusin du Théoreme
VI-47 est analytique dans R, non borélien. On notera que sa définition fait intervenir
des suites infinies de suites, c¢’est & dire une paramétrisation par N ; le développement
en fraction rationnelle étant le moyen de mettre R en correspondance avec N.

Bien stir, cet ensemble est artificiellement congu et sa définition assez tourmentée.
En fait il est difficile de trouver des contre-exemples a la fois explicites et assez
naturels. La liste ci-dessous regroupe quasiment tous ceux qui sont connus; elle est
entierement due a 1’école de topologie polonaise de ’entre-deux guerres, tres active a
Varsovie et Wroctaw (Stefan Mazurkiewicz, Witold Hurewicz, Zygmunt Janiszewski,
Edward Marczewski (Szpilrajn), Kazimierz Kuratowski, ...)

EXEMPLE V-13 (analytiques non boréliens, encore). (i) (Mazurkiewicz) L’en-
semble des fonctions dérivables de [0, 1] dans R est coanalytique, non borélien
dans C([0,1]; R).

(ii) (Hurewicz) L’ensemble des compacts non dénombrables de [0, 1] est analy-
tique, non borélien dans 'espace de Hausdorff des compacts de [0, 1].

(iii) (Kuratowski-Marcewski) L’ensemble des compacts de [0, 1] contenus dans
Q est coanalytique, non borélien dans I'espace de Hausdorff.

V-3*De I’analyticité 4 la mesurabilité

Explorons maintenant les liens entre analyticité et mesurabilité. Pour commen-
cer, I’énoncé qui suit indique que 'on peut distinguer les ensembles analytiques via
des boréliens, bien que la structure de ces derniers soit moins fine.

THEOREME V-14 (Théoréme de séparation de Lusin). Soient (X, d) un espace
polonais et A*, A% deux ensembles analytiques disjoints. Alors il existe des boréliens
disjoints B* et B? tels que A® C B* pour i = 1,2. De méme si X est souslinien.
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REMARQUES V-15. (i) Cet énoncé se généralise facilement a des familles dé-
nombrables d’ensembles analytiques deux a deux disjoints (Vi # j, A;,NA; =
() : on peut alors les inclure dans une famille dénombrable d’ensembles bo-
réliens deux a deux disjoints (Exercice). C’est plus délicat de le généraliser
pour des familles globalement disjointes ((;cy A; = () ; on y reviendra.

(ii) Ce théoréme est faux si I'on remplace “analytiques” par “coanalytiques”
(d’apres un contre-exemple du mathématicien russe Serguei Novikov, un des
plus importants contributeurs a la théorie descriptive des ensembles).

PREUVE DU THEOREME V-14. Le raisonnement est le méme que X soit sup-
posé polonais ou plus généralement souslinien. Soient A' et A% deux ensembles ana-
lytiques disjoints dans X ; on les suppose tous deux non vides, sans quoi le résultat
est évident. Ecrivons-les sous forme de schémas de Souslin réguliers

- U NP
neN keN

o pour tout n € N 'intersection (o Py ., se réduit a exactement un élément
de A® (Cf (49)).

Supposons par 'absurde qu’il n’existe aucune paire (B!, B?) de boréliens disjoints
qui sépare (A, A%), au sens ou A’ C B’. Pour i = 1,2 et n; € N on pose alors

An1 - nlng Mg

(n2,n3,...)eN keN

U Al A% = U A2

n1 €N m1 €N

de sorte que

Si tous les couples (A,lll, Afm) pouvaient étre séparés par des boréliens disjoints C, L

2 2’ 1 2 77 « e . 1 _ 1
et Cy,,, alors on pourrait séparer A* et A par les boréliens disjoints Dy = |, oy Ch,
et D} = U, en Oy 5 mais cela contredirait notre hypothese. Il doit donc exister au
moins un n; et un m, tels que A}Ll et AZ“ ne peuvent étre séparés par aucun couple
de boréliens disjoints. Comme le systéme est régulier on a A, C P, et A2 C P2 |
donc P NP2 #0.

On peut alors recommencer le raisonnement, et par récurrence construire (ny, no, . . .

et (my,ma,...), et
_ 1
mnz Ty ﬂ m ni...nyg81...5k C anz ny?

seN keN
2
m1m2 My ﬂ ﬂ mi...MypS1...Sk C Pm1m2 my?
seN keN
tels que (a) A, et A2~ ne peuvent étre séparés par aucune paire de boréliens
disjoints, et (b) Pﬁl mp N P,il m £10.

Par construction il existe a' € A et a? € A2 tels que
¢ ¢
m ni...Ng = {al} ﬂ mi...my = {CLQ}'
teN teN

En particulier a' # a® puisque les A’ sont disjoints. Soient alors B! et B> des boules

ouvertes disjointes telles que a* € B’. Pour £ assez grand on a A} , . C B' et
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A2 nam, C B?. Mais cela contredit le fait que A}, et A2~ ne sont séparables
par aucune paire de boréliens, concluant le raisonnement par ’absurde. O

EXERCICE V-16. Mettre en ceuvre le méme argument sans schéma de Souslin,
en partant de la définition des analytiques comme images continues de N

V-3.1. Caractérisations et inclusions. Ce cours est maintenant miir pour
les deux principaux résultats liant analyticité et mesurabilité.

THEOREME V-17 (Caractérisation de Souslin des boréliens). Soit (X, d) un es-
pace polonais. Alors A C X est borélien si et seulement si il est analytique et
coanalytique dans X . De méme si X est un espace souslinien.

THEOREME V-18 (mesurabilité universelle des analytiques). Soit (X,d) un es-
pace polonais et p une mesure borélienne o-finie sur X. Alors tout ensemble analy-
tique A C X est pu-mesurable.

On rappelle qu'une partie A est p-mesurable si elle appartient a la tribu boré-
lienne complétée pour p, c’est a dire si A s’écrit commel "union d’un borélien et d’un
ensemble p-négligeable. Le Théoreme V-18 dit que I’ensemble A sera p-mesurable
pour toute mesure p o-finie : on dit alors que A est universellement mesurable.
On a de la flexibilité sur I’hypothese de o-finitude :

DEFINITION V-19 (mesurabilité universelle). Soit (X, d) un espace polonais. On
dit que A C X est universellement mesurable s’il est p-mesurable pour toute mesure
i borélienne o-finie sur X, ou de facon équivalente pour toute mesure de probabilité
borélienne sur X.

EXERCICE V-20. Prouver que les deux formulations sont effectivement équiva-
lentes.

Le tableau est donc le suivant (pour toute mesure o-finie p, par exemple la
mesure de Lebesgue sur R") :

{Ouverts, Fermés} C {Boréliens} C {Analytiques} C {p-mesurables}

{Ouverts, Fermés} C {Boréliens} C {Coanalytiques} C {p-mesurables}
{Boréliens} = {Analytiques} N {Coanalytiques}
REMARQUE V-21. Dans R" il y a ¢ = 2% ensembles boréliens et 2¢ ensembles
Lebesgue-mesurables ; combien d’ensembles universellement mesurables ? On ne sait
pas exactement, mais un résultat récent de Larson—Neeman—Shelah nous dit qu’il

n’y a pas de contradiction a supposer que c’est c¢. La classe des universellement
mesurables reste donc en un sens “bien plus petite” que la classe des mesurables.

PREUVE DU THEOREME V-17. Si A et X \ A sont analytiques, alors par le
Théoreme V-14 de séparation de Lusin, on trouve des boréliens disjoints B et B’

tels que A C Bet X \ A C B'. Mais alors
Bc X\B' cAcB,
et donc A = B. O

La preuve du Théoreme V-18 demandera quelques préparatifs impliquant la no-
tion d’enveloppe.
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DEFINITION V-22 (enveloppe). Soit (X, B, 1) un espace mesuré et A C X un
ensemble quelconque. On dit que B € A est une p-enveloppe de A si (i) A C B, (ii)
pour tout B € A contenant A, l’ensemble B\ B’ est u-négligeable.

Bien sir la notion d’enveloppe dépend de la tribu considérée. L’intuition est
la suivante : I'enveloppe d’un ensemble non mesurable A est une partie mesurable
B qui épouse A de si pres qu'aucune autre partie mesurable ne peut mieux faire.
Une enveloppe n’est en général pas unique, mais deux enveloppes coincident a un
ensemble négligeable pres. On a déja vu (Remarque 11-95 (i)) que si p est une mesure
borélienne, alors toute partie y-mesurable s’écrit sous la forme A = B\ N, ou B est
borélien et N est pu-négligeable; alors B est une u-enveloppe de A. Mais un résultat
bien plus général est vrai, du moins sous une hypothese de o-finitude :

PROPOSITION V-23 (existence d’enveloppe). Sur un espace polonais (X, d), soit
i une mesure borélienne o-finie, alors toute partie A de X admet une pu-enveloppe
borélienne.

Voici maintenant ’autre ingrédient majeur en vue de la mesurabilité.

LEMME V-24 (Lemme de Szpilrajn/Marcewski). Soit T une tribu d’un espace
polonais (X, d) vérifiant la propriété suivante :
(Sz) Pour toute partie A C X il existe B € T tel que A C B et tel que pour toute
partie B’ € T contenant A, tout sous-ensemble de B \ B’ appartient a 7.

Alors Uopération (A) de Souslin préserve T . Plus explicitement, si toutes les parties
intervenant dans le schéma de Souslin appartiennent a T, alors la partie ainsi définie
appartient aussi a T .

Pour rappel, Edward Szpilrajn et Edward Marcewski sont une seule et méme
personne. Le Théoreme V-18 découlera immédiatement de la Proposition V-23 et
du Lemme V-24 :

PREUVE DU THEOREME V-18. Soit x4 une mesure o-finie sur X. Par la Pro-
priété V-23, toute partie A C X admet une p-enveloppe borélienne, donc un B € B
tel que pour tout B’ € B, B' D A, on a u[B\ B’'] = 0. Soit maintenant 7 la tribu
des ensembles p-mesurables, c’est a dire de la forme B U N ou B est borélien et NV
négligeable. Pour tout 7" € T contenant A, on peut inclure 7" dans un borélien B’
tel que pu[B'\T] =0, et alors u[B\ T] < u[B\ B'| + pu[B"\ T] = 0; donc tous les
sous-ensembles de B \ T' sont négligeables et en particulier appartiennent a 7. On
conclut que 7T vérifie la propriété (Sz) ; I'application du schéma de Souslin a la tribu
B C T des boréliens induit donc un élément de 7. O

Voici maintenant les preuves des deux énoncés clé intervenant dans ’argument
ci-dessus. (On pourra apprécier en particulier I’élégance de la preuve du Lemme
V-24, petit bijou de théorie des ensembles ou tous les arguments s’enchainent har-
monieusement. )

PREUVE DE LA PROPOSITION V-23. Soit A C X. Soit (X, ),en une partition
borélienne de X avec u[X,] < 4+oo. Pour chaque X,, on cherche une p-enveloppe
borélienne B,, de A,, = ANX,,. Une fois cela accompli, on posera B = |J B,,, de sorte
que B contiendra | J A,, = A, et si B’ est un borélien contenant A, alors B, = B'NX,
contient A,, donc u[B, \ Bl] =0, et de méme pour u[B \ B’| par o-additivité.
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11 suffit donc de traiter le cas ou u est finie. On pose alors
I = inf {M[B]; BeB, B> A} eR;.

Soit (By)een une suite de boréliens telle que p[By] — I'; quitte a remplacer B, par
By, = B1N...N By, on peut la supposer décroissante. On pose By, = () By, ¢’est un
borélien qui contient A et dont la mesure vaut I.
Si maintenant B’ est un borélien contenant A, alors B,, N B’ contient A, donc
I = p[Bs] = p1[Boo N B’ + p[Bo N B'] > I + By \ B'],
donc u[By \ B] = 0. O
PREUVE DU LEMME V-24. Soit donc (Pj).en<v une famille d’éléments de T,
indexée par N<N. On pose

(51) A=AP)=J () Poone-
neN keN

Le but est de prouver, utilisant la propriété (Sz), que A € T.
1. Quitte a remplacer P, ., par Qn,. n, = ﬂjgk Py,..n;, o0 peut supposer que
Py mper € Py.m, pOUr tous m et k, c’est a dire que le systeme est régulier.

2. Pour tout m = (my,...,my) € NN, on pose
Bml...mk = U ﬂ Pm1...mkq1...qg-
qeN ¢eN

C’est 'opération (A) de Souslin appliquée a toutes les parties qui “raffinent” P,
dans le schéma (51). Par 'étape 1, toutes les opérations se passent dans P,,. Par

ailleurs
ﬂ Pml.“mkql...qg = m Pml...mkql.“qeu

¢eN >2
o r
donc en renommant (g1, o, - ..) = (7,4}, ¢, - . .) on trouve

Bml...mk = U U ﬂ Pm1...mqui...q27

reN ¢'eN (eN

ce qui est I'union de tous les B,,, . Cela fonctionne aussi quand k£ = 0, pour A
tout entier. Pour récapituler,

(a) By, C Py,

(b) Vm e NN B, =,y Bor

(c) A=U,en Br-

Si x € A, par (c) on peut trouver m; tel que x € B,,,, puis par (b) on trouve
ms tel que © € B, m,, €t ainsi de suite, de sorte qu’il existe m € N tel que = €
Mien Brmy...my,- En d’autres termes, A C A(B). Réciproquement, comme B,, C P,
on a A(B) C A(P) = A. Donc

(d) A= A(B).

Le systeme (B,,) est donc un systéme alternatif pour A, trés régulier en un sens ;
mais ses parties ne sont pas a priori mesurables.

3. Pour tout m € N<N, on introduit une 7T-enveloppe de B, : c’est & dire un
ensemble B}, € T tel que

(e) Vm e NN B, c B,

(f) Pour toute partie B’ € T contenant B,,, tous les sous-ensembles de B}, \ B’
appartiennent a 7T .
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(Noter que la défintion des B!, n’implique quune quantité dénombrable de choix
puisque N<N est dénombrable.) Alors

ABINAP) = | () Borom |\ [U N Pml...me]
neN keN meN LeN
=UN ..\ U ﬂpml...mé]
neN keN meN £eN
c U NBon \ Pares)
neN keN
c | B\ P

Soit C' = U, ,en<r B \ P € T (union dénombrable d’éléments de 7). Pour tout
D cC,

D=Dn(|J Bu\Pu)= |J DN(B,\Pn):

meN<N meN<N
par (a) et (f) ona DN (B}, \ Py) € T;donc D € T, et finalement
(52) AB )\ AP)eT.

4. Reste a prouver que A(B*) € T. Sil'on a gagné la mesurabilité et la propriété
d’enveloppe en passant des B,, aux B}, on a perdu la propriété (b). Pour la regagner,
on va “compléter” le schéma. On définit donc (B,,)en<v par

VleN B,=B;
VEeENVRe NV >2  Bune=DB5 -
Bnl...nkl = Bnlnk \ U B:zl...nkf‘
teN

Ainsi les ém sont 7 -mesurables, et par construction

Bnl.‘.nk = U Bn1...nkf-

teN
Par le méme raisonnement qu’en 1,
(53) AB)=JB =B
¢eN eN
Par ailleurs toutes les intersections impliquées dans le schéma des B* se re-

trouvent dans le schéma des B (quitte a changer d’indices pour suivre les décalages),

de sorte que A(B*) C A(B). Et en désignant par m( la concaténation de la suite
finie m avec l'entier ¢,

(54) AB)\ABY c | B\ (B

Par (b) et (e), By C Upen Bre € T, on peut alors appliquer (f) pour conclure que
chacun des ensembles apparaissant au membre de droite de (54) a tous ses sous-
ensembles mesurables; le membre de gauche est donc lui aussi mesurable :

(55) AB)\ A(B*) € T.
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5. On récapitule :

A=A(P)=A(B)C A(B") c A(B) = B;

et
A= (U BZ) \ [A(B) \A(BY)] \ [A(B") \ A(B)]
keN
appartient a la tribu 7 au vu de (52) et (55), ce qui conclut la preuve. 0

V-3.2. Quelques conséquences. Concluons cette section avec deux résultats
intéressants qui découlent comme fruit mir de la théorie. Bien que ces énoncés
ne fassent intervenir que des boréliens, leur démonstration passe par les ensembles
analytiques. Le premier avait été énoncé sans preuve en tant que Théoreme I11-24.

THEOREME V-25 (Théoréme de I'inverse mesurable, revu). Soient X et Y deux
espaces polonais munis de leurs tribus boréliennes respectives. Alors

(i) Si E est une partie borélienne de X et f une application injective mesurable
de E dans Y, alors f(E) est un borélien de Y et f=1 est mesurable de f(E) dans
E;

(ii) En particulier, si f : X — Y est bijective mesurable, alors son inverse f=
est mesurable de' Y dans X.

THEOREME V-26 (mesurabilité des images mesurables). Soient X et Y deux
espaces polonais munis de leurs tribus boréliennes respectives, A une partie borélienne
de X et f: X — Y wune application mesurable. Alors f(A) est universellement
mesurable.

REMARQUE V-27. Attention, ce résultat dit que I'image d’un ensemble borélien
est mesurable (au sens de : p-mesurable, pour toute mesure o-finie 1), mais pas que
I'image d’un ensemble mesurable est mesurable !

PREUVE DU THEOREME V-25. Toute partie borélienne A de E est analytique,
et son image f(A) par f est analytique dans Y (Théoreme V-10(d) et (b)). Idem pour
FE)\f(A) = f(E\A). L’ensemble f(A) est a la fois analytique et coanalytique dans
Y, il est donc borélien. Cela vaut en particulier pour f(FE). Mais alors (f~1)71(A) =
f(A) est borélien, pour tout borélien A; I'application f~! est donc bien mesurable.
(Ou de fagon équivalente : Comme f est borélienne, son graphe est borélien dans
X xY (Corollaire I1I-13) ; le graphe obtenu en échangeant Y et X est donc toujours
borélien ; mais c’est aussi le graphe de f~1.) 0

PREUVE DU THEOREME V-26. Il suffit d’enchainer les Théoréemes V-10(d) (les
boréliens sont analytiques), V-10(b) (les analytiques sont stables par les applications
mesurables) et V-18 (les analytiques sont universellement mesurables). 0J

V-4*Classification borélienne des espaces polonais

Nous voici en mesure de démontrer un résultat qui avait été évoqué sans preuve
dans les sections I1I-1 et IV-3 : la classification des espaces polonais, modulo bijection
bimesurable. Ici plus besoin d’hypothese topologique, seul compte le cardinal. Le gros
du travail est effectué par le théoréme de bijection mesurable ci-suit :

THEOREME V-28 (Théoréme de Cantor-Bernstein borélien). Soient X et Y deux
espaces polonais, ou sousliniens. On suppose qu’il existe une injection borélienne
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f X = Y et une injection borélienne g : Y — X. Alors il existe une bijection
borélienne F : X — Y, d’inverse borélienne.

REMARQUE V-29. Ce théoreme n’est autre que la version borélienne du théoreme
de Cantor—Bernstein, selon lequel si X et Y sont deux ensembles, chacun s’injectant
dans l'autre, alors ils sont en bijection. Ce pilier de la logique, énoncé sans preuve par
Georg Cantor, a été démontré par Felix Bernstein a la toute fin du 19e siecle. C’est
Borel qui a le premier publié la preuve de Bernstein, ce qui montre bien le lien étroit
entre ce théoreme et la naissance de la théorie de la mesure. Le nom d’Ernst Schroder
est aussi souvent associé, méme si sa preuve était erronée ; d’autres mathématiciens
impliqués ont été Alwin Korselt, Richard Dedekind, Ernst Zermelo et Julius Konig,
dont 'argument s’est imposé comme le plus populaire.

PREUVE DU THEOREME V-28. Quitte & remplacer X par X x {0} et Y par
Y x {1} on peut supposer X et Y disjoints.

Soit f : X — Y une injection borélienne; en particulier f(X) est borélien et
J~! est une bijection borélienne de f(X) dans X (Théoreme V-25). De méme, soit
g : Y — X une injection borélienne, alors g(Y) est borélien et g~ est une bijection
borélienne de g(Y') dans Y.

A tout z € X on va associer une suite finie ou infinie (o, 1, ...), prenant ses
valeurs alternativement dans X et dans Y, ainsi. On pose xy = . Si 2 € ¢g(Y'), on
pose 11 = g~ (1), et sinon on ne définit pas x;. Si z1 est défini et appartient a f(X),
on pose Ty = f~!(z;), et sinon on ne définit pas x». On continue ainsi indéfiniment.

A chaque étape, chaque composante de la suite S (z) ainsi définie est une fonction
mesurable de x. La longueur |S(z)| de cette suite est mesurable aussi : par exemple
{55 ()| > 2} = g(¥) qui est bien bordlien, {z; |S(x)] > 3} = g(¥') N g(f(X))
qui est borélien car g est injective sur Y et donc a fortiori sur f(X), etc. Et par
différence, les ensembles |S| = n sont tous mesurables, pour tout n fini ou infini.

On partitionne alors X, et on définit F, ainsi :

e si |S(z)| est fini et pair (c’est a dire que le dernier élément x,,, appartient & V')
on pose F(z) = f(z);

e si |S(x)| est fini et impair (c’est a dire que le dernier élément z,, appartient a
X) on pose F(z) =g (z);

e si|S(z)| = oo (c’est a dire que la suite ne s’arréte jamais), on pose F'(x) = f(x).

Il est clair que cette fonction est mesurable. On vérifie explicitement (exercice)
que si 'on réalise la méme construction symétrique, avec des notations similaires,
sur Y, alors la réciproque de F' est

e 1a ou |S(y)| est fini et impair, f~(y);

e la ou |S(y)| est fini et pair, g(y);

o la o [S(y)| = oo, fH(y). O

REMARQUE V-30 (Présentation alternative). Voici une autre fagon [Kechris| de
présenter la preuve du Théoreme V-28. On définit deux suites d’ensembles boréliens
X, Y, comme suit 1 Xg = X, Yo =Y, X,i1 = go f(X,), Y1 = fog(Yn), et
Xoo = Nnzo Xns Yoo = Npzo Yo Alors f(Xoo) = Yoo, f(Xn\ g(Ya)) = f(Xn) \ Yaria,
gV \ f(Xn)) = g(Ya) \ Xoy1. On pose alors A = Xoo U,50(Xn \ 9(Y2)), B =
U,s0(Yn \ f(X5)). Tous ces ensembles sont boréliens et f induit une bijection de
A sur Y\ B tandis que ¢ induit une bijection de B sur X \ A. On définit alors F
comme étant égale & f sur A et g7 sur X \ A.
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Maintenant voici le résultat annoncé :

THEOREME V-31 (Classification borélienne selon le cardinal). Soit A un en-
semble borélien d’un espace polonais X. Alors

e si A a cardinal k € N, il existe une bijection bimesurable de {1,... k} sur A;

e si A est infini dénombrable, il existe une bijection bimesurable de N sur A ;

e si A est infini non dénombrable, il existe une bijection bimesurable de C sur A.

REMARQUE V-32. En particulier, dans la classe des ensembles boréliens des
espaces polonais, il n’existe pas de cardinal intermédiaire : si un ensemble de cette
classe n’est pas dénombrable, alors il a méme cardinalité que R, la puissance du
continu. La preuve montrera en fait qu’il contient une réplique de (= un ensemble
homéomorphe a) C.

COROLLAIRE V-33. Soient X etY deux espaces polonais, et A C X, B CY des
boréliens. Alors A et B sont en bijection mesurable si et seulement si ils ont méme
cardinal. En particulier, deux espaces polonais sont isomorphes en tant qu’espaces
mesurables, si et seulement si ils ont méme cardinal.

PREUVE DU THEOREME V-31. Si A est dénombrable dans un espace polonais,
toutes ses sous-parties sont dénombrables; ainsi toute bijection entre espaces dé-
nombrables, continue ou non, sera automatiquement mesurable. Seul le cas non
dénombrable nécessite donc du travail.

Soit donc A un borélien non dénombrable dans X. D’apres le Théoreme V-28 il
suffit de trouver une injection mesurable de A dans C, et vice-versa.

1. Pour construire une injection de A dans C, I'observation clé est la suivante :

Si A est un borélien non dénombrable, alors on peut le partager en deuz boréliens
disjoints non dénombrables.

Pour voir cela, on recouvre alors A par des boules (By)sen de rayon 1/2; et on
en déduit via le procédé habituel une partition de A par des ensembles boréliens
(By)een de diametre au plus 1. Si deux de ces ensembles sont non dénombrables,
disons BJ, et B!, le but recherché est atteint, puisque A est I'union disjointe des
deux boréliens non dénombrables B], et A\ B, D B.. Sinon, cela veut dire qu'un
seul de ces ensembles, disons B/, est non dénombrable, tous les autres le sont. Alors
on subdivise a nouveau B}, en le recouvrant par des boules fermées (B, ¢)ren de
rayon 1/4, et on recommence le raisonnement : si apres transformation en partition
on a trouvé deux boréliens non dénombrables disjoints, on a gagné, et sinon on
subdivise encore. Si le processus n’aboutit jamais, c¢’est que 'on a une suite de
boules fermées emboitées non vides, B,,,, Bm,m,, etc. dont le diametre tend vers 0,
et tels que tous leurs complémentaires dans A sont dénombrables. Mais 'intersection
de ces boules est réduite a un point ; on conclut que A est dénombrable, ce qui est
une contradiction. Donc le processus aboutit toujours.

A partir de 14, il est facile de construire une injection mesurable de A dans C.
Dans un premier temps, on raffine inductivement A en (4;), i € {0,1}, puis en
(Ai;), (i,7) € {0,1}?, et ainsi de suite, construisant un systéme lusinien de boréliens
(As)seo<n. Ainsi tout x € A appartient de fagon unique a une intersection de parties
A, 4., pour tout k, et on peut lui associer la suite (iy, io,. . .).

2. Pour construire une injection de C dans A, on commence par invoquer le
Théoreme V-4 (b), selon lequel A est image d'un espace polonais Z par une bijection
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continue (a fortiori borélienne) ; il suffit donc de construire une injection de C dans
Z, qui est forcément non dénombrable. L’observation clé est alors la suivante :

Si 7 est un espace polonais non dénombrable, on peut trouver dans Z deux fermés
disjoints non dénombrables de diametre arbitrairement petit

Pour prouver cette assertion, on se donne € > 0 arbitraire, et on écrit Z comme
union dénombrable de boules fermées de diameétre au plus €; puis on transforme ce
recouvrement en partition, dont chaque élément B; = B;\ (B1UB;_1) est la différence
d’un fermé et d’un autre fermé, donc s’écrit comme une union dénombrable de fermés

(Ff)een. Si deux des ensembles B/, disons Bj et B] sont non dénombrables, alors

on peut trouver ¢ et {5 tels que Ffll et Fif sont non dénombrables (sinon Bj ou
B;, serait union dénombrable d’ensembles dénombrables, donc dénombrable) et la
conclusion est assurée. Et si on ne peut trouver deux tels ensembles, c¢’est qu’il existe
iy € N tel que X \ Fj, est dénombrable, a fortiori X \ B;,. On recommence alors
a décomposer B;, en boules fermées (B;,s)ien de diametre au plus €/2, a en faire
une partition, et ainsi de suite : si ce procédé itératif n’aboutit pas, c’est qu’on a
une suite de fermés emboités B, ;,, tous non vides (car non dénombrables), dont
le diametre tend vers 0, et dont le complémentaire est dénombrable ; mais alors leur
intersection est réduite a un point et c’est X tout entier qui est dénombrable, une
contradiction.

Une fois I'observation établie, on trouve dans X, par induction, deux fermés
disjoints non dénombrables Fj et F}, de diametre au plus 1; puis on trouve dans
chacun d’entre eux deux fermés disjoints non dénombrables Fjy et Fj;, de diametre
au plus 1, et ainsi de suite. Il ne reste plus qu’a associer a (i1, s, ...) € C 'unique

intersection des fermés emboités F; ;, i, - O

PREUVE DU COROLLAIRE V-33. Il suffit d’appliquer deux fois le Théoreme V-

31 en prenant 'espace de référence, savoir {1,...,k} ou N ou C comme intermédiaire
entre A et B. O

V-5*Sélection mesurable

On peut vivre sans connaitre les ensembles analytiques (voire!), mais on ne peut
pas faire de théorie de la mesure un tant soit peu avancée sans rencontrer le probléeme
de la sélection mesurable. Voici une situation classique : il se présente une famille
(Cy)rex de parties indexées par = et on doit choisir un y dans chacun des C,, de
facon mesurable. Cela revient a rechercher un graphe de fonction mesurable dans la
réunion des {z} x C,. La situation est similaire a celle de 'axiome du choix, mais
ce dernier ne dit de toute facon rien sur la mesurabilité de la fonction de choix. En
fait on peut, en supposant seulement ’axiome du choix dépendant, couvrir toutes
les situations d’intérét que I'on rencontre classiquement.

Bien siir, il faut des hypotheéses sur la facon donc C), varie avec z ; le plus souvent,
c’est un ensemble de couples admissibles {(z,y)} admissibles qui est fourni. On
supposera donc que C' = |J,c {2} x C, est borélien dans X x Y, et les C, seront
les sections ou coupes de C. Trouver un graphe de fonction mesurable dans une
partie mesurable d'un espace produit, avec pleine projection sur la base : cette
opération s’appelle sélection mesurable dans C' (ou section mesurable de C'), ou
encore uniformisation de C'. Ici “uniforme” désigne la propriété de fonction : I’'objet
recherché est une fonction z — f(z), fournissant une seule valeur pour chaque
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z de la projection de C' (au contraire de la “fonction multivaluée” ou “fonction
multiforme” x — C,).

Un résultat marquant de la théorie descriptive des ensembles est que deés que X
et Y sont des espaces polonais non dénombrables, il existe un borélien C de X x Y,
qui n’admet aucune uniformisation borélienne. La sélection borélienne doit donc étre
justifée via des hypotheses sur C'. Il existe deux grandes familles de théoremes en la
matiere : a sections grandes, a sections petites. L’intuition dans la premiere catégorie
est que si les sections sont assez grandes, il est d’autant plus facile d’y trouver un
graphe ; et dans la seconde, que si les sections sont petites la mesurabilité est facile
a assurer.

V-5.1. Sélections élémentaires. Voici le plus élémentaire des théoremes de
sélection a grandes sections; il semble absolument trivial, mais il est plus difficile
qu’il n’en a l'air :

PROPOSITION V-34 (cylindres mesurables). Soient X et Y deuzr espaces mesu-
rables, et C C X XY mesurable tel que C, =Y pour tout x € X. Alors C = AXY,
ot A est mesurable, et en particulier toute fonction borélienne sur A (par exemple
constante) définit une sélection mesurable dans C.

PREUVE DE LA PROPOSITION V-34. L’ensemble A est analytique comme pro-

jection du borélien C'; et de méme pour X \ A comme projection de (X x Y)\ C.
Par le Théoreme V-17 de Souslin, A est borélien. O

Quant au plus élémentaire des théoremes de sélection a petite section, il a lair
tout aussi trivial que le précédent et il est encore plus délicat.

PROPOSITION V-35 (un graphe borélien est le graphe d’une borélienne). Soit
C C X XY un ensemble mesurable dont chaque section non vide est un point :
C, = {y}. Alors C est le graphe d’ine fonction borélienne définie sur une partie
borélienne de X.

PREUVE DE LA PROPOSITION V-35. L’application F' : C — X définie par
F(z,y) = x est borélienne (toujours) et injective (par I’hypothese sur les sections).
Par le Théoréme V-25, son image est un borélien B. A tout z € B correspond un
unique y tel que (x,y) € C, appelons-le g(x). Alors 'application (z, g(x)), de B dans
C, est I'inverse de F' : par le Théoreme V-25 a nouveau, (x, g(z)) est borélienne, donc
sa seconde composante g(z) est une fonction borélienne de . O

En conséquence de ces énoncés on peut adopter la terminologie suivante sans
ambiguité :

DEFINITION V-36 (cylindre et graphe boréliens). Soient X et Y deuz espaces
polonais. Alors

(i) On dit que C C X XY est un cylindre borélien si C' est de la forme A XY
avec A borélien de X, ou de facon équivalente avec A XY borélien de X X Y.

(ii) On dit que C' C X XY est un graphe borélien si c’est le graphe d’une fonction
borélienne, ou de facon équivalente si c’est un ensemble borélien dont les coupes sont
soit l’ensemble vide, soit un singleton.

EXERCICE V-37 (Multigraphes). Sur X un espace polonais, soient f et g deux
fonctions boréliennes a valeurs réelles, définies sur des domaines boréliens. Soit C
I'union du graphe de f et du graphe de g. Recouvrir C' par des cylindres B, x F}
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(¢ € N) ou By est borélien et F, fermé, tels que C' N (B, x Fy) est un graphe. On
pourra commencer par noter que les ensembles {f = g} et {f # g} sont des boréliens
disjoints. Généraliser a un nombre fini arbitraire de fonctions et indiquer pourquoi
cela ne s’applique pas a un ensemble dénombrable de fonctions.

V-5.2. Théoremes classiques de sélection. Dans '’exemple de la Proposi-
tion V-35 chaque section est réduite a un point. Pour élargir en direction d’ensembles
“un peu moins petits”, deux choix naturels se présentent : des sections compactes
(petitesse au sens topologique) ; ou des sections (au plus) dénombrables (petitesse
au sens du cardinal). Les deux théorémes suivants traitent ces situations, respecti-
vement ; le premier est particulierement utile.

THEOREME V-38 (sélection mesurable de Novikov dans des sections compactes).
Soient X etY des espaces polonais, et C' C X XY un ensemble mesurable. On suppose
que pour tout x € X, la section C, est compacte. Alors la projection B de C' sur X
est borélienne, et il existe une application mesurable f : B — 'Y telle que f(x) € C,
pour tout x € B.

THEOREME V-39 (sélection mesurable de Lusin—Novikov dans des sections dé-
nombrables). Soient X et Y des espaces polonais, et C C X X Y wun ensemble
mesurable. On suppose que pour tout x € X, la section C, est dénombrable. Alors
il existe des boréliens B, C X et des fonctions mesurables f,, : B, — Y telles que
C = Upendi(@, fu(2)); x € B,}. En d’autres termes, C' est une union dénombrable
de graphes boréliens. En particulier, la projection B de C sur X est mesurable et il
existe une fonction borélienne f : B —Y telle que f(x) € C, pour tout x € B.

Un puissant et difficile théoreme généralise a la fois les deux derniers énoncés : il
a d’abord été découvert par les efforts partiellement indépendants de V.Ya. Arsenin,
E.A. Cegolkov (russes), Mitrofan Cioban (moldave) et Kinjiré Kunugui (japonais),
avant la version aboutie de Jean Saint-Raymond (frangais) :

THEOREME V-40 (sélection mesurable dans des sections K,). Soient X et Y
des espaces polonais, et C C X XY un ensemble borélien dont les coupes C, sont
des unions dénombrables de compacts, pour tout x € X. Alors C' est une union
dénombrable d’ensembles boréliens a coupes compactes; en particulier, la projection
B de C sur X est un borélien et il existe une fonction borélienne f : B —'Y telle
que f(z) € C, pour tout x € B.

D’autre part, dans la catégorie des théorémes de sélection a grandes sections, voici
un énoncé simple a sections “moins grandes” que I’énoncé maximal de la Proposition

V-34 :

THEOREME V-41 (Théoréme de sélection de Kunugui-Novikov & coupes ou-
vertes). Soient X et Y des espaces polonais, et C C X XY un ensemble mesurable.
On suppose que pour tout x € X, la section C, est ouverte, et on se donne (V,)nen
une base dénombrable d’ouverts dans Y. Alors il existe des boréliens B, C X tels
que C = Uyen Bn X Vi En particulier, la projection B de C sur X est un borélien,
et on peut trouver une fonction mesurable f : B — Y, ne prenant qu’une quantité
dénombrable de valeurs, telle que f(x) € C, pour tout z € X.

Dans la suite de cette section je vais fournir des preuves des Théoremes V-39,
V-38 et V-41; je laisserai de coté la difficile preuve du Théoreme V-40, renvoyant a
[Kechris| pour cela et bien davantage.
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V-5.3. Sélection dans les coupes dénombrables. Le Théoreme V-39 est un
résultat célebre dans la théorie analytique des ensembles, avec de nombreux déve-
loppements [Kechris, Melleray|. On commence par se ramener au cas d’un ensemble
fermé, grace au Lemme qui suit.

LEMME V-42. Si C' C X x Y est un borélien a coupes dénombrables, il existe
un espace polonais Z, un ensemble fermé C c X x Z, a4 coupes dénombrables,
une application continue ¢ : Z — Y telle que ([d,w)(é) = C'; en particulier,
les projections de C' et de C sur X coincident. En outre, il existe 0 : Z — X
continue telle que C = {(0(2),2); z € Z}; en particulier, pour tout fermé F de Z,
projz(é N(X x F)) = F et plus généralement la projection sur Z de tout fermé de
C' est un fermé.

REMARQUE V-43. On dit que C est I’antigraphe de la fonction continue 6.

PREUVE DU LEMME V-42. Par le Théoreme V-4 (b), il existe un espace polo-
nais Z (sous-espace fermé de N) et une bijection continue ¢ : Z — C. On définit

6CX><Zpar

C= {(x,so‘l(fv,y)); (z,y) € C}-

Il n’est pas évident a priori que C est borélien (Iapplication =1 est mesurable
mais cela ne suffit pas) ; mais nous allons voir dans un instant qu’il est fermé. Pour
commencer, il est évident que (x,z) — ©(2) est continue de C' dans C'; c’est
une surjection par construction; et c’est aussi une injection car p(z) = p(2’) avec
z =@z, y) et 2 = (2,y) implique x = 2’ et y = . Donc ¢ est une bijection
continue de C' dans C. Et si (x,2) € 5, soit y 'unique élément de Z tel que z =
o Y(z,y); alors p(2) = (x,y), donc y est la seconde composante de ¢(z), que 'on
note 1(z), de sorte que (z,%(z)) = (x,y); et réciproquement, si (z,y) € C alors
(x, (¢ (x,y)) = (z,y), de sorte que application continue (Id, 1)) est une surjection
de C' dans C. N

De fagon tautologique, la projection de C' sur X coincide avec celle de C' sur X.

Pour tout x € X, la coupe C, est {¢ ' (z,y); (x,y) € C}, en bijection donc avec
C,, et donc dénombrable.

Appelons maintenant 6 la premiére composante de ¢, de sorte que ¢(z) =
(A(z),%(2)). Par construction on a bien C' = {(6(2), 2), z € Z}. La fin de 'énoncé
en découle facilement. 0

Passons maintenant au cceur de la démonstration du Théoreme de Lusin—Novikov.
La preuve ci-dessous, évitant le recours a des outils sophistiqués, est due a Forte
Shinko, jeune spécialiste japonais de théorie descriptive des ensembles.

PREUVE DU THEOREME V-39. 1. Le Lemme V-42 fournit un espace polonais
Zetun fermé C C X x Z & coupes dénombrables. Supposons démontré 1’énoncé du
Théoreme V-39 pour C. Alors la projection B de C est borélienne ; mais c’est aussi la
projection de C'. En outre il existe des fonction boréliennes f,, : D,, — Z, D,, borélien
de X, telles que C est I'union des graphes des f,, ; alors, avec la fonction 1 fournie
par le Lemme V-42, C est 'union des graphes des fonctions v o f,,, chacune étant
borélienne comme composition d’une foction borélienne et d’une fonction continue.
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Il suffit donc de prouver le Théoréme quand I'ensemble C' dans X x Y vérifie
les hypotheses que l'on a conférées a C' dans X x Z, c’est a dire quand C est
I’antigraphe d’une fonction continue, avec les bonnes conséquences que cela entraine,
en particulier que C' est fermé et se projette sur Y tout entier.

2. Soit A un fermé de X et soit F = {Fy,..., F,,} une famille finie de fermés
deux a deux disjoints de Y. Disons que (A, F) vérifie la propriété (P) si il n’existe
aucune famille finie {By,..., By} de boréliens de A, dont l'union recouvre A tout
entier, telle que chaque C' N (B; x F;) (1 < j < m) est une union dénombrable
de graphes de fonctions boréliennes (donc des graphes de fonctions Ji o Di — Fj
(r € N), ot chaque D} est un borélien de B;).

Quelques remarques sur cette propriété. Le choix B; = A, B; = () pour j # i,
montre que pour tout i dans {1,...,m}, CN(Ax F;) n’est pas union dénombrable de
graphes. Mais la liberté laissée au choix du recouvrement borélien rend la condition
a priori bien plus forte que cette condition énoncée sur les F; séparément. On note
au passage que si (P) est vraie, tous les ensembles C'N (A x F;) doivent bien siir
étre non vides.

Le but est de montrer que C' est union dénombrable de graphes boréliens, c’est a
dire que (X, {Y}) ne vérifie pas (P). Supposant par I'absurde que (X, {Y}) vérifie
(P), on va aboutir & une contradiction. Pour cela on va construire par induction
une suite de fermés (Ay)ren de Z, et une suite (Fy)ren de familles finies de fermés
disjoints dans Y, vérifient, pour tout k € N,

(Ak+1 C Ak et diam (Ak) < 1/k,
Fi. est constituée de 2% parties fermées F, indexées par {0, 1}"

et pour tout s = (s1,...,5;), ona Fy o, C Fy s,
et diam (Fy, 5, ) < 27k

((Ag, Fy) vérifie (P).

Ces propriétés s’étendent a k = 0 si ’'on pose Ag = X, Fy = Y (quitte a remplacer
la distance de Y par une distance équivalente bornée par 1).
Supposons construits A et Fj pour k € Ny, on va construire Ag,q et Fryq.

3. On commence par raffiner chaque ensemble Fy (s € {0,1}*) & tour de r6le, le
remplagant par deux fermés disjoints Fyy et Fy; inclus dans F et de petit diametre
(les ensembles Fy pour s’ < s ayant déja été remplacés par Fyo et Fyq) tout en
préservant la propriété (P). Cela se fera (quitte a renuméroter) grace a la propriété
d’héritage que voici :

(H)1 Si (A {F, F, ..., F,}) vérifie (P) et sie > 0, alors il existe deux fermés
disjoints Fio, F11 C Fiy, de diamétre au plus €, tels que (A,{Fio, Fi1,Fs, ..., F,})
vérifie (P).

Pour prouver (H)p, on commence par définir A(Fy) = {(x, z), = € F1} (diagonale
du carré ensembliste F} x Fi) et on recouvre (F; x Fy) \ A(F}) par des produits de
boules fermées de diametre au plus ¢ :

(Fux F) \A(F) = | Fib x
neN

ou chaque fermé F7; est donc inclus dans F} et de diametre au plus €; par construc-
tion FTJj et F7} sont disjoints pour tout n.
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Si la conclusion de (H)p est en défaut, alors pour tout n € N on peut trouver
des boréliens de A, notés By, B}y, B, ..., B, recouvrant A tout entier, tels que
CN(Biyx Fy), CN(Bfy x Fy), CN (B} x F}'), pour toutes valeurs de j € {2,...,m}
et n € N, sont tous des unions de graphes de fonctions boréliennes fi3" : D" — FJb,
[y Du — FY fT DY — Fet DR C BY (j€4{2,...,m}, ne N, reN).

On pose B; = |, ey B} ; ainsi, pour tout j > 2, C'N (B; x F}) est 'union des
cn (B]” x F}) et c’est donc I'union de tous les graphes des f;‘ " dont les domaines
sont tous inclus dans B;.

On pose ensuite By = A\ (B2N...U B,,). Comme tous les B} sont disjoints de
By, les boréliens { By, B}, } recouvrent Bj ; quitte a remplacer B}, par By, N B et
By, par By, N (By \ B},) (et a restreindre les domaines D}y, DY;" en conséquence),
on peut supposer que pour tout n, By est l'union disjointe de BY, et BY,.

Considérons alors

L= [Cn(Bx )|\ {(U UL, fi57 (@), z € Dﬁ;’”})
U(U UL Ay (@), z € Dﬁ"})].

neNreN

Soient (Z,yo) et (T,y1) deux éléments de I' partageant la premieére coordonnée. Si
Yo # Y1, soit n € N tel que (yo,v1) € Fiy x FJy. Comme T € By, on a soit T € BY,
soit T € By ; par exemple T € BY. Mais alors (Z,yy) € C N [By, x Fji], donc il est
de la forme (7, f§" (%)) pour un certain r € N; ce qui est exclu par définition de T
On conclut que yo = y; ; autrement dit, I' est un graphe.

Mais I' est par ailleurs borélien, comme différence d’un borélien et d’une union
dénombrable de boréliens; par le Théoreme V-35 c’est le graphe d’une fonction
borélienne v : D; — F| ou Dy est un borélien de B;.

Ainsi C'N[B; x F] est a son tour une union dénombrable de graphes boréliens,
en contradiction avec ’hypothese de (H);.

On peut donc appliquer la propriété (H)y a 2% reprises, pour passer de la famille
Fi ala famille Fy .

4. On va maintenant affiner A; en Ag,q, tout en préservant la propriété (P).
Cela se fera par une seconde propriété d’héritage :

(H)ux Si (A, F) vérifie (P) et si 6 > 0, alors il existe un fermé A" C A, de
diameétre au plus ¢, tels que (A', F) vérifie (P).

Pour prouver (H)yr, on écrit A = |, A", ot chaque A" est une boule finie

neN
de diametre au plus J. Ecrivons aussi F = {Fy,..., F,,,}. Si la conclusion de (H)yg
est fausse, alors aucun des (A", F) ne vérifie (P); donc pour tout n € N on peut
trouver des boréliens BY, ..., B}, recouvrant A" et tels que C'N (B} x F}) est union

dénombrable de graphes boréliens. On pose alors B; = (J, oy B}, ainsi chaque C'N
(Bj x Fy) est 'union des C'N (B} x Fj), et donc une union de graphes boréliens. En

outre
Us=UUsz=Usr=2

1<5<m neN 1<5<m neN
Donc (A, F) viole (P), en contradiction avec I'hypothese de (H)pg.

5. Une fois la famille (A, F) construite, pour tout ¢ € {0, 1} la famille C'N
(Ar X Fy, n,) est faite de fermés emboités, non vides (car (A, F) vérifie (P), Cf.
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la remarque faite en 2), et de diameétre tendant vers 0. Par théoreme des fermés
emboités, I'intersection est un singleton, de la forme {(Z, x(c))}, ou {Z} est la limite
décroissante des Ay ; et bien siir la fonction y est injective car si ¢ et ¢ different en
position k, alors x(c) et x(c¢’) appartiennent aux fermés disjoints F, et Fy o
respectivement.

En conclusion la section C3 contient une réplique de I’ensemble C de Cantor,
elle n’est donc pas dénombrable, ce qui contredit I’hypothése et acheve la preuve du
Théoréme V-39. [

1.--Ck

REMARQUES V-44. (i) La preuve montre en fait que si C C X x Y est bo-
rélien, alors soit ¢’est une union dénombrable de graphes boréliens, soit 1'une
de ses fibres contient une réplique de ’ensemble C de Cantor. Bien siir, cet
énoncé contient comme cas tres particulier la Remarque V-32 (quand X est
réduit a un point!). Rétrospectivement, on comprend un petit peu mieux
I’esprit de la preuve : §’il n’existait qu’une fibre T x Y contenant une réplique
de C, c’est cette fibre qui ferait obstruction au recouvrement par une famille
dénombrable de graphes boréliens, et toujours elle si I’'on restreint les valeurs
pour isoler les points de C.

(ii) En conséquence du Théoreme V-39, si C' C X X Y est un borélien a coupes
dénombrables, alors I’ensemble des points d'unicité de C,

UC)={zeX; AyeY;(x,y) € C}

est borélien (exercice). Un résultat plus général, dii & Lusin, affirme que si C
est borélien alors U est coanalytique : voir Théoréme V-56 plus loin. Comme
on le verra alors, on peut en déduire une autre preuve, moins élémentaire
mais plus compacte, de ce quun borélien a coupes dénombrables admet une
uniformisation borélienne.

V-5.4. Théoréme de séparation de Novikov et conséquences. Le Théo-
reme de séparation de Novikov, qui renforce le Théoreme de séparation V-14 de
Lusin, servira a prouver les Théoremes V-41 et V-38.

THEOREME V-45 (Théoréme de séparation de Novikov). Dans un espace po-
lonais, soient (Ag)reny une famille dénombrable de parties analytiques telles que

N Ax = 0. Alors il existe une famille de boréliens (By)ren tels que Ay, C By pour
tout k, et (| Bx = 0.

PREUVE DU THEOREME V-45. L’argument qui suit est dii a Gabriel Moko-
bodzki (spécialiste francais de théorie des ensembles, fils de juif polonais déporté,
éleve de Gustave Choquet).

Pour chaque Aj on introduit un systeme de Souslin (PT(Lk))neNm, en imposant
que pour tout n € N<N, pi - — UgeNP,Elf_)_mg, que pour tout k € Net n € N,
diam(ng,),_nr) — 0 quand r — oo, et que pour toute suite (ng)en l'intersection
MNeen P,E’f)w soit constituée d’un point unique. On pose P@(k) = Uren Pé(k) = A;.
Comme les Aj sont globalement disjoints, il en va de méme de leurs sous-parties
P® pour tout choix d’indices sy € N<N.

Disons qu’une suite de multi-indices (sy, s, . . .), avec s; € N<N pour tout 4, vérifie

la propriété (IN) si les parties Ps(l1 ),Ps(f), etc. peuvent s’inclure dans des boréliens
Bs;V, B ... globalement disjoints.
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Le but est donc de montrer que (0,0, 0, ...) vérifie la propriété (N).
Supposons par I'absurde que tel n’est pas le cas. Si les suites (¢,0,0,...), pour

¢ € N, vérifiaient toutes la propriété (IN), on aurait des boréliens Bél), Bq(f), Bég), .

contenant Pe(l), P@(2), Pf), ... globalement disjoints ; alors en posant B = [ Bél) on
aurait des boréliens Bél), BQ()Q), ... assurant la propriété (N) pour (0,0, ...), contrai-
rement a notre hypothese. Il existe donc £ € N tel que (¢,0,0,...) ne vérifie pas
(N).

Et on peut continuer ainsi par induction : chaque fois que (s1, 9, . . .) ne vérifie pas
(IN), pour tout r on peut trouver ¢ tel que (sy, Sa, ..., Sp—1, Sh, Spi1, - - ) Ne vérifie pas
(N), avec s, = (aq,...,a;) et s, = (ai,...,ax, ). On peut ainsi accroitre a volonté
la longueur de n’importe quel indice dans la suite mettant (N) en défaut.

On définit ainsi par récurrence une suite (nq,ng,...) délélements de N (chaque
ny, est une suite d’entiers) tels que pour tout £ € N, (ny|l, no|l, ..., nell,0,0,...) met
(IN) en défaut, ou ng|¢ est la sous-suite finie constituée des ¢ premiers éléments de
ng. ‘

Pour chaque k£ € N, 'intersection des PT(LZ , est réduite a un élément, appelons le
pr ; il appartient a Ay. Ces parties étant globalement disjointes, il existe au moins
deux indices i et j dans N tels que p; # p;. Soient B; et B; des boules disjointes conte-
nant p; et p; respectivement : pour ¢ assez grand, on a P,S.?g C B;, P?% ?e C Bj; sans
perte de généralité ¢ > max(s, j). Mais alors (X,..., X, B;, X ..., X, B;, X, X,...)

est une suite de boréliens globalement disjoints et séoarant Pﬁ')g, ceey PT(LQZ, Apir, Apgay -
donc (ny|l,mall, ..., nell,0,0,...) vérifie la propriété (N), en contradiction avec
notre construction. 0

En supposant I'un des éléments borélien et disjoint de tous les autres, en passant
aux complémentaires, on obtient le

COROLLAIRE V-46 (Recouvrement de borélien par des coanalytiques). Soit A
une partie borélienne d’un espace polonais (X, d), et soit (Zy)ren une famille dénom-
brable d’ensembles coanalytiques dont 'union est égale a A ; alors on peut trouver
une suite de boréliens (By)ken tels que By C Zy pour tout k, dont 'union est toujours
égale a A.

Ces résultats de séparation et recouvrement sont des ingrédients efficaces pour
prouver les Théoremes V-38 et V-41, comme on va le voir maintenant.

PREUVE DU THEOREME V-41. On note projy la projection sur X. On fixe
(Vi )nen une base dénombrable de voisinages de Y, de sorte que tout C, est une
union de certains des V,,. Pour tout n,

X, ={reX; V,CC)}=X\projy Cﬂ(Xx(Y\Vn))]

est un ensemble coanalytique (car complémentaire de la projection d’un borélien).
Donc |J Z, = X,, X V,, est également coanalytique. Comme 'union des Z,, recouvre
C, par le Corollaire V-46 on peut trouver des boréliens (Q,,),en de X X Y recouvrant
C, avec Q,, C Z,. Si A, est la projection de Q),, sur X, A, est analytique et A,, C X,,.
Par le Théoreme V-14 de séparation de Lusin (appliqué aux ensembles analytiques
disjoints A,, et X'\ X,,) on peut trouver un borélien B, tel que A,, C B,, C X,,. Alors
projx @, C B, et projy@, C V,, dou Q, C B, x V,; a fortiori C C |J B, x V.
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Mais par définition de X,,, B, x V,, C X,, x V,, C C, donc l'inclusion réciproque
U B, x V,, C C est vraie aussi. O

Passons maintenant au Théoreme V-38. C’est en fait un résultat intermédiaire
plus précis qui sera démontré, mais il faudra au préalable quelques notions topolo-
giques plus avancées sur les compacts.

Si X est un espace polonais, on note K (X) I'espace des compacts de X ; on le
munit de la distance de Hausdorff :

dy (K, L) = max <sup d(x, L),supd(y, K)),
zeK yeL

ou d(a, B) = infyep d(a, b). Cette distance fait de K (X) un espace métrique polonais
(c’est un excellent exercice, pas si simple). Si D = {x,,n € N} est une partie
dense, alors I’ensemble des sous-ensembles finis de D est une famille dénombrable
dense dans K (X). La topologie induite sur K (X) par la distance de Hausdorff est
la topologie de Vietoris (du nom du topologiste autrichien Leopold Vietoris,
célebre aussi pour sa longévité puisqu’il publiait encore & 100 ans passés...) : c’est la
topologie qui est engendrée par les ouverts de la forme {K; K C U}, ou U est un
ouvert donné, et ceux de la forme {K; K NU # (}}. Cette topologie est I'analogue
pour les compacts de la convergence uniforme pour les fonctions.

Si X est un espace polonais, on peut le compactifier, c’est a dire 'injecter
continiiment dans un espace compact dont il sera une partie dense. Il existe de nom-
breuses facons de compactifier, la plus simple étant la compactification d’Alexan-
drov (on ajoute un point a 'infini, dont les voisinages sont les complémentaires des
compacts) ; mais ce qui est important dans ce contexte est de préserver la nature
polonaise, et ce ne sera pas le cas du compactifié d’Alexandrov (sauf si X est loca-
lement compact : exercice). Voici une compactification qui s’applique a tout espace
polonais et préserve la nature polonaise de la topologie : on commence par rempla-
cer la distance d par une distance topologiquement équivalente & valeurs dans [0, 1],
comme d/(1 4 d); on choisit une suite (z,),en dense dans X ; alors I'application
F : 2+ (d(x,2,))nen est une injection continue de X dans I'espace métrique
compact [0, 1]; on vérifie que F~! est continue de F(X) (muni de la topologie in-
duite par [0,1]Y) dans X, de sorte que X est homéomorphe & F(X). L’adhérence
Y = F(X) (adhérence de F(X) dans [0, 1]V) est un espace métrique compact dans
lequel F(X) est dense. En outre, Y \ F(X) est 'ensemble des y € Y tels que
lim, o diam (F~(B,(y))) > 0 (sinon la famille des F~(z), z — y, convergerait vers
un certain x et on aurait y = F(z)); donc F(X) coincide avec I'ensemble des y
vérifiant lim,_,o diam (F~(B,(y))) = 0 (cette derniére quantité est en fait 1'oscilla-
tion de la fonction F' de X dans Y'); c’est I'intersection des ouverts O définis par
lim, o diam (F~(B,(y))) < 1/k. Tout cela nous dit que modulo I’homéomorphisme
F, X est une intersection dénombrable d’ouverts de Y, c’est a dire ce qu’on appelle
un Gj; et en particulier ¢’est un borélien de Y.

Maintenant, modulo 'isomorphisme F', K(X) est 'ensemble des compacts de Y
qui sont inclus dans X, c’est a dire dans I'intersection des Oy. Mais pour chaque k,
I'ensemble des compacts de Y inclus dans Oy, est un ouvert de K (Y') ; leur intersection
K(X) est donc un Gs de K(Y'), et en particulier un borélien.

Avec ces notions, le Théoréeme V-38 est une conséquence immédiate des deux
énoncés qui suivent :




THEORIE DESCRIPTIVE DES ENSEMBLES 199

THEOREME V-47 (structure des boréliens & coupes compactes). Si X et Y sont
des espaces polonais et C' est un borélien de X XY a coupes C, compactes, alors
x — C,, est une application borélienne da valeurs dans K(Y').

PROPOSITION V-48 (représentant continu d’un compact). Si Y est un espace
polonais, il existe une application continue [ : K(Y) — Y.

PREUVE DU THEOREME V-47. 1. Soit Y une compactification polonaise de Y ;
ainsi Y est homéomorphe & un G5 dense de Y ; par abus de langage on fera comme si
Y C Y. Fixons une base dénombrable (V,,),ey de voisinages de Y. Les coupes de C
sont compactes dans Y, et donc dans Y aussi. Le complémentaire de C dans X x Y
est & coupes ouvertes, et donc (par le Théoreme V-41) de la forme UB,, X V,, ou les
B,, sont boréliens dans X. Soit K,, = Y \ V,,, et soit b la fonction de X dans P(N)
(Pensemble des parties de N) définie par

b(x) = {n eN; z e Bn}.

Ainsi
Y\C = |J v
neb(x)
soit
Cx = ﬂ Kna
neb(x)

ou encore C,, = ® o b(x), ou
o(B) = () K
neB

On munit P(N) =~ {0,1}" de la topologie produit, c’est & dire la convergence suc-
cessive des termes de la suite. La fonction b est mesurable comme supremum d’une
infinité dénombrable de fonctions mesurables (la k-éme est la fonction qui sur By
vaut (0,...,0,1,0,...,0) avec un 1 en k-éme position, et hors de By, vaut 0). Véri-
fions maintenant que ® est mesurable.

2. Soit U un ouvert de Y, par abus de notation on écrira K (U) pour I’ensemble
des compacts de Y qui sont inclus dans U ; on sait que c’est un ouvert de K(Y).
Si ®(B) € K(U), c’est a dire si ®(B) C U, alors il existe N tel que pour n > N,
Nhe By En CU (ici on utilise que I'intersection des compacts K, avec le compact
Y\ U est vide, donc il existe une sous-famille finie de ces compacts dont I'intersection
est vide). Ainsi pour tout B’ tel que BN {l,...,N} = B'N{l,...,N} on aura
®(B') C MNyen Mnepnen Kn C U. Cela montre que I'image réciproque par ¢ de
Pouvert K(U) est un ouvert. (Cela suggere la continuité de ®, mais il y a une
deuxiéme sorte d’ouverts a considérer pour couvrir la topologie de K(Y).)

3. Soit & nouveau U un ouvert de Y ; on considére U I'ensemble des compacts

K tels que K NU # ). C’est le complémentaire dans K(Y) de I'ensemble K (L)
des compacts inclus dans le compact L =Y \ U. Soit Q, = {y; d(y, L) < 1/}, ou
d désigne la distance dans Y ; alors avec des notations évidentes K (L) est l'inter-
section des K (Q), qui sont des ouverts. Donc K (L) est le complémentaire d’une
intersection dénombrable d’ouverts de la forme K(Q,). Ainsi les ouverts de la forme
K(U) suffisent a engendrer tous les boréliens de K(Y), et 1’étape 2 montre que
I'image réciproque que ® de tous ces ouverts est un borélien. Finalement ® est bien

borélienne.
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4. A ce stade on a montré que z — C, est borélienne de X dans K(Y). Mais

par hypothese elle est a valeurs dans le borélien K(Y); elle est donc borélienne de
X dans K(Y). O

Passons maintenant a la Proposition V-48. Pour se faire une intuition de la
construction, on peut commencer par considérer le cas particulier représentatif Y =
R : il suffit alors de choisir I(K) = inf K (exercice).

PREUVE DE LA PROPOSITION V-48. On écrit Y comme une union dénombrable
de boules ouvertes By, B, ... de diameétre au plus 1/2, non nécessairement dis-
jointes. Puis on subdivise chaque boule Bj en ouverts By, Bio, ... de diamétre au
plus 1/4 et de sorte que By; C By ; on continue de facon inductive, définissant un
schéma de Souslin régulier d’ouverts, recouvrant Y tout entier a chaque étape k,
avec des ouverts de diamétre au plus 27, que l'on note By, 4, , k € N, et tels que
B, iy, C By

Si K est un compact de Y on définit une suite d’indices iy, i, ... en choisissant
pour 7; le plus petit indice i tel que B; N K # (), puis pour iy le plus petit indice 4
tel que By,; N K # (), ete. La construction assure que la suite est bien définie, et

K (Biio=K() () Bir.is
¢teN teN
est réduit a un point par le théoreme des fermés emboités. C’est celui-ci que 1'on
note I(K'). On vérifie (exercice) que I'application I est alors continue de K (Y') dans

Y. 0J

REMARQUE V-49. On peut également donner du Théoreme V-40 une version
précisée sous la forme suivante, due a Jean Saint Raymond : Tout borélien de X x Y,
a coupes K, s’écrit comme une union dénombrable de boréliens da coupes compactes
— et donc comme une union dénombrable de graphes boréliens a valeurs dans K(Y').

V-5.5. Deuxiéme théoréme de séparation. Les théorémes de séparation de
Lusin et Novikov admettent des généralisations importantes et délicates, regroupées
sous le nom de “deuxieme théoreme de séparation”. En voici la version la plus simple,
historiquement la premiere :

THEOREME V-50 (Deuxiéme théoréme de séparation de Lusin). Soient A; et A,
des ensembles analytiques d’un espace polonais X. Alors il existe deuxr ensembles
coanalytiques Cy et Cy disjoints tels que A; \ Ay C Cy et Ay \ Ay C Cs.

En posant All = (X \ Cg) U (Al N AQ) et AIZ = (X \ Cl) U (Al N AQ), on obtient
une autre forme qui ressemble beaucoup au premier théoréeme de séparation :

COROLLAIRE V-51 (Deuxiéme théoreme de séparation de Lusin reformulé).
Soient Ay et Ay des ensembles analytiques d’un espace polonais X . Alors il existe
deux ensembles analytiques A} et A} tels que Ay C A}, Ay C A, AANA, = AN As.

C’est donc le méme énoncé que le premier théoreme (Théoreme V-14)... sauf que
I'intersection A; N Ay n’est plus forcément supposée vide.

A premiére vue, pour obtenir le Théoreme V-51, il suffit d’appliquer le premier
théoréme de séparation dans l'espace X \ (A; N Ay), obtenant ainsi deux boréliens
disjoints By D Ay et By D A,, puis d’ajouter 'analytique A; N Ay a I'un et I'autre.
Mais ce raisonnement ne fonctionne pas du tout, car X \ (A; N Ay) est coanalytique,
ce n’est donc a priori ni un espace polonais, ni méme un espace souslinien.
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Il s’agit donc en pratique de travailler dans un espace métrique séparable non
souslinien ; cela rend la preuve du Théoréme V-50 beaucoup plus sophistiquée que
celle du Théoreme V-14. En plus des schémas de Souslin, elle fait intervenir la
structure des arbres qui les représentent, et des indices a valeur dans les ordinaux,
pour représenter la complexité des parties prenantes [Dellacherie,Kechris|. Ensuite,
comme dans le passage du Théoreme de séparation de Lusin a celui de Novikov, on
peut aussi considérer une infinité dénombrable d’ensembles. Apres Lusin et Novi-
kov, des auteurs comme Gabriel Mokobodzki, Claude Ambrose Rogers, Alexander
(Alekos) Kechris, Benjamin Miller et d’autres ont contribué a réécrire, améliorer et
augmenter ces résultats. Voici deux énoncés représentatifs :

THEOREME V-52 (réduction coanalytique, version a deux ensembles). Dans un
espace X polonais ou souslinien,
(a) Soient Ay et Ay deuz ensembles analytiques. Alors il existe deuz ensembles
analytiques A’ et Al tels que Ay C A}, Ay C Ay, AANA,=A1NA), AJUA, =X ;
(b) Soient Cy et Cy deux parties coanalytiques, alors il existe deux ensembles coana-
lytiques C et CY tels que C} C Cy, Cy C Cy, C1NCY =0, CTUCH = CLUCs.

THEOREME V-53 (réduction coanalytique, version générale). Dans un espace X
polonais ou souslinien,
(a) Si (Ap)nen est une suite de parties analytiques, alors il existe une suite (A!))nen
de parties analytiques telles que A, O A, pour tout n, A, UA = X pour tous
entiers n,m distincts, et (), cn An = nen An 5
(b) St (Cp)nen est une suite de parties coanalytiques, alors il existe une suite (C)))nen
de parties coanalytiques telles que C!, C C,, pour tout n, les C! sont deux a deux
disjoints, et |J,cy Cr = Upen Cn-

REMARQUES V-54. (i) Dans l'un et 'autre théoréeme, les énoncés (b) et (a)
sont identiques, modulo passage au complémentaire.

(ii) L’énoncé du Théoreme V-52 est précisé par rapport au Théoreme V-50, seule-
ment par la condition supplémentaire A} U A} = X.

(iii) La preuve du Théoreme V-52 n’est guére plus simple que celle du Théo-
reme V-53; dans un cas comme dans l’autre, on a besoin d’outils conceptuels
nettement plus sophistiqués que pour les Théorémes de séparation V-14 ou
V-45.

(iv) L’énoncé du Théoreme V-53(b) permet de comprendre la terminologie de
réduction coanalytique : partant d'une famille (C},),en dont 'union est
un certain ensemble C, on a trouvé une nouvelle famille (C!),en d’ensembles
inclus dans les C),, et qui forme une partition de C'. Ce processus de réduction
des ensembles C,, en C! est donc un analogue sophistiqué, dans la classe des
coanalytiques, du procédé familier de réduction des boréliens ou a partir de
(Bn)nen on pose B!, = B, \ (B1U...UB,_1). On dit que la classe des coana-
lytiques, comme la classe des boréliens, possede la propriété de réduction ;
ce n’est pas le cas en revanche de la classe des analytiques. [Kechris]

V-5.6. Ensemble d’unicité. Le Théoreme V-52 était originellement motivé
par I’étude d'un ensemble que 1'on a déja rencontré en passant.

DEFINITION V-55 (ensemble d’unicité). Soit C C X X Y un borélien dans le
produit de deux espaces X et'Y. On appelle ensemble d’unicité de C

UC)={zeX; yeY, (z,y) € C}.
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Autrement dit, U(C') est ’ensemble des = dont la section C, est un singleton. I
est naturel de s’intéresser a cet ensemble sur lequel C' devient un graphe. Le principe
de réduction coanalytique permet de démontrer un résultat de structure simple et
frappant :

THEOREME V-56 (coanalyticité de I'ensemble d’unicité). Soient X et Y deux
espaces polonais, et C' C X XY un borélien; alors U(C') est coanalytique.

REMARQUE V-57. 1l est faux en général que U(C') soit borélien. En effet, soient
A un ensemble analytique non borélien dans X (j’ai admis son existence dans le
Théoréeme V-10(d)) et f une application continue N' — X telle que f(N) = A.
Soit zp un point extérieur a N et isolé; de sorte que Z = N U {2} est encore
un espace polonais (pour construire cela rigoureusement, par exemple on considére
N x {0} U{(0,1)}. Soit maintenant C' C X x Z défini par {(f(2),2); z € Z} U
{(z,20); © € X} (on a simplement ajouté un point sur chaque section de I'antigraphe
de f). L’ensemble d’'unicité U(C') est alors le complémentaire de 'image de f, c’est
donc bien un coanalytique, mais pas un borélien !

PREUVE DU THEOREME V-56. L’argument qui suit est dii au jeune logicien
canadien Ronnie Chen (éleve d’Alekos Kechris).

1. Par le Lemme V-42, il suffit de traiter le cas ou C' = {(f(2), z); 2 € Z} pour un
certain espace polonais Z. Par le Théoreme V-31 il existe une bijection mesurable
¢ de C dans Z, de sorte que C' = {(f(p(c)),p(c)), ¢ € C}, et I'enemble d'unicité de
C' est le méme que celui de C' = {(f op(c),c)} C X x C, 'antigraphe de la fonction
f = foe. Tout cela pour dire qu’il suffit de prouver la coanalyticité de I’ensemble
d’unicité de I'antigraphe d’une fonction borélienne définie sur C. Dans la suite on
notera C' cet antigraphe et f cette fonction; I'ensemble d’unicité U(C'), c’est alors
I’ensemble des valeurs qui sont atteintes une fois et une seule par f.

2. Soit X5 I'ensemble des x € X qui sont images par f d’au moins deux points
distincts. On note A(C) = {(z, 2); z € C} la diagonale de C, et similairement A(X)
la diagonale de X ; on pose aussi F'(z,2') = (f(2), f(2')). Alors Xy = f(F71(A(X))N
(C\A(C)) (vérifier!) ; c’est donc I'image d’un borélien par une application borélienne
(vérifier!), et donc un ensemble analytique par le Théoreme V-10(b). Par passage
au complémentaire, ’ensemble des valeurs qui sont atteintes au plus une fois est un
coanalytique.

3. Pour z € C on note z = (2,)nen. Pour tout n € N fixé, les ensembles A? =
f({z, = 0}) et Al = f({z, = 1}) sont analytiques; par le Théoréme de réduction
coanalytique V-50 il existe des ensembles analytiques A’° et A’', contenant A9 et
Al respectivement, tels que AP U A = X et AN A =A9N AL

4. Soit

Q= {xEX; Vzel, [(WneNzeA™) :>f(z):x}}.
Alors le complémentaire de ) est la projection sur X de I'ensemble R(z,z) défini
par
[Vn €N, (2, =0) ou (z € A;O)] et [Vne N, (z,=1)ou (z € A;l)] et [f(z) # x].

Ainsi 'ensemble R est I'intersection de trois ensembles, chacun des deux premiers
est une intersection dénombrable d’unions d’un borélien avec un analytique, et le
troisiéme est un borélien; finalement R est analytique et sa projection aussi (on
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a enchainé les propriétés énumérées au Théoreme V-10). L’ensemble @) est donc
coanalytique aussi.

5. Maintenant pour tout x € X et pour tout n € N, il existe i,, € {0,1} tel que
z € A" en posant z = (i1, iz, ...) on voit que la relation définissant @ est vérifiée
pour (z, z), de sorte que x = f(z). En particulier, @) est inclus dans f(Z2).

6. Pour tout z € Xy on a |f~!(z)] <1 et pour tout x € Qoa |f~*(z)] > 1; donc
I’ensemble d’unicité de C' est exactement XoN @), intersection de deux coanalytiques,
et donc lui-méme coanalytique. 0

REMARQUE V-58. Pour manier les analytiques et coanalytiques, les experts en
théorie descriptive des ensembles sont souvent guidés par une intuition appuyée sur
les prédicats logiques apparaissant dans les formules. Par exemple, pour ’ensemble
X, on dira en considérant la formule X, = {z; V2,2 € X, [f(2) = f(?)) =2 =
z = 21} que le prédicat [f(z) = f(2') = x = 2z = Z/] est borélien en (z,z,2’)
et que le quantificateur universel V appliqué aux variables (z, ') fait du résultat un
ensemble coanalytique.

En guise d’application du Théoreme V-56, voici une nouvelle preuve de 1'unifor-
misation pour un borélien C' a coupes dénombrables. Pour rappel, on a démontré au
Théoreme V-39 qu'un tel borélien est union dénombrable de graphes; par la nou-
velle approche on va seulement retrouver le corollaire utile de sélection mesurable,
a savoir : Soit C' C X XY wun borélien a sections dénombrables, alors la projection
B de C sur X est mesurable et il existe une fonction borélienne f : B — 'Y telle que
f(z) € C, pour tout x € B.

PREUVE ALTERNATIVE DE LA SELECTION MESURABLE DE LUSIN-NOVIKOV. Par
le Lemme V-42 il suffit de traiter le cas ou C' est fermé, donc chaque C,, aussi. Dans
ce cas, pour tout x € B I'ensemble C, est fermé, non vide, dénombrable, il admet
donc un point isolé w, c’est & dire que B,(w) N C, = {w}; soit alors (V},)nen une
base de voisinages fermés de Y : pour tout x il existera donc n tel que V,, NC, est un
singleton, de sorte que B est égal a I'union des U(C'N(X x V},)), qui est coanalytique
par le Théoreme V-56. Mais B est aussi analytique comme projection d’un borélien ;
il est donc borélien par le Théoreme V-17 de Souslin. En outre, pour tout n, la
restriction de C'N (X x V,,) a son ensemble d’unicité est un graphe (par définition de
I'ensemble d’unicité) borélien (car intersection de C' avec les deux boréliens X x V, et
U(C) xY). Ainsi 'on trouve une suite de graphes boréliens f,, : D,, — Y, ou chaque
D,, est borélien, avec | J D,, = B et le graphe de f,, est inclus dans C. Pour conclure
il suffit de transformer (D,,),en en partition de B par le procédé habituel. O






CHAPITRE VI

La mesure de Lebesgue

Jusqu’a présent, on a étudié la théorie de Lebesgue dans le cadre abstrait déve-
loppé par Radon et ses successeurs. Dans ce chapitre et le suivant, I’accent portera
sur des mesures particulieres dans 'espace euclidien R™, muni de sa topologie ha-
bituelle : ce sont la mesure de Lebesgue (volume n-dimensionnel en dimension n);
et ses généralisations appelées mesures de Hausdorff d’autre part, qui concernent
toutes les dimensions (y compris fractionnaires) entre 0 et n.

La mesure de Lebesgue est celle que 'on utilise couramment, “par défaut”, dans
R™, le plus souvent sans le préciser. Elle correspond a la notion intuitive de volume
n-dimensionnel et elle est invariante aussi bien pour la structure euclidienne de R",
que pour sa structure de groupe; l'intégrale qui lui est associée prolonge le concept
d’intégrale de Riemann. Il est vital, en analyse réelle, d’étre bien au fait de ses
principales propriétés.

Apres avoir expliqué comment on peut construire la mesure de Lebesgue (c’est
a dire prouver son existence, ce qui est délicat, et son unicité, ce qui est tres facile),
je passerai en revue quelques-unes des propriétés d’invariance qui la rendent si na-
turelle. Puis je montrerai que l'intégrale associée a la mesure de Lebesgue généralise
le concept d’intégrale de Riemann, et enchainerai avec ses propriétés les plus remar-
quables, en particulier la formule de changement de variables. Enfin je reviendrai sur
la mesurabilité des parties de R™ au sens de Lebesgue, en lien avec I'axiomatique.

VI-1. Construction de la mesure de Lebesgue, encore

On a déja rencontré la mesure de Lebesgue dans R (section 11-8). On va la passer
a nouveau en revue (un peu de répétition ne fera pas de mal) et la généraliser a R".

DEFINITION VI-1 (mesure de Lebesgue). Soit n > 1 un entier, et B(R™) la tribu
borélienne sur R™.

(i) 1l existe sur B(R"™) une unique mesure A, telle que pour tout pavé P =
[a1,b1] X ... X [a,,b,] CR™ (—o0 < a; < b; < +00) on ait

(56) An[P] = H(bj —aj).

Cette mesure est appelée mesure de Lebesgue n-dimensionnelle et notée \,, (ou
Ly, ou L™, ou A, ou L). On note également

AlA] = [A]n = [A].

(ii) Si f : R™ — R est une fonction borélienne \,-sommable, on note

RnJ“(ﬂC)dAn(x): flz)d"s = Rnf(x)dx

R’!L
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et on dit que f est Lebesque-intégrable. Sin =1, on note également

/MfdAl_/abf(x)dx_/abf.

(iii) La complétion de N, est la mesure de Lebesque complétée, ou tout simple-
ment mesure de Lebesque ; elle est définie sur la tribu des ensembles Lebesgue-
mesurables, constituée de toutes les parties E de R™ telles qu’il existe des ensembles
boréliens A et B tels que

ACECB; A[B\ 4] = 0.
Une fonction f : R™ — R, mesurable pour cette tribu, est dite Lebesque-mesurable.

La définition de la tribu complétée en (iii) suit celle du Théoreme II-93; on
reparlera dans la section VI-4.3 de la structure des ensembles Lebesgue-mesurables.

Pour Iinstant, commencons par vérifier que la Définition VI-1 est licite, au sens
ou elle définit bien la mesure de Lebesgue sans équivoque. La famille des pavés
est stable par intersection finie (I'intersection de deux pavés est un pavé), et R”"
est 'union des pavés [—k, k|" pour k& € N; 'unicité de la mesure de Lebesgue est
donc une conséquence directe du Théoreme 11-82(i). En revanche, établir I’existence
de la mesure de Lebesgue nécessite un peu plus de travail. On peut le faire de
plusieurs facons légerement différentes; le résultat d’unicité assure que toutes sont
équivalentes. Toutes les méthodes présentées ci-apres reposent in fine sur le théoreme
de prolongement de Carathéodory.

VI-1.1. De la dimension 1 a la dimension n. Supposons construite la me-
sure de Lebesgue A = A\; sur B(R). On peut alors définir la mesure produit A\®"
sur B(R)®", qui d’aprés la Proposition IV-39 n’est autre que B(R"). Par définition
de la mesure produit, cette mesure vérifie (56), c’est donc la mesure de Lebesgue.
En conclusion, il est équivalent de construire directement la mesure de Lebesgue en
dimension n, ou de I'obtenir par tensorisation successive de la mesure de Lebesgue
en dimension 1.

Une autre conséquence est 1'identité

vue comme une égalité entre mesures définies sur B(R™").

Dans la suite, on se bornera donc a construire \q, et cela impliquera la construc-
tion de \,. Je passerai en revue trois arguments différents. En exercice, on pourra
adapter les preuves pour obtenir des constructions directes de \,.

VI-1.2. Via le théoréme de prolongement de Carathéodory. C’est la
démonstration qui a déja été présentée dans la section II-8; elle repose sur la o-
additivité de la fonction longueur sur la famille des intervalles.

VI-1.3. Via le théoreme d’existence de produit infini. Cette construc-
tion va utiliser un “changement de variables” mesurable. Il est bien connu que tout
nombre réel dans [0, 1] admet une écriture binaire,

T = ka 27k, zi, € {0,1}.

k>1
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Cette écriture est unique si 'on exclut les nombres dyadiques, i.e. de la forme x =
p/2%, p,k € N (on peut conserver 0 et 1). L’application “écriture binaire” nous
permet de changer la variable € [0, 1] en une variable x € {0, 1}". Par exemple,
5/8 s’écrira (1,0,1,0,0,0....).

Munissons I'ensemble {0, 1} de la mesure de Bernoulli, i.e. la mesure 5 définie
par

BI{0}] = % B[{1}] = %

Comme c’est une mesure de probabilité, on peut considérer son produit tensoriel
infini, SN, bien défini par le Théoréme I1-87. On peut alors transporter la mesure
BN sur I'intervalle [0, 1], via application

1 (R)ren — Y w27,

k>1

L’ensemble des nombres de [0, 1] dont le développement en base 2 commence par une
suite donnée (z1,...,xx) est un intervalle de [0, 1] appelé “intervalle dyadique” (de
la forme [p27%, (p + 1)27%]); I'image réciproque par ¢ d’un intervalle dyadique est
donc 'union d’un cylindre et d’un ou deux points (correspondant aux “écritures im-
propres” : les nombres dyadiques admettent deux écritures différentes). Un point de
{0, 1} est mesurable car intersection de cylindres, on conclut que I'image réciproque
d’un intervalle dyadique est mesurable. On vérifie aisément que tout intervalle ouvert
peut s’écrire comme réunion d’intervalles dyadiques; la tribu engendrée par les in-
tervalles dyadiques est donc la tribu borélienne tout entiere, et ¢ est bien mesurable
pour la tribu borélienne.
La mesure image

)\ = (‘0#5®N

est donc bien définie sur la tribu borélienne. Et c’est la mesure de Lebesgue sur
[0,1]! Pour s’en convaincre, il suffit de remarquer que tous les intervalles dyadiques
de la forme [p27*, (p + 1)27%], ont mesure 27% : en effet, 'image réciproque d’un tel
intervalle est 1'union disjointe d'un cylindre de mesure 27% et d’un ou deux points,
de mesure nulle. Par exemple, I'image réciproque de [1/4,3/8] est constituée du
cylindre (0,1,0) x {0, 1} (écritures propres des nombres dans [1/4,3/8[ et écriture
impropre de 3/8), du point (0,0,1,1,1,1,1,...) (écriture impropre de 1/4) et du
point (0,1,1,0,0,0,0,0,...) (écriture propre de 3/8).

Comme la mesure ainsi définie coincide avec la mesure de Lebesgue sur les in-
tervalles dyadiques, et que les intervalles dyadiques engendrent tous les boréliens de
[0, 1], on conclut que A est bien la mesure de Lebesgue.

VI-1.4. Via le théoréme de représentation de Riesz. Une troisieme facon
de construire la mesure de Lebesgue consiste a faire appel au Théoreme de Riesz I11-
63, ou méme a sa version simplifiée I1I-67. Dans ce cas, la forme linéaire positive a
considérer est tout simplement I’intégrale de Riemann des fonctions continues a
support compact dans R. Le Théoreme de Riesz assure qu’il existe une mesure A sur
la tribu borélienne, telle que [ fdX\ = [ f(x)dz, pour toute fonction f continue a
support compact.

Pour vérifier que \ est la mesure de Lebesgue, il suffit de montrer que A attribue
a un intervalle I = [a, b] la mesure b — a. Pour cela on se donne € > 0 et on construit
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deux fonctions continues f et g, & support compact et a valeurs dans [0, 1], telles
que

f<1;<gy, /fd/\:/Riemf:(b—a)—g, /gdA:/Riemgz(b—aHa,

Ol [Rier désigne bien siir 'intégrale au sens de Riemann. On en déduit que A[I]
est compris entre b — a — € et b — a + ¢; en faisant tendre £ vers 0 on conclut que
AlI] = b — a. La mesure A est donc bien la mesure de Lebesgue.

graphe de ¢

| graphe de f
I

a—¢ca b b4+e

FIGURE 1. Fonctions continues approchant 1,y

REMARQUE VI-2. L’espace euclidien R™ est non seulement localement compact,
mais muni d’une structure différentiable : on a une notion de fonctions différentiables,
et méme indéfiniment différentiables, sur R™. Les mesures boréliennes finies sur les
compacts font partie de la grande famille des distributions, qui sont des formes
linéaires sur 1’espace vectoriel des fonctions indéfiniment différentiables et a support
compact, satisfaisant certaines propriétés de continuité. Un résultat remarquable
stipule que les distributions positives sont exactement les mesures de Borel finies sur
les compacts.

VI-2. Propriétés fondamentales de la mesure de Lebesgue

Cette section est consacrée a diverses propriétés importantes et intuitives de la
mesure de Lebesgue, que I'on est en droit d’exiger de toute notion raisonnable de
volume dans 'espace euclidien :

a) le volume est diffus et “bien réparti” dans I’espace;

b) le volume est invariant par translation, et plus généralement par isométrie
euclidienne ;

¢) multiplier les distances par un facteur A > 0 entraine une multiplication du
volume par un facteur \";

d) contracter les distances diminue le volume;

e) le volume d'un parallélépipede coincide avec son volume algébrique, défini
grace au déterminant des vecteurs qui I’engendrent.

Pour traduire la propriété a), j'utiliserai la notion de “mesure doublante” (Défi-
nition I1-71) ; la propriété souhaitée découlera alors de c¢). En chemin, on reviendra
sur la notion de Lebesgue-négligeabilité.

VI-2.1. Invariance par translation. Si P est un pavéde R" et 7: 2 — x+h
est une translation de vecteur h € R" fixé, il est évident que le produit des longueurs
de P est identique au produit des longueurs de 7(P). Cela, et la construction de la
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mesure de Lebesgue, implique immédiatement que A, est invariante par translation :
T4, = A, pour toute translation 7.

Il est intéressant de noter que cette propriété caractérise la mesure de Lebesgue.
Du fait de la structure d’espace affine de R™, I'invariance par translation est une autre
justification du caractére naturel (voire incontournable) de la mesure de Lebesgue.

THEOREME VI-3 (caractérisation via I'invariance par translation). La mesure de
Lebesque est, a multiplication scalaire prés, l'unique mesure de Borel sur R™, finie
sur les compacts, qui soit invariante par translation.

DEMONSTRATION. Soit p une mesure vérifiant le cahier des charges ci-dessus.
Puisque g est finie sur les compacts, p[C] < 4o00. Soit Cy = [0,1/k["; on peut
recouvrir C' par une union disjointe de £ cubes semi-ouverts de rayon 1/k, obtenus
par translation de Cj. Il s’ensuit que p[C] = k"u[Cy|. Les mesures p et pu[C] A,
attribuent donc la méme mesure a tous les cubes semi-ouverts de coté 1/k, et cette
famille suffit & engendrer la tribu borélienne (Exemple II-16 (ii)). Il s’ensuit que
= p[C] An. O

REMARQUES VI-4. (i) On pourrait dans le Théoreme VI-3 remplacer I’hy-
pothese “finie sur les compacts” par “finie sur 'intervalle [0, 1]” (exercice).
(ii) Le résultat n’est plus vrai sans une hypothese de finitude. Par exemple, la
mesure de comptage est une mesure de Borel invariante par translation. On

verra d’autres exemples dans le Chapitre VII.

V1-2.2. Passage au quotient. Une conséquence presque immédiate de I'inva-
riance par translation est la possibilité de passer au quotient par un réseau régulier,
par exemple Z". On définit le tore de dimension n, T", comme le quotient de R"
par Z", autrement dit par la relation déquivalence : 2Ry < v —y € Z". Le tore
T est aussi le produit de n copies du tore T!. C’est un espace métrique compact,
en bijection naturelle avec C' = [0, 1[*, puisque toute classe d’équivalence dans T"
admet un unique représentant dans C. En particulier, R" = C' + Z" : tout élément
de R™ est obtenu en ajoutant des coordonnées entieres a un élément de C.

On utilise cette bijection f pour “identifier” T™ et C' en tant qu’espaces mesurés :
si p est une mesure sur C, on en déduit une mesure fupu sur T", et réciproquement.

PROPOSITION VI-5 (quotient de la mesure de Lebesgue). La mesure de Lebesgue
An induit par restriction a C = [0, 1[" une mesure de probabilité sur T™, invariante
par addition modulo 7.

DEMONSTRATION. On peut écrire R” comme 'union disjointe des Cj, ot C}, =
C+k,et keZ" Pour tout A C C, pour tout z € R", on peut décomposer A + x
en I'union dénombrable disjointe des By, = Cy N (A + ) (seul un nombre fini de ces
ensembles sont non vides). Les ensembles By, — x sont effectivement disjoints : si y
était un élément commun a deux tels ensembles, par différence on trouverait deux
indices distincts k et £ tels que ¢ — k soit différence de deux éléments de A, ce qui
est impossible puisque A C C.

On en déduit que A est 'union disjointe des By, — z. Comme A + z(mod Z") est
I'union disjointe des By, et que By — x a méme mesure que By, on conclut que A et
A+ xz(mod Z™) ont méme mesure. O
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FIGURE 2. Invariance de la mesure de Lebesgue par translation dans
le tore. La somme des aires des quatre morceaux du chat translaté
coincide avec 'aire totale du chat initial.

VI-2.3. Action des homothéties. Soit f : x — ax, avec a > 0. L’application
f est bijective, et I'image d'un pavé P est un pavé f(P) dont toutes les longueurs
ont été multipliées par «; il s’ensuit que le volume de f(P) est égal & " fois le
volume de P. Bien siir f établit une bijection entre pavés, donc la mesure image de
An par f est exactement la mesure de Lebesgue, & un facteur =™ pres. (Pourquoi
a”~" et pas a™?) On en déduit que pour tout borélien A de R”,

AnfaA] = a" A\, [A].
Plus généralement, pour tout o € R et tout A € B(R"),
Al Al = |a|" N\, [A].
VI-2.4. Régularité et diffusivité.

PrRoOPOSITION VI-6. La mesure de Lebesgue sur R™ est réguliere, sans atomes et
2"-doublante.

DEMONSTRATION. La mesure de Lebesgue est (bien siir) finie sur les compacts
de R™; sa régularité découle donc du Corollaire 11-64. Par construction, elle attribue
bien stir aux singletons la mesure nulle. Par ailleurs, si on se donne z € R" et r > 0,
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la boule Bs,.(x) est obtenue a partir de B,.(z) par homothétie de rapport 2, donc
d’apres le paragraphe précédent,

An|Blx, 2r]] <27\, [Blx,r]].
O

VI-2.5. Diffusivité de la restriction. Voici maintenant une question plus
subtile : que dire de la restriction de la mesure de Lebesgue a un ensemble mesurable ?
Est-elle bien répartie, diffuse, doublante ? Cela dépend de la forme de I’ensemble.

PROPOSITION VI-7 (restriction a un domaine convexe). Soit C' un domaine
conveze de R" ; alors la restriction \,|c de la mesure de Lebesque a C est 2"-
doublante.

DEMONSTRATION. Soit € C. La boule B,(x) dans espace métrique C' n’est
autre que B,.(z)NC. Comme C est convexe, il est étoilé par rapport a x ; en utilisant
I'invariance par translation on peut supposer que x = 0, de sorte que C' C A\C' pour
tout A > 1. Alors By,.(0) N C C Ba.(0) N (2C) = 2(B-(0) N C), et A, [Ba(0) N C| <
2"\, [B,(0) N C]. O

COROLLAIRE VI-8. La restriction de la mesure de Lebesque A, a une boule, a
un cube, a un cone sont 2"-doublantes.

Voici maintenant en exercice deux situations typiques.

EXERCICE VI-9. (i) Soit D un domaine constitué d’une boule et d’une union
finie de cones pleins (une sorte de “hérisson” mathématique). Montrer que la
mesure de Lebesgue restreinte a D est doublante.

(ii) Soit D le domaine du plan (x,y) délimité par les conditions 0 < z < 1,
0 < y < 22. Montrer que la restriction de Ay & D n’est pas doublante. On
pourra considérer z = (0, 0).

L’intuition qui se dégage de ces exemples est la suivante : pour qu'un ensemble,
disons ouvert, induise une mesure de Lebesgue doublante, il ne doit pas présenter
de pointes trop effilées. Voici le concept naturel :

DEFINITION VI-10 (domaine lipschitzien). On dit que O, ouvert de R™, est un
domaine lipschitzien si son bord peut s’écrire comme une union finie de graphes
d’applications lipschitziennes R*' — R.

La reformulation suivante sera admise ici, Cf par exemple [Grisvard].

PROPOSITION VI-11 (domaine lipschitzien, reformulation). Un ouvert O de R™
est lipschitzien si et seulement si il satisfait une condition de cone intérieur uni-
forme : prés de tout point x de 0O on peut faire bouger un cone fini, d’ouverture
uniformément minorée, a lintérieur de O jusqu’a toucher x.

FIGURES

Le théoréme qui suit, également admis, est une premiere réponse a la question
qui a motivé cette incursion dans les mesures restreintes.

THEOREME VI-12 (doublement sur les domaines lipschitziens). Soit O un ouvert
lipschitzien de R™ ; alors la restriction de la mesure A, a O est doublante.
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VI-2.6. Lebesgue-négligeabilité. De la définition de la mesure extérieure on
déduit qu’un ensemble est Lebesgue-négligeable si et seulement si on peut l'inclure
dans une famille dénombrable de pavés (ou de cubes) dont la somme des volumes est
arbitrairement petite.

En particulier, en dimension 1, un ensemble est Lebesgue-négligeable si et seule-
ment si on peut l'inclure dans une famille de segments dont la somme des longueurs
est arbitrairement petite : c’est la définition qu’utilisait déja Lebesgue.

EXEMPLE VI-13. Tout ensemble dénombrable est de mesure nulle (ce que 'on
peut déduire d’ailleurs directement de la o-additivité et de I’absence d’atomes). Tout
sous-espace affine strict de R™ est de mesure de Lebesgue (n-dimensionnelle) nulle.
De méme pour un ensemble inclus dans une union dénombrable d’hyperplans.

REMARQUE VI-14. Méme en dimension 1, il existe des ensembles non dénom-
brables de mesure nulle ; par exemple 1’ensemble triadique de Cantor.

Voici maintenant deux criteres un peu plus sophistiqués de négligeabilité :

PROPOSITION VI-15 (les graphes mesurables sont négligeables). Soient D C R",
et f: D — R™ une application mesurable, avec m > 1. Alors le graphe de f est de
mesure de Lebesque nulle dans R,

ProPOSITION VI-16 ('image lipschitzienne d’un ensemble négligeable est négli-
geable). Soient A un borélien de mesure de Lebesgue nulle dans R™ et f: Q — R™
une application lipschitzienne, ot 2 est un ouvert de R"™ contenant A. Alors f(A)
est Lebesque-négligeable, au sens ou il est inclus dans un borélien de mesure nulle.

PREUVE DE LA PROPOSITION VI-15. Pour l'instant je vais me limiter au cas
ou f est continue; le cas général viendra plus tard, comme conséquence du théoreme
de Fubini.

Comme R"™ est union dénombrable de cubes, on peut supposer que D est inclus
dans le cube unité, auquel cas f est uniformément continue. On recouvre ce cube
par N™ cubes Cy de c6té 6 = 1/N; on en déduit un recouvrement du graphe de
f par N™ pavés de la forme Cj x Qy, ou Qy est un cube de R™, de c¢6té 2w(d), w
étant le module de continuité de f. La mesure totale de ces pavés est exactement
2™ w(6)™, qui tend vers 0 quand 6 — 0. O

PREUVE DE LA PROPOSITION VI-16. Soit ¢ > 0. Recouvrons A par une famille
dénombrable de cubes C; dont la somme des volumes est au plus €. Chaque cube C},
disons de coté ¢;, est inclus dans une boule B; de rayon y/nc;; f(C;) est alors inclus
dans une boule de rayon ky/nc;, ou k est la constante de Lipschitz de f, et donc
dans un cube C} de c6té knc;. Le volume de Cj est au plus (kn)" fois le volume de
Cj, donc f(A) est inclus dans une union de cubes dont le volume est au plus (kn)"e.
Il s’ensuit que f(A) est Lebesgue-négligeable. (Noter que rien ne garantit que f(A)
soit un borélien.) O

La Proposition VI-16 admet un corollaire intéressant :

COROLLAIRE VI-17 (Les applications lipschitziennes préservent la Lebesgue--
mesurabilité). Soit Q un ouvert de R™, et f : Q — R™ une application lipschit-
zienne. Soit A C 2 un ensemble Lebesque-mesurable de R™ ; alors f(A) est Lebesque-
mesurable.
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Pour apprécier cet énoncé, on notera que I'image d’un ensemble Lebesgue-mesurable
par une application continue n’a aucune raison d’étre Lebesgue-mesurable. On se
rappelle aussi que les images par les applications continues des ensembles boréliens
sont Lebesgue-mesurables (Théoreme V-26).

DEMONSTRATION DU COROLLAIRE VI-17. Par régularité de la mesure de Le-
besgue, on peut écrire A = (UK;) U N, ou les K; forment une famille dénombrable
de compacts, et N est Lebesgue-négligeable. Puisque f est continue, les ensembles
f(K;) sont tous compacts, donc leur union forme un ensemble borélien. Alors

Uf(KG) € f(A) C (UF(K)) U F(N);

la Proposition VI-16 implique que f(N) est Lebesgue-négligeable, et il s’ensuit que
f(A) est Lebesgue-mesurable. O

Terminons cette sous-section avec quelques remarques sur la négligeabilité. Les
ensembles Lebesgue-négligeables peuvent étre beaucoup plus complexes que ceux
que nous avons vus jusqu’a présent ; un ensemble négligeable peut méme etre gras
au sens de la topologie, c’est-a-dire intersection dénombrable d’ouverts denses.

EXEMPLE VI-18. Soit / = [0,1] muni de la mesure de Lebesgue, on énumere
tous les rationnels de [0, 1] en une suite (g, )nen. Pour tout € > 0 on pose

Oe = U Bs/n2 (Qn)

neN

(O: est constitué de 'union de tous les intervalles ouverts de longueur 2e/n? centrés
en ¢,.) Bien sir O, est ouvert dans I et dense. En outre

MO <26 % = (g) E.

neN

Soit alors

A= ﬂ O, iz
keN
par o-additivité on a bien A\[A] = 0, bien que A soit gras. Le complémentaire de A
dans [0, 1] est alors de mesure pleine bien que maigre, c¢’est-a-dire union dénom-
brable de fermés d’intérieur vide.

REMARQUE VI-19. Cette construction se généralise facilement en remplacant [
par R tout entier, ou R"™, ou n’importe quel ouvert de R".

REMARQUE VI-20. C’est un débat classique de savoir si la “bonne” notion de
négligeabilité est celle que fournit la théorie de la mesure, ou celle que fournit la
topologie, et la plupart des mathématiciens se rangent dans un camp ou dans l'autre
en fonction de leur sensibilité, de leur expérience personnelle, ou des problemes qu’ils
ont I'habitude de considérer. Le Théoreme KAM en mécanique classique est un
exemple non académique pour lequel ce débat devient important.

Et par ailleurs, comme je I’ai déja mentionné, les ensembles Lebesgue-négligeables
sont bien plus nombreux que les ensembles boréliens. En fait on peut se permettre
de modifier arbitrairement ces ensembles sans remettre en cause leur Lebesgue-
mesurabilité.
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EXERCICE VI-21. (i) Soit C' l'ensemble triadique de Cantor. Montrer que
toute partie de C' est Lebesgue-mesurable : cela fournit une famille de parties
mesurables, de cardinalité 2°.

(ii) Soit C’ I'ensemble des Y, ax37%, ot ey, € {0,1}. (C'est semblable & I'en-
semble triadique de Cantor, mais les chiffres sont dans {0,1} plutot que
dans {0,2}.) Montrer que C” est de mesure nulle, et montrer que pourtant
C"+ C" =10, 1]. (Attention, c’est une addition ensembliste, pas une union!)

(iii) Pour tout k, soit Dy un sous ensemble a deux éléments de {0,...,9}. On
appelle X I'ensemble de tous les nombres de [0, 1] dont la décimale de rang k
appartient a Dy. Quelle est la mesure de X 7 Le cardinal de X ? (On rappelle
le théoreme de Cantor-Bernstein : S’il existe une injection de E dans F' et
une autre de F' dans E alors F et F' sont en bijection.) On note maintenant
D = (Dg)ren; & chaque D est associé un X = Xp. Construire une famille
non dénombrable de suites D telle que les Xp sont deux a deux disjoints,
chacun de mesure nulle, et leur union est égale a [0, 1].

VI-2.7. Action des contractions. Il est intuitif que la contraction des lon-
gueurs induit une contraction du volume. Le théoreme suivant précise cette idée.

THEOREME VI-22 (Réduire les distances réduit les volumes). Soit Q un ouvert
de R", et f: QQ — R™ une application 1-lipschitzienne :

Ve,y € R [f(2) = fy)l <z —yl.

Alors f(§2) est Lebesque-mesurable, et
(58) Al F(Q)] < An[€].

REMARQUES VI-23. (i) On peut énoncer ainsi ce théoreme en termes boré-
liens : f(€2) est 'union d’un ensemble borélien B et d’un ensemble néligeable,
tel que A\, [B] < A\, [Q].

(ii) Ce qui rend ce théoréme non trivial est le fait que la mesure de Lebesgue
est définie en termes de mesures de pavés, et que I'on ne peut pas dire grand
chose de I'image d’un pavé par une application 1-lipschitzienne. Ce sont les
boules qui se comportent bien vis-a-vis de 'hypothese de lipschitzianité.

(iii) Le Théoreme VI-22 admet une généralisation immédiate au cas ou f est
seulement supposée L-lipschitzienne, avec L éventuellement différent de 1 : il
suffit de remplacer (58) par

Al ()] < L™ Aa[€2].

Le concept de mesure de Hausdorff permettra de démontrer un énoncé encore
bien plus général : voir la Proposition VII-6.

PREUVE DU THEOREME VI-22. Notons pour commencer que f(€2) est Lebesgue-
mesurable en vertu de la Proposition VI-17; de toute fagon l'argument qui suit
redémontrera ce résultat.

Si A est une boule fermée B[z, ], alors f(A) est inclus dans la boule B[f(x), 7],
qui a méme volume que B|z,r|; donc

Anlf(A)] < AnfA].
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La mesure de Lebesgue étant 2"-doublante, on peut appliquer le Corollaire I1-103
pour épuiser {2 par une union dénombrable de boules fermées disjointes B; :

Q= (U Bj) UN,
JEN

ou N est un borélien de mesure nulle.
Par la Proposition VI-16, f(N) est négligeable. Donc

Al ()] = An [f (U Bj> =\ LU f(B))
<D MBI <Y MilBj]

jEN jeN

=\, [U B,
jEN

ou 'on a utilisé le fait que les boules B; sont disjointes. 0

COROLLAIRE VI-24 (les isométries préservent le volume). Soit f : R — R" une
isométrie ; alors pour tout ensemble mesurable A de R™ on a \,[f(A)] = A\, [A4].

DEMONSTRATION. Il suffit d’appliquer le Théoréme VI-22 & f et a fL. O

REMARQUE VI-25. Une isométrie de R™ est forcément une application affine;
on peut donc aussi voir le corollaire précédent comme un cas particulier de ’action
des applications affines sur la mesure de Lebesgue, que nous allons étudier dans la
suite de ce chapitre.

REMARQUE VI-26. La classe des transformations (ou changements de variables)
qui préservent la mesure de Lebesgue est infiniment plus vaste que celle des isomé-
tries. Par exemple, sur le segment [0, 1], on peut permuter des sous-intervalles... La
figure VI-26 représente les graphes de quelques applications simples préservant la
mesure de Lebesgue sur [0,1] (les deux premieres sont des bijections, la troisieme
non ; la premiere et la troisiéme sont continues, la deuxiéme non).

AN

FI1GURE 3. Quelques graphes de transformations préservant la mesure
de Lebesgue

En plusieurs dimensions, la classe des applications préservant la mesure de Le-
besgue est d'une trés grande importance dans de nombreux domaines de la mathé-
matique. Par exemple, en mécanique des fluides, on utilise les bijections préservant la
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mesure de Lebesgue (restreinte a un ouvert de R™) pour représenter la collection des
trajectoires d’'un fluide incompressible ; I’ensemble de ces bijections est un espace
de dimension infinie (ce n’est pas un espace vectoriel, mais c¢’est un sous-ensemble
d’une spheére dans un espace vectoriel normé) qui a fait ’objet de nombreuses études.

VI-2.8. Action des transformations affines. Le théoreme suivant fait le lien
entre deux notions naturelles de volume (I'une analytique, 'autre algébrique) pour
un parallélépipede :

THEOREME VI-27 (mesure de Lebesgue et déterminant). Soient A € M, (R) et
b € R"; on note T Uapplication affine définie par T(x) = Az + b, C = [0,1]" le
cube unité de R™, et P =T(C') le parallélépipéde formé des vecteurs colonnes de A.
Alors,

(59) An[P] = | det Al.
REMARQUE VI-28. 1l s’agit ici de volume non orienté.

D’abord, pourquoi ce résultat est-il naturel 7 Considérons une application linéaire
delaforme T'(xq,...,x,) = (121, ..., 2, ), Ol les ; sont des nombres réels. Si P =
[1]@i, b;] est un pavé de R™, le pavé T'(P) a pour cotés les nombres positifs |a;| |b;—a;],
son volume est donc égal a (J]|as|) [T16: — ai|, ce qui est le volume initial de P
multiplié par le coefficient [] |ou| = | det T'|. Il se peut que certaines longueurs soient
allongées, d’autres raccourcies, ce qui compte pour évaluer la variation de volume
c’est le produit des valeurs propres ;. Comme le volume est invariant par changement
de base orthonormée (Corollaire VI-24), le méme résultat devrait étre vrai pour
toute application linéaire symétrique (diagonalisable dans une base orthonormée).
L’examen de ce cas particulier suggere bien que le facteur multiplicatif du volume
est la valeur absolue du déterminant.

PREUVE DU THEOREME VI-27. Commencons par le cas o A est non inver-
sible. D’une part, det A = 0; d’autre part, T'(R"™) est inclus dans un hyperplan
affine, donc de mesure nulle. Les deux membres de (59) sont donc nuls.

Dans le cas ou A est inversible (et donc T" est bijective R" — R™), on va établir
I’énoncé plus général

(60) Ty, = |det A7\,

Montrons que (59) et (60) sont équivalents. L’équation (60) s’écrit \,[T~(B)] =
| det A|='\,[B] pour tout borélien B C R"™; comme T est bijective cela équivaut
a \,[B] = |det A|7'A\,[T(B)], d'ou (59) par le choix B = C. Réciproquement,
si (59) est vrai, alors la mesure p = |det A|H(T71).)\, satisfait & u[C] = 1;
et u est invariante par translation puisque u[B + h] = |det A|"* \,[T(B + h)] =
|det A|"' X\, [T(B) + Ah] = |det A|=' \,[T(B)] pour tout borélien B C R" et tout
vecteur h € R™. Grace au Théoreme VI-3, on conclut que u = \,, ce qui revient
a (60).

Toujours grace a 'invariance par translation, il suffit de se restreindre au cas ou
b = 0, c’est-a-dire T'(x) = Az. Le résultat voulu, soit sous la forme (60), soit sous
la forme (59), peut se démontrer facilement dans un certain nombre de cas simples.
Par exemple,

(I) si A est une matrice de permutation, c’est évident puisque AC = C.

(IT) si A se contente de multiplier une coordonnée :

Az = (axy, T2, ..., Ty),
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alors I'image de C' est un pavé de cotés |af, 1,...,1; donc de volume || = | det A|.
(III) si A est de la forme

alors AC = P x [0,1]"2, olt P est le parallélogramme (2-dimensionnel) de sommets
(0,0), (0,1), (1,1) et (1,0). Or on peut découper ce parallélogramme en deux tri-
angles (plus un reste de mesure nulle) que I'on peut recoller en le carré [0,1]%; ce
qui revient a découper AC' en deux morceaux et a les recoller en le cube [0, 1]" (voir
la figure). Le volume de AC' est donc égal a 1, ce qui est aussi le déterminant de A.

FIGURE 4. Le parallélogramme a méme aire que le carré

On note ensuite que la formule (60) est invariante par composition : si elle est
vraie pour deux applications A; et As, elle est aussi vraie pour A = A; Ay puisque
| det A1 As| = |det Ay||det As|. Or un argument d’algebre linéaire montre que toute
matrice inversible est produit d’un nombre fini de matrices du type (I), (IT) ou (III).
On conclut a la validité de (60) pour n’importe quel A inversible. O

VI-3. L’intégrale de Lebesgue généralise I’'intégrale de Riemann

J’ai déja mentionné sans preuve que l'intégrale de Lebesgue généralise l'inté-
grale de Riemann. Ce fait est majeur a plusieurs titres : non seulement il assure la
cohérence entre les deux plus importantes théories d’intégration ; mais en outre, I'in-
tégrale de Riemann est une notion simple, avec laquelle la lectrice est sans doute fa-
miliére ; et tous les procédés habituels d’intégration numérique de fonctions (et donc
de calcul numérique d’aires ou de volumes de formes délimitées par des graphes)
se ramenent en pratique a des variantes de l'intégrale de Riemann : méthode des
rectangles, des trapezes, etc. Méme quand on utilise toute la force de la théorie
de Lebesque, le plus souvent on réalise les calculs numériques ou pratiques par la
meéthode de Riemann.

Je me limiterai ici a la dimension 1, méme si les démonstrations se généralisent
sans autre probleme que la lourdeur des notations. Et pour simplifier, je me limiterai
a des fonctions positives, le cas général étant congu pour s’y ramener. Pour commen-
cer, rappelons précisément le concept de Riemann-intégrabilité, en ne considérant
que des fonctions localement bornées sur un intervalle J de R, c’est-a-dire les
fonctions f qui sont bornées sur tout intervalle compact [a,b] C J (par exemple,
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les fonctions © — = ou x —— 1/y/z sont localement bornées sur ]0,+oc[). On
appellera subdivision d’un intervalle [a, b] une famille de sous-intervalles I, ..., I
de [a,b] vérifiant I = [ax_1,ax], avec a = ap < a1 < ... < ax = b.

DEFINITION VI-29 (Riemann-intégrabilité). Soit J un intervalle de R, et f :
J — R, une fonction localement bornée sur J. Une subdivision o de l’intervalle
[a,b] C J en sous-intervalles I, ..., Ix étant donnée, on définit my(f) := inf, f,

Mk(f) ‘= Supy, f7 et
]_<f70) :Z|1k|mk(f)7 I+(f70) :Z|]k|Mk(f)
k k

On pose alors

Riw(f) =supI=(fi0), Ry, (f):=inf I'(f,0),

oen oEeY

ou X est l'ensemble de toutes les subdivisions de |a,b]. On dit que f est Riemann-
intégrable sur [a,b] si R[Z,b](f) = R[;’b](f), et dans ce cas on appelle intégrale de
f sur [a,b] la valeur commune de ces deur nombres. On définit enfin l'intégrale de
Riemann de f sur J comme la limite de intégrale de f sur[a,b] quand a et b tendent
respectivement vers les extrémités gauche et droite de J.

Ficure 5. L’intégrale de Riemann définie par encadrements
I=(f,0) est la somme des aires des rectangles inférieurs, I7(f, o) laire
totale hachurée.

Voici maintenant le principal résultat de cette section.

THEOREME VI-30 (L’intégrale de Lebesgue généralise celle de Riemann). Soient
J un intervalle de R et f : J — R, une fonction bornée sur les compacts de J. Alors
f est Riemann-intégrable si et seulement si

(i) elle est Lebesque-mesurable ;

(ii) Uensemble de ses points de discontinuité est négligeable.
Dans ce cas, l'intégrale de Riemann de f est égale a l'intégrale de Lebesque de f.

REMARQUE VI-31. Dans la Définition VI-29, la fonction f n’est pas a priori
supposée mesurable. Si elle I'est, alors 'ensemble D de ses points de discontinuité
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est automatiquement mesurable (exercice), et donc de mesure nulle. Dans le cas
contraire, la négligeabilité a le sens habituel : on peut inclure D dans un ensemble
négligeable de R, ou encore, on peut inclure D dans une union finie d’intervalles de
longueur totale arbitrairement petite.

REMARQUE VI-32. La fonction 1j g est un exemple de fonction Lebesgue-
mesurable bornée qui n’est pas Riemann-intégrable. (Que valent R[Tm fet R[BJ] f7)

PREUVE DU THEOREME VI-30. 1. On peut trouver des suites (a)x>1 et (bx)r>1,
respectivement croissante et décroissante, telles que J = Ulag, bg]. Alors on a [ =
limy o0 f[ak,bk] f, au sens de Lebesgue, par convergence monotone. En outre, une
réunion dénombrable d’ensembles négligeables est négligeable. Pour prouver le théo-
reme dans le cas général, il suffit donc de se limiter au cas particulier ou J = |a, b
et f est bornée.

2. Supposons que f est Riemann-intégrable sur [a, b] ; on note R(f) son intégrale
au sens de Riemann. Soit € > 0 et soient o, ¢’ deux subdivisions de [a, b] en sous-
intervalles (Iy)1<k<rk et (I})1<e<r respectivement, telles que

D_klm(H) = R(F) e, D ILIMAF) SR(f) +e.

Quitte a remplacer o et ¢’ par une subdivision plus fine, on peut supposer que
o = o'. Pour chaque valeur de m on peut donc construire une subdivision ¢ = o,,
de [a, b] en sous-intervalles Iy, telle que

Sl = R~ - S M) < R() — -

m
k k

On définit alors les fonctions f,. et fI par

vent(ly) = fo(x)=m(f), fh(z)=Mlf),

en convenant que ces deux fonctions coincident avec f aux extrémités des sous-
intervalles.

Quitte a remplacer o,, par une subdivision plus fine que o4,...,0,,, on peut
supposer que les subdivisions o, sont de plus en plus fines quand m augmente, auquel
cas les fonctions f,} forment une suite décroissante, et les fonctions f,= forment une
suite croissante. Appelons f* et f~ les limites respectives de ces suites : les fonctions
fT et f~ sont mesurables puisque limites de fonctions constantes par morceaux, et
clairement f* > f~.

Par convergence monotone,

[ro=tm g 1= [,

et par hypotheése ces deux limites sont égales & R(f). On en déduit que

Jur=1=0

et il s’ensuit que f~ = fT presque partout sur [a,b]; en conséquence, ces fonctions
coincident presque partout avec f. En particulier, [ f = R(f).

Soit E I'ensemble de toutes les extrémités des sous-intervalles [;, des subdivisions
om; comme F est dénombrable, il est mesurable et de mesure nulle. Pour presque
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tout « € [a,b] \ E, on a f*(z) = f~(x), ce qui veut dire que x est point intérieur
d’une famille d’intervalles .J,,,, décroissante, vérifiant

i (int 1) = Jin (sup £) = f(2)
Il s’ensuit que f est continue en z. Cela prouve que I’ensemble des points de discon-
tinuité de f est négligeable.

3. Réciproquement, soit f une fonction bornée, Lebesgue-intégrable sur [a,d],
positive, dont ’ensemble des points de discontinuité est de mesure nulle; si 'on
montre que f est Riemann-intégrable, alors on saura par 'étape 2 que la valeur
de l'intégrale de Riemann de f coincide avec celle de I'intégrale de Lebesgue. Pour
tout m > 1, on définit une subdivision o, en subdivisant I'intervalle [a,b] en 2™
intervalles ouverts [;*, de longueur égale, et on définit les fonctions f;} et f, comme
ci-dessus. Soit ' I'ensemble de toutes les extrémités de ces intervalles, et soit x un
point de continuité de f n’appartenant pas a E£. Pour tout m > 1, il existe un k tel
que x € I", et I'intervalle I]" est de longueur (b — a)/2™. Comme f est continue en
x, l'oscillation de f sur I} tend vers 0 quand m — oo, autrement dit
sup f —inf f —— 0,

Tm

nr m—00
k

soit encore ft(z) — f-(x) — 0. La famille (f;} — f) est une suite de fonctions
positives, bornées sur [a,b], convergeant vers 0 presque partout, par convergence
dominée on a [ ft — [ f,, — 0, ce qui signifie exactement que f est Riemann-
intégrable. 0

VI-4. Reégles de calcul associées a 'intégrale de Lebesgue

VI-4.1. Dérivation et intégration dans R. J’ai déja mentionné au Chapitre
I que I'une des motivations de Lebesgue était de construire une théorie dans laquelle
intégration et dérivation seraient toujours des opérations inverses l'une de l'autre,
offrant une solution abstraite générale au problemes des primitives. Le cadre na-
turel de son principal résultat en la matiere est celui des applications absolument
continues.

DEFINITION VI-33 (absolue continuité). Soient I un intervalle deR, et f : I — R
une application mesurable. On dit que f est absolument continue sur I si pour tout

e > 0 il existe 6 > 0 tel que pour toute famille finie [ax,by] d’intervalles disjoints
inclus dans I (1 <k < N),

Dol —al <= > |fby) = flar) <e.

1<k<N 1<k<N

Il est clair qu’une fonction lipschitzienne est absolument continue : dans la Dé-
finition VI-33 on peut choisir § = ¢/L, ou L est la constante de Lipschitz de f. En
particulier, par la formule des accroissements finis, toute application dérivable, de
dérivée bornée, est lipschitzienne, et donc absolument continue.

Il est clair par ailleurs que l'absolue continuité implique 1'uniforme continuité
(pourquoi ?) ; le concept d’absolue continuité est donc intermédiaire entre celui d uni-
forme continuité et celui de lipschitzianité.

REMARQUE VI-34. Formellement, les applications absolument continues sur un
intervalle borné sont celles dont la dérivée est sommable; plus rigoureusement



LA MESURE DE LEBESGUE 221

ce sont celles dont la dérivée (au sens des distributions) est une mesure absolument
continue par rapport a la mesure de Lebesgue.

THEOREME VI-35 (dérivation et intégration). Soit f une fonction absolument
continue sur un intervalle I = [a,b] de R. Alors f est dérivable presque partout dans
I, et sa dérivée f' est une application sommable sur I. En outre, pour tout x € [a,b],
on a lidentité

(61) f(2) — fla) = / " P

En conséquence de quoi, pour retrouver la primitive d’une fonction dérivée, il
suffit de lintégrer. Je démontrerai ce résultat plus tard, dans le Chapitre ?77.

REMARQUE VI-36. La formule (61) reste vraie si f est continue sur [a,b] et
dérivable partout, sauf en au plus un ensemble dénombrable (en particulier si f est
différentiable au sens classique du terme). La théorie de Lebesgue n’est pas assez fine
pour démontrer ce résultat, qui s’inscrit dans U'intégrale de Denjoy : voir [Gordon,
Théoréme 6.27] (The Integrals of Lebesgue, Denjoy, Perron and Henstock). (On peut
consulter aussi Bruckner, Differentiation of real functions.)

VI-4.2. Théoréme de Fubini. L’espace (R", \,) est bien stir o-fini; on peut
donc appliquer le théoreme de Fubini—Tonelli-Lebesgue dans ces espaces. En outre,
comme on l'a déja rappelé dans la section VI-1.1,

REMARQUE VI-37. Il arrive souvent que I’on ait besoin de découper une intégrale
en tranches “curvilignes”, pour lesquelles le théoreme de Fubini ne s’applique pas. La
célebre formule de la co-aire permet de traiter de telles situations; on y reviendra
dans le Chapitre ?7?.

A titre d’illustration, on va donner deux applications du théoréme de Fubini : la
démonstration générale de la Proposition VI-15 (qui dans la section VI-2.6 avait été
démontrée seulement pour des graphes de fonctions continues); puis une démons-
tration alternative du Théoreme VI-27.

PREUVE DE LA PROPOSITION VI-15. Notons d’abord que le graphe de f est
mesurable, car image réciproque de 0 par 'application mesurable (x,y) — y— f(x).

En outre, I'application indicatrice du graphe de f vaut 1), (z,y). Ensuite, par
Fubini,

/an 1i(o)=y (7, 9) dNn(7) A (y) = /n (/m Ly— s (2, ) d/\m(y)) ()

:/nOd)\n(x) ~0.

Ceci prouve que le graphe de f est négligeable. O

PREUVE ALTERNATIVE DU THEOREME VI-27. Comme dans la preuve vue en
section VI-2.8, on se ramene au cas ou A est inversible, on montre I'équivalence
entre (59) et (60) et I'invariance de la formule par composition. La différence est dans
le choix des “cas élémentaires” : on note que toute application linéaire inversible A
est produit d’applications linéaires laissant une coordonnée invariante.
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Soit alors A une telle application; sans perte de généralité (en utilisant 1'in-
variance de la mesure de Lebesgue par permutation) on peut supposer que Az =
(A'(x1,...,2,),2,), et la sous-matrice A, ; formée des n — 1 premieres lignes et
colonnes de A est inversible :

0

On note que det A = det A,,_1. Soit P = @ X [a, b] un pavé dans R", on note A(P),
la section de P selon x,, = y; cette section vaut @ si y € [a,b], et () sinon. Par Fubini,

b
MIA(P)] = / An_1[A(P),, ] di, = / Mot [ At (Q)] ity = (b — @) A [Ana Q)]

R

On en déduit que

(AT = (A1) A1) @ A
En particulier, si la formule (60) est vraie pour la sous-matrice A,_1, elle sera vraie
également pour la matrice A.

Pour conclure, on raisonne par récurrence sur la dimension. Si n = 1, la propriété
souhaitée est évidente. Si la propriété est démontrée au rang n — 1, soit alors A une
matrice inversible de taille n; on peut I’écrire comme A = A" x A", ou les matrices
A’ et A” préservent chacune une coordonnée. Par hypothese de récurrence, et la
remarque ci-dessus, la formule (60) est vraie pour A" et A”, elle est donc aussi vraie
pour A grace a l'invariance par produit. O

VI-4.3. Changement de variable. Dans la section IV-3 on a rencontré le
théoreme abstrait de changement de variable : [ fd(Tu\) = [(f o T)dA. Dans
le cadre “concret” de R™ muni de la mesure de Lebesgue, cette identité peut étre
précisée grace a une formule qui exprime la mesure image en fonction du déterminant
jacobien du changement de variable.

Il existe de nombreuses variantes de ce théoreme, sous diverses hypotheses. Celle
qui suit est un bon compromis entre généralité et simplicité. On notera d,p la
différentielle de ¢ en x, que I'on peut I'identifier a la matrice des dérivées partielles :

il = (52)-

La notation A, |4 désignera la restriction de A, au borélien A.

THEOREME VI-38 (Changement de variable C' dans R™). Soient U un ouvert
de R™ et o : U — V un Ct-difféomorphisme. Alors
(i) Pour tout borélien B C U,

Mlp(B)] = / | det dig| dA,

(ii) Pour toute fonction f sommable V-— R (ou pour toute fonction f mesurable
positive V- — [0, +o0] ),

fdh, = /(fo ©)| det dp| d\;
o(U) U
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(1it) ou(Anlv) = m Aoy, ot m est la fonction définie par

) =
m(y) = ——.

|det dy-1()¢|

REMARQUE VI-39. Une formulation équivalente de ’énoncé (ii) ci-dessus est :
(7i’) Pour toute fonction mesurable positive g,

mewmwm:/ ol () dy.

(U)

Pour s’en convaincre, il suffit de poser g = fo, f=go ¢ ! dans (ii).

REMARQUE VI-40. Les erreurs classiques dans 'application du Théoreme VI-38
sont (a) la confusion entre ¢ et ¢!, surtout au niveau de la formule (iii) ; (b) 'oubli
des valeurs absolues autour du déterminant ; (c¢) 'oubli de la restriction a U et o(U)
dans la formulation (iii); (d) la non-vérification de U'injectivité de (.

REMARQUE VI-41. Le Théoreme VI-27 est un cas particulier du Théoreme VI-
38, correspondant au cas ou ¢ est affine bijective.

REMARQUE VI-42. A son tour, le Théoréme VI-38 se généralise considérable-
ment :

(a) L’hypothese de régularité C' peut étre assouplie en régularité Lipschitz, ou
méme en des hypotheses encore beaucoup plus générales telles que la différentiabilité
presque partout (mais la Remarque VI-39 n’est plus forcément valide).

(b) L’hypothese de bijectivité de ¢ peut étre remplacée par 'injectivité en-dehors
d’un ensemble négligeable ; mais sans cette propriété d’“injectivité presque partout”,
le théoreme devient fauzx, et on a seulement, pour f > 0,

/ fé/fowldetdsd
o(U) U

(c) On peut cependant modifier les formules pour traiter des cas ou ¢ n’est pas
injective (il convient alors d’introduire la multiplicité), et ot ¢ est un changement de
variables R” — R™ avec m > n (formule de I'aire) ou m < n (formule de la co-aire).
La mesure de Lebesgue doit alors étre remplacée par une mesure de Hausdorff.
On reparlera brievement de ces formules dans le Chapitre VII.

(pourquoi 7).

Ces diverses généralisations sont abordées dans le livre [Evans—Gariepy] ; et dans
divers articles de recherche dont certains sont tres récents. La section 77 sera l'oc-
casion de revenir sur ces généralisations.

Revenant au Théoreme VI-38, on peut le prouver de plusieurs manieres. L’équi-
valence entre les énoncés (i)—(iii) est une conséquence facile de la définition de la
mesure image (Définition IV-65), du théoréme abstrait de changement de variable
(Théoreme IV-67) et de la bijectivité de ¢. Il suffit donc de démontrer n’importe
laquelle de ces trois formules.

Je vais présenter ici deux stratégies : la premieére, empruntée a [Gramain|, co-
pie argument utilisé a la fin de la sous-section VI-4.2 pour (re)démontrer le Théo-
reme VI-27; la seconde, au contraire, considere le Théoreme VI-27 comme une brique
élémentaire a laquelle on peut se ramener par approximation. Cette derniere stratégie
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est plus intuitive, mais aussi plus élaborée puisqu’elle reposera sur le Théoreme VI-
22, qui lui-méme fait appel au lemme de recouvrement de Vitali. Les deux preuves
utilisent un argument de localisation.

PREMIERE PREUVE DU THEOREME VI-38. On va chercher a démontrer la for-
mule (i). Par régularité de la mesure de Lebesgue (ou tout simplement parce que
les compacts engendrent la tribu borélienne), il suffit de se limiter au cas ou B est
compact.

On raisonne par récurrence sur la dimension n. Commencons par n = 1. Comme
les intervalles compacts engendrent la tribu borélienne, il suffit de montrer que pour
tout [a,b] C U,

(62 Aol = [ I @) da.

Etant un difféomorphisme, ¢ est soit strictement croissante, soit strictement décrois-
sante sur [a, b]. Dans le premier cas, la formule (62) devient ¢(b)—p(a) = fab ¢ (z) dx,
ce qui est évidemment vrai. Dans le deuxiéme cas, (62) se réécrit ¢(a) — p(b) =
ff(—gp’(w)) dx, ce qui revient au méme. Le théoréme est donc vrai pour n = 1.

Supposons maintenant le théoréme démontré en dimension n—1 > 1. Pour traiter
la dimension n, on utilisera le

LEMME VI-43. Soient U et V' deux ouverts de R™ et p : U — V' un difféomor-
phisme. Alors localement p s’écrit comme composition de permutations des coordon-
nées, et de difféomorphismes préservant au moins une coordonnée.

PREUVE DU LEMME VI-43. Soit z € U. Il existe des indices j et k tels que
(Opr/0x;)(2) # 0. Quitte & permuter, on suppose k& = j = 1. On pose alors
(21, .., xn) = (p1(2),22,...,2,). Il est clair que det, dyp = (0 /0x1)(z), donc
par le théoreme d’inversion locale v définit un difféomorphisme d’un voisinage O de
z dans 1(0). Dans louvert O on peut alors écrire ¢ = (po1~1) o, on ¥ préserve
les n — 1 derniéres coordonnées, et o o1)~! préserve la premicre. 0

Retournons a la preuve du Théoréme VI-38. Montrons que la conclusion est
vraie si @ préserve la derniére coordonnée : p(z1,...,x,) = (p1(z), ..., on_1(z), zy).
Notons z’ = (z1,...,z,_1). Pour tout z fixé, 'application ¢*, obtenue en gelant la
variable x, a la valeur z et en ne conservant que les n — 1 premieres coordonnées
de ¢, définit un difféomorphisme de U* = U N {z,, = z} (vu comme un ouvert de
I'hyperplan (z,, = z)) sur son image ¢*(U?). L’hypothéese de récurrence s’applique a
(pZ .

(f)eamalo=) = [det dur f271 (Mt e
= ‘ det d(xgz)f‘il (Anfl L@z(Uz)).

En appliquant le théoreme de Fubini, on en déduit, exactement comme dans la
démonstration en fin de sous-section VI-4.2, que fx(\,1y) = |detd, f|~ ' (A\1v). Le
théoreme est donc vrai dans le cas ou ¢ préserve I'une des coordonnées.

Le théoréeme est également (bien siir) vrai quand ¢ est une permutation de co-
ordonnées. Or le Lemme VI-43 montre que ¢ s’écrit localement comme composée
de permutations et de difféomorphismes préservant une coordonnée. Grace a 'inva-
riance de la formule (iii) par composition, on conclut que le théoréme est vrai en
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dimension n, pour peu que 1'on remplace U par un petit voisinage de x (et ¢ par sa
restriction a U).

Pour boucler la récurrence, il reste a “recoller les morceaux”, c¢’est-a-dire établir
la formule globale (disons pour tout borélien B C U) a partir de la formule locale
(valable pour tout borélien B inclus dans un petit voisinage d’un point x fixé).

Fixons donc U, V et ¢, et supposons que tout x € U est contenu dans un
voisinage U, C U ou la conclusion du théoréme est vraie (avec U remplacé par U,,
¢ remplacé par sa restriction a U,); on va montrer qu’alors le théoréme est vrai
pour 'ouvert U tout entier. Comme on 'a déja remarqué, il suffit de traiter le cas
ou B est un compact K de U. De la famille des {U,, * € K} on extrait un sous-
recouvrement fini {U,,, ..., U, }. On pose alors C; = KNU,,, Co = KN (U, \Us,),
etc. de maniere a définir des ensembles boréliens C', ..., Cy deux a deux disjoints
dont 'union est K. Puisque le théoreme est vrai dans chaque U,,, on a

vje{l,.... N}, An[¢(0j>]:/ | det d, | dz.
Cj

Comme ¢ est bijective, les ¢(C;) sont disjoints et leur union est ¢(K). La sommation
en 7 donne donc

Ml (K] = /K | det dygp| da,

ce qui conclut la preuve du théoreme. O

SECONDE PREUVE DU THEOREME VI-38. L’idée est de comparer, au voisinage
d’un point z, la mesure image px\, a la mesure image (T,¢)x\,, ou T,p désigne
I’application affine tangente a @ en z :

Top(y) = ¢(x) + (deip)(y — @)
Pour cela, on utilise le lemme suivant :

LEMME VI-44. Soient U et V deux ouverts de R" et ¢ : U — V un C dif-
féomorphisme. Alors pour tout § €]0, 1] et pour tout x € U il existe r > 0 tel que
B,(xz) C U et

(a) pour tout y € B,(x),

(1—0)|detdyp| < [detdyp| < (1+0)|detdypl;
(b) pour tous y, z € B,.(x),
(1= 0) [Tap(y) = Tap(2)] < lo(y) — ()] < (1+0) [ Tap(y) — Top(2)]

PREUVE DU LEMME VI-44. Fixons x; puisque ¢ est un difféomorphisme on a
| det d,| > 0. Par continuité de det dyp, il existe € > 0 tel que

|z —y| <e= |detdyp —detd,p| < d|detd,p|,
ce qui implique la propriété (a).
Ensuite, soit n €]0,1[. Par continuité de dp (fonction a valeurs dans les appli-

cations linéaires), il existe 7 > 0 tel que ||d,p — dy|| < n pour |z —y| < r. Etant
donnés y, z dans B,(x), on définit z(t) = (1 — t)y + tz, alors

ey) —p(z) = (/Ol(dx(m&) dt) (y = 2);

Top(y) — Top(2) = dutp - (y — 2);
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d’ou
(o) = (=) = (Eaot) = Tul)| < [ e~ gl ly =<l < 2.

Par ailleurs d,p est inversible, donc il existe une constante K > 0, ne dépendant
que de z, telle que |dp - (y — 2)| > K |y — 2| (il suffit de choisir K = ||(d,) || 7).
On obtient ainsi

Hw(y) —9(2)] = |Toply) - TxSO(Z)” < (K )|Tap(y) — Tup(2)].
La conclusion découle du choix n = K. O

Revenons maintenant a la preuve du Théoréme VI-38. Soit 6 €]0, 1[; soit x € U
et soit 7 > 0 tels que les énoncés (a) et (b) du Lemme VI-44 soient vrais. On pose
Uy, = B(z,m)NU.

Les applications ¢ et T, sont bijectives, on peut donc définir f = (14 4) g o
(To)™!, et 'inégalité de droite dans 1’énoncé (b) montre que f est 1-lipschitzienne
sur T,o(U,). Par le Théoreme VI-22 (une application contractante réduit les vo-
lumes), on sait que pour tout borélien B" C T,p(U,), on a A\,[f(B')] < \.[B].
Si B est un borélien quelconque de U,, on peut appliquer la relation précédente a
B' = T,o(B) et on trouve, T,p étant bijective, \,[(1 + ) p(B)] < M\.[Tep(B)].
Puisque ’homothétie de rapport (1 + §)~! contracte les volumes par un facteur
(14+4d)~", on conclut que

Alp(B)] < (14 0)" [ Taip(B)]-

(Le lecteur familier avec la notion de mesure de Hausdorff pourra voir que cette
conclusion découle immédiatement de 'inégalité de droite dans (b); ici j’ai utilisé
un chemin légerement détourné pour me ramener au Théoreme VI-22.)

Un raisonnement identique & partir de I'inégalité de gauche dans (b) mene fina-
lement a

(63) (1 =0)" A[Tap(B)] < Au[p(B)] < (1+0)" An[Top(B)];

cette inégalité est valable pour tout borélien B inclus dans U,.

Soit maintenant K un compact de U. Par un raisonnement simple rappelé au
cours de la premiere preuve du Théoreme VI-38, on peut partitionner K en boré-
liens disjoints (1, ..., Cx tels que chaque C; est inclus dans un U,,. On peut alors
appliquer (63) a chaque C; :

(64) (1= )" Ml p(Co)] € Al(C)] < (14 6)" AT p(C).

7 7

Pour chaque i, on peut appliquer le Théoreme VI-27 pour calculer le volume de
AT, p(Ci)] = | det do o An[Ci].

De la condition (a) on déduit alors
(1) [ |detdygldy < M[Lp(CO) < (146) [ |detdldy,
Ci Ci
En reportant cette inégalité dans (64) on obtient

(1 6yt /C [det dyg| dy < Alo(C)] < (1 + 8)™+ /C | det o] dy.
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Comme les ¢(C;) forment une partition de ¢(K), en sommant cette double in-
égalité par rapport a l'indice ¢ on trouve

Lo g Lo
< K)] < )

o K\detdysoldy_An[so( =45 K\detdyso!dy

On conclut la preuve en faisant tendre § vers 0. 0

VI-5*¥Mesurabilité, non-mesurabilité, et paradoxes de Banach—Tarski

Cette section est 'occasion de développer les éléments abordés dans la Mise au
point axiomatique en début de cours. On y trouvera peu de démonstrations, mais
plutét un survol de notions fondamentales et parfois trés subtiles.

VI-5.1. Ensembles boréliens et Lebesgue-mesurables. On a déja noté que
la tribu borélienne, intuitivement, est obtenue a partir des boules en appliquant une
infinité dénombrable de fois les opérations d’union dénombrable et d’intersection
dénombrable. Pour passer de la tribu borélienne dans R a la tribu des ensembles
Lebesgue-mesurables, il a suffi d’appliquer 'opération de complétion. Les ensembles
Lebesgue-mesurables sont donc toutes les parties £ de R™ telles qu’il existe des
boréliens A et B vérifiant

ACEFECB, |B\ Al =0.

De maniere équivalente, les ensembles Lebesgue-mesurables sont les ensembles E
pour lesquels
NXNE| +N[X\ E] =\[X]

pour toute partie X C R (on peut se limiter au cas ou X décrit 'ensemble des
pavés). C’est cette derniére définition qu’adoptait Lebesgue. En particulier, tout
sous-ensemble d’un ensemble négligeable est Lebesgue-mesurable.

La régularité de la mesure de Lebesgue permet de donner une autre caractérisa-
tion, en apparence un peu plus précise.

PROPOSITION VI-45 (Lebesgue-mesurabilité, F, et G5). Tout ensemble Lebesgue-
mesurable E peut s’écrire sous la forme AU N, ou A est une union dénombrable
de fermés (un F,) et N un ensemble négligeable. S’il est de mesure finie, il peut
également s’écrire sous la forme B\ N, ou B est une intersection dénombrable
d’ouverts (un Gs) et N un ensemble négligeable.

DEMONSTRATION. Si F est de mesure finie, ¢’est une conséquence de la Propo-
sition II-57. Dans le cas ou E n’est pas de mesure finie, on s’y ramene en considérant
son intersection avec une suite croissante de pavés. 0

Ces descriptions sont bien siir tres grossieres. Une branche de la théorie géomé-
trique de la mesure [Federer| s’attache a décrire géométriquement les ensembles
Lebesgue-mesurables.

VI-5.2. Fonctions boréliennes et Lebesgue-mesurables. On peut se de-
mander a quoi ressemble une fonction borélienne, disons de R™ dans R, et si la classe
des fonctions boréliennes est vraiment beaucoup plus large que la classe des fonc-
tions continues, ou semi-continues... La question est bien stir formulée ici de maniere
trop vague; cependant, le théoreme de Lusin (Théoreme I11-69) implique que toute
fonction borélienne f : R — R, nulle en-dehors d’'un ensemble de mesure de Le-
besgue finie, coincide avec une fonction continue en-dehors d’un ensemble de mesure
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arbitrairement petite ; et que f est, en-dehors d’un ensemble de mesure nulle, limite
simple de fonctions continues. Son corollaire I11-70 indique que pour toute fonction
f sommable de R™ dans R on peut trouver une famille (fx)ren de fonctions continues
a support compact, telles que

[ 1) = pia)de 0.

Le théoreme de Vitali-Carathéodory (Théoreme I11-72) s’applique aussi, sans
restriction, a la mesure de Lebesgue sur R", et permet d’encadrer une fonction
sommable f par des fonctions semi-continues, au prix d’une erreur arbitrairement
petite sur les intégrales.

Enfin on sait (Théoreme III-29) qu'une fonction Lebesgue-mesurable est une
fonction qui coincide avec une fonction borélienne presque partout.

Pour résumer informellement : une fonction borélienne réelle est donc “pas loin
d’étre continue” et elle est “presque limite de fonctions continues”. Quant a une fonc-
tion Lebesgue-mesurable, c’est une fonction “presque borélienne”, et aussi “presque
limite de fonctions continues”.

VI-5.3. Existe-t-il des ensembles non mesurables ? Cette question d’ap-
parence anodine va nous entrainer a I’assaut de questions tres subtiles, dont certaines
touchent a rien moins que les fondations logiques du raisonnement mathématique.

Commencons par nous demander s’il existe des parties non boréliennes. La ré-
ponse est affirmative : il n’est pas facile d’exhiber une partie non borélienne, mais un
argument de cardinalité permettra de prouver que I'immense majorité des parties de
R est non borélienne. On pourra objecter qu’il serait plus satisfaisant de construire
explicitement des ensembles non boréliens ; ¢’est vrai, mais au moins ’argument non
constructif des cardinaux apportera un premier jalon. On peut comparer cette si-
tuation au probleme des nombres algébriques (c’est a dire les nombres réels qui sont
racines d’un polynome a coefficients entiers, comme \/5) : il est tres facile de montrer
que les nombres algébriques forment un ensemble dénombrable, et donc I'immense
majorité des nombres réels sont transcendants, c’est a dire non algébriques ; mais il
est bien plus difficile de construire explicitement un nombre transcendant (comme
le nombre de Liouville, >~ 107*); et il est encore bien plus difficile de montrer que
certains nombres bien connus, comme e ou 7, sont transcendants (théoremes de
Lindemann).

THEOREME VI-46 (Rareté des ensembles boréliens). L’ensemble B(R) des parties
boréliennes de R a le méme cardinal que R, soit ¢ = 2% ; alors que l’ensemble des
parties non boréliennes de R a pour cardinal 2¢. Le méme résultat vaut pour R",
n > 2.

Pour éviter une digression trop importante dans la théorie des cardinaux, je
ne donnerai ici qu’une esquisse de preuve; on trouvera une preuve compléete dans

[Rudin, p. 53].

ESQUISSE DE PREUVE DU THEOREME VI-46. Comment “compter” les boréliens ?
On commence par se donner une base dénombrable de voisinages faits d’intervalles
ouverts : par exemple, tous les intervalles ouverts de longueur 27 centrés en les
rationnels (¢ )men. Cette énumération (Ij)ren est fixée une fois pour toute. Une
union dénombrable de ces intervalles ouverts peut se représenter comme une suite
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de 0 et de 1 : pour chaque k£ € N on indique 1 si I, en fait partie, et 0 sinon. Une
intersection dénombrable d’unions dénombrables de [ se représente alors comme
un tableau de 0 et de 1, indexé par N?; mais cela peut aussi se réindexer par N
(exercice). Pour obtenir les boréliens, on applique une infinité dénombrable de fois
I'opération “intersection dénombrable d’unions dénombrables”; cela peut donc se
représenter comme un tableau infini d’entiers, ou encore une fonction de N dans N.
Tout se ramene donc au lemme suivant : L’ensemble des fonctions de N dans N est
en bijection avec R.

Prouvons ce lemme. On se souvient d’abord que R est en bijection avec [0, 1], qui
est lui-méme en bijection avec {0, 1}, c’est & dire les fonctions de N dans {0,1} : il
suffit pour cela d’écrire x € [0, 1] en écriture binaire, en traitant a part les nombres
dyadiques, qui sont en quantité dénombrable. Reste & montrer que les fonctions de
N dans N sont en bijection avec les fonctions de N dans {0, 1}. L’inclusion de {0, 1}
dans NV est évidente. Réciproquement, soit f une fonction de N dans N, on va lui
associer une suite a valeurs dans {0, 1} : pour cela on inscrit f(1) fois le chiffre 1,
puis 0, puis f(2) fois le chiffre 1, puis 0, puis f(3) fois le chiffre 1, etc. (Exercice :
vérifier que c’est une injection.) Par théoréeme de Cantor-Bernstein, les ensembles
{0, 1} et NN sont bien en bijection.

L’énoncé sur les parties non boréliennes découle de ce premier résultat, et d’un
peu de théorie des cardinaux : en retirant un ensemble de cardinal ¢ & un ensemble
de cardinal 2¢, on obtient un ensemble dont le cardinal est toujours 2¢ et cela est
strictement supérieur a c.

Enfin la généralisation a R™ est facile, quitte a remplacer les intervalles par des
boules, par exemple la famille des boules dont le centre a toutes ses coordonnées
rationnelles et dont le rayon est de la forme 27¢. 0

Cet argument ne s’applique plus a la famille des ensembles Lebesgue-mesurables,
qui a méme cardinalité que I’ensemble de toutes les parties de R : pour s’en convaincre,
on peut se rappeler que l'ensemble triadique de Cantor C' sur [0, 1] a méme cardi-
nal que R, et que toutes ses parties sont Lebesgue-mesurables puiqu’il est de mesure
nulle. La cardinalité de I’ensemble des parties Lebesgue-mesurables est donc au moins
la méme que P(C), soit 2°.

On peut se demander a quoi ressemblerait un ensemble Lebesgue-mesurable non
borélien. Lebesgue avait déja identifié de tels ensembles. Le mathématicien russe
Nikolai Nikolaievitch Lusin (Louzine) a construit dans les années 1920 des exemples
assez explicites, au moyen de fractions continues : on rappelle que tout nombre
x € [0, 1] peut s’écrire uniquement sous la forme

ou les ay sont des entiers naturels; on appelle (ay)ken le développement en fraction
continue de x.

THEOREME VI-47 (Ensemble non borélien de Lusin). Soit L [’ensemble des x
dont le développement en fraction continue admet une sous-suite infinie dont chaque
terme divise le terme suivant. Alors L est Lebesque-mesurable, mais non borélien.

Une intuition derriere cet ensemble, et qu’il est défini par des propriétés qui font
intervenir une infinité potentielle de suites infinies. Il est traité dans [Nikolai Luzin,
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Sur les ensembles analytiques, Fundamenta Mathematica, vol. 10, 1927, p. 1-95, p.
77]. Ces thémes ont déja été abordés dans le Chapitre d’approfondissement V.

On en vient maintenant a formuler une question bien plus délicate : Fxiste-t-il
des parties de R qui ne sont pas Lebesque-mesurables ?

La réponse a cette question est un des résultats les plus frappants de la logique
moderne : on peut effectivement construire de telles parties, mais leur construction
nécessite 'axiome du choix. Si en revanche on ne postule pas cet axiome, la
mesurabilité de toutes les parties de R est un probleme indécidable. On peut alors
poser comme axiome que toutes les parties de R sont mesurables, ou au contraire
qu’il existe (au moins) une partie non mesurable ; les mathématiques que ’on pourra
développer dans I'un et I'autre cas seront incompatibles, mais chacune aura a priori
sa cohérence propre. Cette découverte majeure est due au grand logicien Robert
Solovay [A model of set-theory in which every set of reals is Lebesque measurable,
Annals of Mathematics, vol. 92 (1970), pp. 1-56]

Solovay s’appuyait sur les techniques introduites par Paul Cohen pour démon-
trer I'indécidabilité de I’“hypothése du continu” (qui énonce, essentiellement, que le
plus petit cardinal non dénombrable est celui de R). Le théoréeme d’incomplétude
de Godel, le théoreme d’indécidabilité de Cohen et le théoreme d’indécidabilité de
Solovay sont peut-étre les trois résultats de logique les plus marquants du vingtieme
siecle.

Comment construire un ensemble non mesurable 7 On se souvient que d’apres la
Proposition VI-5, la mesure de Lebesgue induit sur le tore T™ une mesure invariante
par addition modulo Z". Si I’on construit un ensemble non mesurable E dans T = T,
alors £ x T"! constituera un ensemble non mesurable de T". C’est précisément ce
que montre le résultat suivant.

THEOREME VI-48 (Paradoxe de Vitali). Sous l’hypothése de l’aziome du choiz,
il existe une partie V de T telle que T puisse s’écrire comme réunion dénombrable
disjointe de translatés de V. En particulier, V' n’est pas Lebesgue-mesurable.

DEMONSTRATION. La seconde partie du théoréme découle de la premiére : en
effet, si V' était mesurable, de mesure positive, alors la mesure de T serait infinie,
ce qui est faux; et s’il était de mesure nulle, alors la mesure de V' serait nulle, par
o-additivité.

Pour définir V| on introduit une relation d’équivalence R dans T comme suit :

TRy <=z —y e Q.

L’ensemble T est alors partagé en une infinité de classes d’équivalence, et on choisit
un représentant dans chaque classe; on note V I’ensemble des représentants ainsi
sélectionnés.

Toute classe d’équivalence s’obtient a partir de son représentant, par addition
(modulo 1) de rationnels; si 'on se limite & des rationnels de [0, 1] on obtient des
éléments distincts de T. La conclusion est que T est la réunion disjointe dénombrable
des g +V, ou les g, sont les rationnels de [0, 1] et 'addition est considérée modulo 1.

O

Dans le raisonnement précédent, on a utilisé I'axiome du choix pour choisir
arbitrairement un représentant dans chaque classe d’équivalence. Au vu du théoréeme
de Solovay, cela est inévitable. Le contre-exemple de Sierpinski, mentionné dans la
Remarque IV-60, reposait également sur ’axiome du choix.
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Mentionnons pour conclure deux autres “paradoxes” menant a l'existence d’en-
sembles non mesurables; bien évidemment, tous deux reposent encore sur ’axiome
du choix :

— Sergei Bernstein a défini un sous-ensemble B C R tel que B et R\ B inter-

sectent tout sous-ensemble fermé non dénombrable de R. En particulier, tout
compact inclus dans B est au plus dénombrable, donc de mesure nulle, et la

régularité de la mesure de Lebesgue impliquerait |B| = 0 si B était mesu-
rable. De méme on aurait |R\ B| = 0... Ce paradoxe est étudié dans [Oxtoby,
pp.22-23|

— Wactaw Sierpinski a construit un ensemble S C R? tel que (i) S intersecte
tout ensemble fermé mesurable de R? de mesure positive, et (i) on ne peut
pas trouver trois points de S alignés. Il s’ensuit que S n’est pas mesurable,
sinon le théoréme de Fubini impliquerait que |S| = 0 (puisque l'intersection
de S avec toute droite verticale est réduite & au plus deux points), et on
pourrait trouver un ensemble de mesure positive dans R? \ S... On trouvera
dans [Oxtoby, p.54-55] une preuve simplifiée (utilisant, outre I'axiome du
choix, 'hypothese du continu).

A ce stade, on pourrait encore conserver espoir de définir une mesure sur toutes

les parties de R... mais elle ne pourrait vérifier ni I'invariance par translation (a
cause du paradoxe de Vitali), ni la régularité (& cause du paradoxe de Bernstein),
ni le théoreme de Fubini (a cause du paradoxe de Sierpinski). Au vu de toutes
ces restrictions, on peut douter de l'intérét qu’aurait une telle mesure; quoi qu’il
en soit, méme ce dernier espoir est ruiné par le théoreme suivant, dii a Banach et
Kuratowski, généralisé par Ulam [Dudley, pp.526-527; Billingsley, p.37]; il utilise
I’axiome du choix et 'hypothese du continu.

THEOREME VI-49 (Obstruction de Banach-Kuratowski). Sous hypothése de
l’axiome du choix et de l’hypothése du continu, soit i une mesure finie sur la o-
algébre de toutes les parties de [0,1], telle que p[{x}] = 0 pour tout x € [0, 1]. Alors
i est identiquement nulle.

Ici 'obstruction a trait a la théorie des cardinaux, comme le montre une géné-
ralisation abstraite due a Ulam (voir [Oxtoby, p. 25-26]).

COROLLAIRE VI-50. La seule mesure finie et sans atome que l’on puisse définir
sur toutes les parties de [0,1] est la mesure nulle.

VI-5.4. Contre-exemple de Hausdorff. L’existence d’ensembles non mesu-
rables pourrait étre considérée comme un défaut majeur de la théorie de la mesure.
Apres tout, en mécanique classique, tous les objets ont une masse, et la théorie de la
mesure peut étre vue comme une tentative de formaliser le concept de masse dans
un cadre abstrait. L’obstruction de Banach—Kuratowski ne laisse guere le choix : si
I’on veut mesurer tous les ensembles, il faut abandonner I'axiomatique méme de la
mesure, et le seul coupable envisageable est le fameux axiome de o-additivité, im-
posé avant tout pour des raisons mathématiques. Se pose alors la question naturelle
de savoir si I'on peut remplacer la mesure de Lebesgue par une fonction additive
d’ensembles, ou “mesure finiment additive”, a savoir une fonction p vérifiant
wl[@] = 0, et u[AU B] = u[A] + p[B] quand A et B sont disjoints, et qui serait définie
sur ’ensemble de toutes les parties de R™. On souhaite en outre que cette fonction
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additive conserve la propriété naturelle d’invariance par isométrie affine, et bien sir
qu’elle soit non triviale (non identiquement nulle). Nous voici donc face a la

Question : Eziste-t-il des fonctions additives d’ensembles définies sur toutes les
parties de R™, non triviales, finies sur les compacts et invariantes par isométries ?

La réponse a cette question est encore négative. Pour 'expliquer, introduisons
le concept d’ensemble paradoxal, qui généralise a un cadre finiment additif I'idée
utilisée dans le contre-exemple de Vitali. Dans la suite, j'emploierai parfois informel-
lement le terme de “mesure” pour des fonctions additives qui ne sont pas forcément
o-additives, aucune confusion n’étant possible.

DEFINITION VI-51 (découpage et recollement). Soient A et B deux ensembles
de R™. On dit que A peut étre découpé et recollé en B s’il existe une partition
finie de A en morceauz Ay, ..., Ay, et des déplacements (i.e. des isométries affines
de déterminant 1) gy, ..., gx tels que les morceauzr ¢1(Aq), ..., gx(Ag) forment une
partition de B.

Remarquons que cette définition ne correspond pas de tres preés au concept in-
tuitif de “découpage et recollement” : il se peut que les parties A; soient imbriquées
de maniére tres complexe, de sorte que leur séparation physique soit impossible.
Cependant, c¢’est une approximation naturelle de ce concept.

DEFINITION VI-52 (ensemble paradoxal). Un ensemble de R™ est dit paradozal
st on peut le découper et le recoller en deux copies disjointes de lui-méme.

Il est naturel de penser que de tels ensembles sont forcément de mesure nulle,
sinon on aurait une contradiction apparente avec le fait que les deux copies disjointes
doivent avoir deux fois le volume de I'objet originel. L’existence méme d’ensembles
paradoxaux semble douteuse. Le théoreme suivant, dii & Felix Hausdorff [Wagon,
p. 18], répond a cette question.

THEOREME VI-53 (paradoxe de Hausdorff). Sous hypothése de [’aziome du choiz,
il existe un sous-ensemble dénombrable D de la sphére S? tel que S?\ D est paradozal.

Ce paradoxe repose sur la constatation suivante, d’'une grande importance en
théorie des groupes : le groupe SO;3 des déplacements linéaires de R3, qui laisse
la sphére S? invariante, admet pour sous-groupe une copie du groupe libre & deux
éléments. Un systeme explicite de générateurs peut d’ailleurs étre construit, voir
[Wagon, p. 15]. Voyons maintenant ce que 'on peut déduire de ce paradoxe.

COROLLAIRE VI-54 (non-existence de mesures finiment additives). Sous [’hypo-
these de l'axiome du choix, soit pu une mesure finiment additive définie sur toutes les
parties de R3, finie sur les compacts et invariante par déplacement. Alors u[K] = 0
pour tout compact de R3.

COROLLAIRE VI-55 (non-existence de mesures finiment additives, autre formu-
lation). Il est impossible de prouver l’existence d’une mesure finiment additive, non
nulle, définie sur toutes les parties de R®, finie sur les compacts et invariante par
déplacement.

Ce dernier énoncé apporte un point final a notre quéte : il est impossible de
construire une notion raisonnable de volume sur toutes les parties de R3. La conclu-
sion est la méme pour toute dimension n > 4 : il suffit pour le voir de prendre le
produit cartésien des contre-exemples dans R3, avec [0, 1]"73.
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PREUVE DU THEOREME VI-53. Soit 1 une mesure vérifiant les hypotheéses, non
nulle sur les compacts ; il existe donc R > 0 tel que u[R B3] > 0, ot B? est la boule
unité dans R?. Quitte a remplacer p par (mq,g) 4k, o me(z) = az, on peut supposer
que p[B3] > 0. Tous les singletons ont méme mesure pour j, forcément nulle, sinon
p[A] serait infini pour toute partie A infinie. La restriction de p a la boule privée
de son centre est donc une mesure finiment additive, bien définie et invariante par
I’action de SOs.

L’application x — x/|z| envoie la boule privée de son centre sur la spheére S
et transporte donc la mesure p en une mesure non nulle sur S?, qui reste finiment
additive et invariante par ’action de SOj3; on la notera toujours u. En particulier,
si D est la partie dénombrable apparaissant dans le paradoxe de Hausdorff, on a

u[S*\ D] = 2u[$%\ D],

ce qui montre que u[S?\ D] = 0.

Il reste a vérifier que D est de mesure nulle pour aboutir a une contradiction.
Soit ¢ une ligne issue de l'origine, n’intersectant pas D; on définit Ry comme la
rotation d’angle 6§ autour de ¢. L’ensemble des angles  tels que Ry envoie au moins
un élément de D dans D est dénombrable; en conséquence, il existe au moins un
angle 6 pour lequel D et Ry(D) sont disjoints. On en déduit que p[D’'] = 2u[D] <
p[S?], o D' = D U Ry(D); en particulier u[D] < u[S?]/2. Comme D’ lui-méme
est dénombrable, le méme raisonnement montre que p[D'] < u[S?]/2, en particulier
p[D] < p[S?]/4. Par récurrence, on montre que p[D] < p[S?]/2™ pour tout m > 1,
d’ou finalement p|[D] = 0. O]

VI-5.5. Paradoxe de Banach—Tarski. Du paradoxe de Hausdorff on déduit
qu’il est trop ambitieux de chercher a “mesurer” toutes les parties de ’espace eu-
clidien, au moins dans R®. Les paradoxes dits de Banach-Tarski approfondissent
la discussion dans une autre direction, et menent a s’interroger sur l’axiomatique
mathématique, en fournissant des conclusions qui violent le bon sens.

THEOREME VI-56 (paradoxes de Banach-Tarski). (i) Sous laziome du choiz,
pour toutn > 3, la boule unité de R™ est paradozale : on peut la découper et la recoller

en deux boules disjointes de rayon 1 (pour cela, cing morceaux sont nécessaires et
suffisants).

(ii) Soient A et B deux parties de R"™ d’intérieur non vide, n > 3. Alors on peut
découper A et le recoller en B.

Ces paradoxes sont discutés en détail dans [Wagon|. Le premier énoncé, considéré
par certains comme “le théoreme le plus surprenant de toute la mathématique”, est
suffisamment incroyable pour qu’on I’énonce sous une forme encore plus explicite : 11
est possible de découper une boule de rayon 1 en 5 morceaur Ay, ..., As et de trouver
des isométries gy, .. .,gs telles que union des g;(A;) forme deux boules disjointes,
chacune étant de rayon 1.

Les paradoxes de Banach—Tarski ménent & la méme conclusion que celui de Haus-
dorft : Au moins pour n > 3, il est impossible de définir une mesure finiment additive
sur l’ensemble de toutes les parties de R™.

Or il se trouve que la conclusion est différente pour n < 2!

THEOREME VI-57 (existence de mesure finiment additive dans R?). Sous hypo-
these de l’axiome du choix, pourn =1 oun = 2, il est possible de définir une mesure
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finiment additive p sur toutes les parties de R™, qui soit invariante par déplacement
et coincide avec la mesure de Lebesque sur tous les pavés.

Tous ces résultats, et bien d’autres qui leur sont liés, sont démontrés et com-
mentés dans [Wagon|. Le théoreme VI-57 ne prétend pas que la mesure p coincide
avec la mesure de Lebesgue sur tous les boréliens, ce qui suggere que son maniement
est délicat. Quoi qu’il en soit, la différence de comportement entre les dimensions
inférieures ou égales a 2 d’une part, et supérieures ou égalés a 3 d’autre part, reflete
des différences fondamentales dans la structure des groupes d’isométries correspon-
dants, qui a donné naissance a la notion de groupe moyennable, aujourd’hui une
branche importante de la théorie géométrique des groupes.

Cela dit, la conclusion du paradoxe de Banach—Tarski, qui ne fait pas intervenir
le concept de mesure, semble si choquante pour le sens commun, que ’on peut se
demander s’il ne faut pas revoir I’ensemble des axiomes qui a permis de I’établir.
C’est I'occasion de discuter un peu plus en détail de I'axiome du choix.

VI-5.6. Axiome du choix. L’écrasante majorité des démonstrations mathé-
matiques, en-dehors du domaine de la logique, repose sur un ensemble d’axiomes
“incontestables”, appelé couramment théorie des ensembles ZF (Zermelo-Fraenkel).
Cette théorie permet de construire les entiers, les rationnels, les réels, etc. On peut
ajouter, ou pas, a cette théorie I'axiome dit axiome du choix, qui énonce, essentiel-
lement, que le produit d’ensembles non vides est toujours non vide. En clair, étant
donnée une collection d’ensembles non vides, on peut choisir un élément dans cha-
cun d’entre eux, et rassembler tous les éléments ainsi choisis en un ensemble. Cet
axiome peut paraitre inoffensif, mais il est suffisant a aboutir a des paradoxes tels
que ceux de Vitali, Hausdorff, Sierpinski ou Banach—Tarski. En outre il n’est pas
vraiment intuitif, car dans le cas ou la famille d’ensembles est infinie on ne pourra
jamais construire explicitement leurs représentants, ni méme esquisser une méthode.

D’un autre c6té, si 'on supprime completement ’axiome du choix, on tombe vite
sur des paradoxes qui heurtent tout autant le sens mathématique commun. Ainsi, ZF
est compatible avec 'assertion selon laquelle R est union dénombrable d’ensembles
dénombrables... Cela montre bien que nous utilisons sans nous en rendre compte
des versions de l'axiome du choix. L’argument diagonal de Cantor en fournit un
exemple !

Une variante de 'axiome du choix qui permet d’éviter ce genre de paradoxe,
et en méme temps n’est pas assez forte pour impliquer I'existence d’ensembles non
mesurables, est '’axiome du choix dénombrable, qui énonce qu’'un produit dé-
nombrable d’ensembles non vides est non vide.

Une variante légerement plus forte est 'axiome du choix dépendant : étant
donné une famille dénombrable d’ensembles E,,, pour tout n on peut choisir z,, € F,,,
dépendant de x,,_; d’une maniere que 'on spécifie. La théorie obtenue en ajoutant
cet axiome a ZF permet d’effectuer (presque) tous les raisonnements habituels en
analyse, et reste compatible avec la non-existence d’ensembles mesurables. En par-
ticulier, la démonstration des paradoxes de Vitali, Hausdorff, Sierpinski et Banach—
Tarski est impossible dans ce contexte.

Notons pour finir qu’il existe un autre axiome célebre que l'on peut ou pas im-
poser, et que nous avons déja rencontré dans certains paradoxes, c¢’est I’hypothese
du continu, a savoir que R est le plus petit ensemble infini non dénombrable.
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VI-5.7. Quelle attitude adopter ? Au vu de la discussion précédente, il y a
trois attitudes possibles :

- lattitude classique : accepter 'axiome du choix, se résoudre a ce que certains
ensembles ne soient pas mesurables, a ce que certains paradoxes existent (apres tout,
ce ne sont pas les seuls) et vérifier la mesurabilité des objets avec lesquels on travaille,
quand il y a besoin ;

- lattitude iconoclaste : n’accepter que I'axiome du choix dépendant, postuler la
mesurabilité de toutes les parties de R, et se résoudre a ce que 'axiome du choix ne
soit pas vrai;

- lattitude sceptique : n’accepter que I'axiome du choix dépendant, s’interdire
I'usage de ’axiome du choix, mais sans supposer non plus la mesurabilité de toutes
les parties de R™; vérifier la mesurabilité dans les démonstrations, et se résoudre
a ce que certains énoncés, comme la non-mesurabilité de certaines parties, soient
indémontrables.

L’attitude classique est le choix le plus fréquent. L’axiome du choix meéne parfois
a des démonstrations formellement élégantes, parfois via ses divers avatars tels que
le Lemme de Zorn, ou le Théoréme de Tychonov dans sa version la plus générale (un
produit quelconque de compacts est compact). Il mene parfois a des énoncés tres
synthétiques ; on le verra par exemple au sujet de la mesure de Haar au Chapitre 77.

L’attitude iconoclaste est quelque peu dangereuse, car cela réclame une certaine
discipline que de savoir quels sont les résultats qui nécessitent I'axiome du choix et
quels sont ceux qui ne le réclament pas. Mais surtout, I'axiome que 'on adopte (la
non-existence de parties non mesurables) est un axiome tres fort.

C’est finalement 'attitude sceptique que je recommande sans hésitation : c’est
la plus économe en axiomes, et ’expérience montre qu’elle suffit a couvrir tous les
énoncés classiques d’analyse réelle. Apres tout c’est un devoir, en mathématique, de
se passer des hypotheses superflues! Cette attitude n’exclut pas, bien stir, de recourir
a I'axiome du choix dans une phase prospective de recherche de preuve.

VI-5.8. Justification pratique de la mesurabilité. Au vu de la discussion
précédente, on ne peut construire une application non mesurable que si on cherche
absolument a le faire; justifier la mesurabilité d’une application est donc en général
une opération de routine. En pratique, il n’y a gueére qu’'une situation a laquelle il
faut prendre garde : si f(x,y) est une fonction mesurable de deux variables, disons
réelles, il n’y a pas de raison a priori pour que la fonction

fxr—sup f(z,y)

soit mesurable. Dans la pratique, on cherche toujours, en présence d’une telle situa-
tion, a se ramener a un supremum pris sur une famille dénombrable.

ExEMPLE VI-58. Soit f : R — R une fonction localement \,-sommable; on
définit la fonction maximale de f par

1
MIE) = SR B o

ou B,(x) désigne la boule Euclidienne de rayon r, centrée en x. La famille des r > 0
n’est pas dénombrable, la mesurabilité de M f n’est donc pas évidente a priori.
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Cependant, étant donnés deux rationnels g et ¢’ tels que ¢ < r < ¢’, on a

|By(2)] < |B.(x)] < | By / fs/ fs/ .
By(z) Br(x) Bq/(:c)

Le supremum sur tous les nombres réels positifs peut donc étre remplacé par un
supremum sur tous les nombres rationnels positifs. La fonction maximale est donc
effectivement mesurable !

q

REMARQUE VI-59. Une situation du méme type, un peu plus subtile, survient
quand on considere des sommes de Minkowski :

A+ B = {LEER"; da € A; db € B; :L':a—i—b}.

Dans un tel cas, la mesurabilité de A et B n’implique pas forcément celle de A +
B. Pour y remédier, on fera par exemple I’hypothése que A et B sont compacts,
auquel cas A + B l'est également. Ou bien on utilisera une mesure extérieures pour
mesurer A + B. Ou encore on se rappellera que les images continues de boréliens
sont des ensembles analytiques et en particulier Lebesgue-mesurables (c’est la théorie
défrichée dans le Chapitre V) ; et il est clair que la somme de Minkowski de deux
ensembles boréliens fait partie de cette catégorie. Donc : Si A et B sont boréliens,
A+ B n’est pas forcément borélien, mais a tout le moins Lebesgue-mesurable.

VI-5.9. Subtilités liées au produit. Plus traitres que les exemples précédents
sont les subtilités liées a la combinaison de négligeabilité et de structure de produit
tensoriel. En effet, si 'on note £(R™) la tribu des ensembles Lebesgue-mesurables
en dimension n, et si l’'on admet 'existence de parties non mesurables de R, alors

L(R™) ® L(R") £ LR™™) |

Pour s’en convaincre, il suffit de choisir un ensemble non Lebesgue-mesurable X
dans R, et de I'envoyer sur la diagonale (y = z) dans R?, via application ¢ : x —
(z,7), ou sur laxe horizontal (y = 0) dans R?, via Papplication ¢ : z — (x,0).
Comme la diagonale (ou 'axe horizontal) est de mesure nulle dans R? ¢(X) est
négligeable, et en particulier mesurable ; mais son image réciproque par ¢ n’est pas
mesurable. La conclusion est que la tribu £(R) ® £(R) ne contient pas ¢(X); cette
tribu est en fait strictement plus petite que la tribu £(R?). Comme corollaire particu-
lierement déplaisant de ce contre-exemple, la formule de découpage en tranches,

ld] = [ Ml

ou A, :={y € R; (z,y) € A} nest pas valide pour un ensemble Lebesgue-mesurable
quelconque. Cette formule redevient valide si 'on définit les tranches apres avoir
modifi¢ A sur un ensemble de mesure nulle “bien choisi” (voir [Rudin, pp.168-169]).
Ce contre-exemple utilisait ’axiome du choix ; sans cet axiome, ce qu’il en reste
est que l'identité L(R™) @ L(R™) = L(R™*™) est tout simplement indémontrable.

VI-5.10. Quelle tribu utiliser ? La tribu de Lebesgue est obtenue a partir de
la tribu borélienne “simplement” par complétion. A priori, cette opération devrait
rendre les raisonnements plus simples. Cependant, le paragraphe précédent a bien
montré qu’elle implique des subtilités importantes ; en fait elle risque de compliquer
les justifications. C’est une des raisons pour lesquelles je recommande vivement de
travailler uniquement avec la tribu borélienne chaque fois que cela est possible,
c’est-a-dire dans la grande majorité des probléemes d’analyse. L’ouvrage [Lieb—Loss|
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est un exemple de traité d’analyse réelle entierement basé sur la tribu borélienne;
et dans ma propre carriere de recherche, je n’ai jamais rencontré un probléme ou il
était vraiment utile de compléter la tribu borélienne.

VI-5.11. En conclusion. La discussion de toute cette section appelle a des
recommandations d’humilité : ne pas chercher a mesurer toutes les parties, ne pas
chercher a rendre mesurables les parties négligeables, mais se contenter des ensembles
boréliens (ou de leur généralisation, les ensembles analytiques et coanalytiques) ; ne
pas imposer 'axiome du choix mais se contenter de ’axiome du choix dépendant ;
accepter des zones d’ombre et de non-démontrabilité.






CHAPITRE VII

Les mesures de Hausdorff

Ce chapitre est consacré aux mesures de Hausdorff, qui généralisent la mesure de
Lebesgue. Méme si elles n'ont pas la méme importance pratique et universelle que
la mesure de Lebesgue, elles jouent un role majeur dans de nombreux domaines de
la mathématique et des sciences naturelles.

VII-1. Motivations

La théorie des mesures de Hausdorff est née une quinzaine d’années apres celle
de la mesure de Lebesgue, et fut développée principalement par Besicovich pendant
les quarante années qui ont suivi. Elle répondait a plusieurs motivations.

VII-1.1. Mesures d’objets de dimension inférieures. Placons-nous en di-
mension 3 pour simplifier la discussion. La mesure de Lebesgue A3 permet d’attribuer
A toutes les parties (mesurables) de R un “volume”; mais dans de nombreux pro-
blémes on a besoin de définir 'aire d’une surface, ou la longueur d’une courbe tracée
dans R3. La mesure de Lebesgue de tels objets est bien sfir nulle, ce qui suggere
I'introduction de nouvelles mesures pour définir les concepts d’“aire” ou de “lon-
gueur” de parties de R?. Bien sfir, on s’attend a ce que l'aire d’un objet soit infinie
si son volume est non nul, de sorte que ces nouvelles mesures seraient intéressantes
uniquement quand on les appliquerait a des ensembles Lebesgue-négligeables.

C’est dans cette perspective que Carathéodory construisit, vers 1914, des mesures
de dimension k£ dans R", avec 1 < k < n, grace a la notion de mesure extérieure
qu’il venait de développer.

VI1I-1.2. Changements de variables. Nous avons vu au chapitre précédent
des formules faisant intervenir un changement de variables T" entre sous-ensembles
de R", et noté 'apparition du déterminant Jacobien |det VT'|. Qu’advient-il si notre
changement de variables fait intervenir des fonctions R™ — R™, avec, par exemple,
m > n? Nous avons déja rencontré un exemple tres simple : le théoreme de Fubini
peut étre considéré comme un changement de variables z € R™t" — (z,y) € R™xR"
avec z = (z,y), et on peut écrire

/]R G () = / . ( ) d)\n(y)> ().

Bien stir, dans ce cas il n'y a aucun probleme car le changement de variables cor-
respond a un produit cartésien; mais que se passe-t-il quand les choses sont plus
complexes ?

Un exemple familier et trés utile est le changement de variables polaire
(aussi appelé changement de variables sphérique), dans lequel on troque la variable
r € R"\ {0} pour le couple (r,0) € R, x S"1 avec r := |z| et 0 := z/|z|. Comment
écrire la formule de changement de variables correspondante ? Voici comment pour-
rait raisonner un physicien ou un ingénieur : Faisons varier r dans un “intervalle
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infinitésimal” [r — dr,r 4+ dr] et o a Uintérieur d’un “disque infiniment petit” tracé
sur la sphére S™1, de centre o et de surface do. La région ainsi visitée par le point
x est, a des infiniment petits d’ordre supérieur pres, un cylindre centré en ro, dont
la hauteur est 2dr et la section a (par homogénéité) une “surface” r"~'do. On en
déduit la formule de changement de variable

dx = r" Y drdo.

F1GURE 1. Elément de volume autour de x dans les variables sphériques

Quelle est la signification de ce symbole do, que 1'on peut interpréter comme
une “mesure d’aire infinitésimale sur la spheére S™71? 1l s’agit bien de 1'élément
d’intégration par raport & une mesure o sur S™ !, que I'on peut introduire comme
la restriction & S™! de la mesure de Hausdorff de dimension n — 1 dans R™. 1l est
donc parfaitement licite d’écrire

= o)do | r"Lar.
Rnf(a:)da:—/ﬂh(snlf(r )d)r dr

Il y a bien d’autres facons de définir o : par exemple, comme 1’élément de volume
sur S"7 1, vu comme une variété Riemannienne. On peut également, en basse dimen-
sion la définir au moyen de coordonnées explicites, ce qui est commode pour effectuer
des calculs : ainsi, quand n = 2, on peut identifier o & un angle dans [0, 7[ et écrire
dr = rdrdf; quand n = 3 on introduit traditionnellement deux “angles solides”
0 € (0,7 et ¢ € [0,27[, tels que (par exemple) o = (sinf cos ¢, sin 0 sin ¢, cos ), et
alors la formule correspondante est dz = r" 1t dr sin @ df d¢... Mais c’est l'interpré-
tation en termes de restriction de mesure de Hausdorff qui s’avere conceptuellement
la plus naturelle pour généraliser la formule de changement de variables.

VII-1.3. Notion de dimension. Nous avons I’habitude de penser qu'une courbe
“réguliere” est de dimension 1, car on peut localement la déformer “contintiment”
en un morceau de droite; de maniere plus générale, il est naturel de penser a un
ensemble comme étant de dimension £ si on peut le décrire localement au moyen de
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k fonctions indépendantes ; en particulier I'image par une application réguliere d’un
ensemble de dimension k devrait étre de dimension au plus k.

De tels énoncés sont effectivement vrais quand on travaille avec des fonctions
régulieres ; mais il est possible de construire des courbes continues surjectives de
[0,1] dans [0, 1]?, dites “courbes de Peano”. L’image d’une telle courbe est incontes-
tablement de dimension 2... Cet exemple montre bien qu’il est impossible de définir
une notion de dimension qui soit basée sur les dimensions d’espaces de départ et
d’arrivée. Comment déterminer si I'image d’une fonction continue [0,1] — [0,1]?,
non surjective, doit étre considérée comme étant de dimension 0, 1 ou 27

Le point de vue adopté en théorie de la mesure est le suivant : pour définir la
dimension d’un objet, on essaie de le mesurer par toute une famille de mesures, qui
sont associés a des objets de dimension déterminée. Ainsi, si un objet a une longueur
positive non nulle, il est naturel de penser qu’il est de dimension 1 ; s’il a une surface
positive non nulle, de dimension 2. Ce sont les mesures de Hausdorff qui vont jouer
ce role en définissant rigoureusement les notions de longueur, surface, etc.

Comme I’'a découvert Hausdorff vers 1919, il est en fait possible de définir ces
mesures pour des dimensions non entieres, et d’en déduire une notion de dimension
qui peut elle aussi étre non entiere. C’est cette contribution, techniquement simple
mais conceptuellement remarquable, qui a valu a son nom de rester attaché aux
mesures de Hausdorff et a la dimension ainsi définie, dite dimension de Hausdorff.

La dimension de Hausdorff permet de définir un ordre dans la notion de né-
gligeabilité : plutot que de dire qu’'un objet est de mesure de Lebesgue nulle, on
pourra souvent dire plus précisément qu’il est de telle ou telle dimension de Haus-
dorff. Comme on s’y attend, un point sera de dimension 0, un segment de droite de
dimension 1, etc.

Il existe aussi une autre notion populaire de dimension, antérieure a celle de
dimension de Hausdorff, et qui est souvent plus simple & manipuler, méme si son
usage est moins courant que celui de la dimension de Hausdorff : ¢’est la dimension
de Minkowski. Mais I'un des grands avantages du formalisme de Hausdorff, c’est
qu’il fournit a la fois une notion de dimension et une notion de mesure.

Dans les dernieres décennies, I’étude des objets fractals s’est développée considé-
rablement, motivée par les progres de 'informatique, les suggestions visionnaires du
mathématicien polono-frangais Benoit Mandelbrot, et la découverte de formalismes
fractals dans des domaines aussi variés que la mécanique des fluides, les systémes
dynamiques chaotiques, la théorie du signal, etc. Les mesures de Hausdorff, déja tres
utilisées par les spécialistes de théorie géométrique de la mesure, en particulier dans
le domaine du calcul des variations, se sont alors imposées comme 1'un des outils-clés
dans I’étude des objets fractals [Falconer].

VII-1.4. Mesures de référence abstraites. Comme nous ’avons vu au cha-
pitre précédent, ses propriétés d’invariance font de la mesure de Lebesgue une mesure
de référence naturelle dans R™. Si maintenant on se donne un espace métrique abs-
trait (X, d), peut-on y définir une mesure borélienne de référence “naturelle” ? Les
mesures de Hausdorff sont de bons candidats pour cela. En effet, pour toute dimen-
sion N, on peut définir a priori sur (X, d) une “mesure de Hausdorff de dimension N”
(qui malheureusement sera souvent triviale). Ainsi, si X est une variété de dimension
n, muni de sa distance géodésique, alors la mesure de Hausdorff N-dimensionnelle
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sur X coincidera avec la mesure de volume quand N = n, et avec la mesure nulle
quand N > n.

VII-1.5. Ensembles de Besicovitch et probleme de Kakeya. En 1919 le
mathématicien japonais Soichi Kakeya posa le probleme suivant, vaguement motivé
par des applications mécaniques : quelle est [’aire minimale qu’une épingle doit
balayer pour pouvoir s’orienter dans toutes les directions du plan ? 11 proposa un
ensemble de surface fort réduite, mais Besicovitch montra que l'infimum des aires
de surfaces balayées était en fait... zéro! La solution de ce probléme était moins
intéressante que I'outil technique qu’il introduisit pour cela, : un ensemble de mesure
nulle, compact, comprenant des segments orientés dans toutes les directions. La
construction de Besicovitch, qui avait un parfum de géométrie fractale, lui permettait
aussi de construire des contre-exemples en théorie de 'intégration : si f est une
fonction définie dans le plan, valant 1 quand (z,y) est dans ce fameux ensemble et
a au moins une coordonnée rationnelle, et 0 sinon, alors quelle que soit la direction
que 'on choisit, il existe un axe parallele a cette direction selon lequel f n’est pas
Riemann-intégrable ; cette fonction f est alors Riemann-intégrable en dimension 2,
sans qu’aucun choix de coordonnées ne permette de la considérer comme Riemann-
intégrable dans une direction, puis dans I'autre.

On appelle en son honneur ensemble de Besicovitch tout ensemble B C R",
qui pour tout angle o € S"! contient au moins un segment de longueur unité
orienté selon o. Ces ensembles sont reliés a de nombreux problemes d’analyse, en
particulier harmonique, ce qui motiva des recherches approfondies pour déterminer
leur taille minimale. Le probleme de Kakeya consiste a montrer que tout ensemble
de Besicovitch dans R™ est de dimension (de Hausdorff et de Minkoswki) au moins n.
Apres sa résolution en dimension n = 2 par le mathématicien britannique Roy Davies
en 1971, il a suscité une quantité considérable de travaux par des analystes de premier
plan, établissant avec ténacité des bornes partielles ou étudiant des cas particuliers.
11 fallut attendre 2025 pour que la Chinoise Hong Wang et I’Américain Joshua Zahl
résolvent le cas n = 3, causant 'une des grandes sensations mathématiques de
I’époque. Ainsi les questions originelles de Kakeya et Besicovitch ont mené a des
développements profonds dans la théorie des dimensions fractionnaires.

VII-2. Construction des mesures de Hausdorff

VII-2.1. Définition. Comme on I'a déja vu, la mesure de Lebesgue, ou lon-
gueur, d'une partie A de R est définie comme l'infimum des sommes des longueurs
des intervalles recouvrant A :

|A] := inf {Z ((1y,); Iy intervalle; A C Ulk} :

C’est cette définition que 1’on a envie de généraliser. En dimension plus grande que 1,
les candidats naturels pour jouer le role d’intervalles sont les boules. Un calcul assez
simple (basé sur un changement de variable polaire!) montre que le volume de la
boule de rayon r en dimension d € N est

/2

I'(¢+1)

ou I'(z) := [~ e """ ds est la fonction I" habituelle.

|B,|a = a(d) rd, a(d) ==
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Si l'on cherche & définir des dimensions d non entiéres, il est naturel (mais non
obligatoire) d’utiliser la méme formule pour «(d), ce qui revient a prolonger par
analyticité la fonction “volume d’une boule de rayon r en dimension d”.

Voici maintenant une premiere tentative de construction de la “mesure d-dimensionnelle”,
copiant la définition de la mesure de Lebesgue :

oo o0
p%[A] = inf {Za(d)r;j; Acl Brk(xk)} ?
k=1 k=1
On se rend compte tout de suite que cette définition est absurde : le volume 1-
dimensionnel d’une boule de R? serait fini! Le probléme vient de ce que la notion de
dimension doit dépendre uniquement de la structure locale d'un objet, et que donc
on doit forcer le recouvrement par des boules a “épouser les détails” de I’ensemble
A; autrement dit, il faut définir la mesure d-dimensionnelle en fonction de recou-
vrements par des petites boules. Avec la mesure de Lebesgue sur R, cette propriété
était superflue : un “gros” intervalle de longueur L peut se partager en L/e “petits”
intervalles de longueur ¢, et les deux recouvrements ainsi obtenus sont équivalents

en termes de mesure.
Voici donc une deuxiéme tentative de définition de “mesure d-dimensionnelle”

o0 [o¢]
AT AT — Tim d. )
pllA] = llg(l]mf {kz:; ald)ry; AC kszlBrk(xk), T < 5} :
La mesure ainsi définie est dite mesure de Hausdorff sphérique [Falconerl, p. 7].
Elle a le défaut de reposer sur la notion de boule, qui n’est pas invariante par
restriction : si A C R”, et B C R" est une boule de rayon r, alors AN B n’est pas
forcément une boule dans A (il suffit que le centre de la boule n’appartienne pas a
A...). Ce qui est vrai en revanche, c’est que le diametre de A N B est inférieur ou
égal a 2r.

Pour avoir une notion aussi intrinseque que possible, et étre str que la mesure
d’un objet ne dépend pas de la taille de ’espace dans lequel on le plonge, on souhai-
terait donc définir les mesures de Hausdorff en fonction des diametres, sans référence
a la notion de boule. Cette troisieme tentative est la bonne, elle mene a la définition
finalement retenue pour les mesures de Hausdorff :

DEFINITION VII-1 (mesure de Hausdorff). Soient A C R™, et d € R,.. On définit
la mesure de Hausdorff d-dimensionnelle de A par

(65)  HYA] = lim inf {Za r(Cy)%; AC U Cy  diam (Cy) < 8} :
k=1

e—0
ot les Cy sont des parties arbitraires de R", r(Cy) := diam (Cy)/2 est le demi-
diametre de C, et
/2
a(d) = ————
(@) I(¢+1)

est le “volume de la boule unité de dimension d’,

REMARQUES VII-2. (i) Posons

HIA] = inf {i ald)r(Cp)%  AC G Cr  diam (Cy) < 5} :

k=1 k=1
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Comme HY[A] est clairement une fonction décroissante de e, existence de
lim, o H2[A] est assurée, et cette limite est un supremum.

(ii) Soit A tel que HA] < +oo, alors pour tout ¢ > 0 on a HIA] < +oo, et
pour tout § > 0 on peut trouver une famille dénombrable (C) d’ensembles
de diametre au plus ¢, recouvrant A, telle que

oo
D a(d)r(Cr)* < HIA] + 6.
k=1
Pour tout € > 0, 'ensemble C} des points dont la distance a Cj, est stricte-
ment inférieure a ¢, est un ouvert contenant A ; en choisissant ¢, suffisamment
petit, on peut faire en sorte que les quantités > 7(Cy)? et > r(C;)? ne dif-
ferent pas de plus que 9. On a donc I’énoncé suivant : Pour tous 6 > 0, ¢ >0
et ¢’ > ¢ on peut trouver une famille dénombrable (C}.) d’ouverts, de diametre
au plus €/, recouvrant A, telle que
o)
a(d)r(Cy)* < HIA] + 6.
k=1

En remplacant les Oy, par les Cj, on voit également que le mot “ouverts” dans
I’énoncé précédent peut étre remplacé par “fermés”. En faisant ensuite tendre
e et ' vers 0, on vérifie facilement que la définition de la mesure de Hausdorff
est inchangée si l’on impose au recouvrement d’étre constitué d’ensembles
ouverts (resp. fermés).

L’énoncé suivant justifie la terminologie “mesure de Hausdorff”.

ProprosITION VII-3 (la mesure de Hausdorff est une mesure de Borel). Pour
tout d > 0, la fonction A —— H[A] est une mesure extérieure sur R™, et définit une
mesure sur la tribu borélienne B(R™).

DEMONSTRATION. Ilest clair que H%[()] = 0 et que H? est une fonction croissante
d’ensembles. On vérifie facilement que

HEUAL < HIAL].
keN
En passant a la limite ¢ — 0 dans le terme de gauche, et en utilisant 1'inégalité
He < H? dans le terme de droite, on trouve

HAUA <) HYAL.

keN

La fonction H? est donc sous-additive : c’est bien une mesure extérieure, définie sur
I’ensemble de toutes les parties de R".

Soit M la tribu des ensembles H?-mesurables, au sens de I’énoncé du Théo-
reme [1-82; on sait que H définit une mesure sur M. Pour vérifier que M contient
toutes les parties boréliennes, on utilise le critere de Carathéodory présenté au Théo-
reme [1-92. Soient donc A et B deux parties de R™ vérifiant d(A, B) > 0, on cherche
a montrer que

HI AU B] = HYA] + H[B).
Pour tout € < d(A, B)/2, un ensemble de diameétre € ne peut intersecter a la fois
A et B; sil’on se donne un recouvrement de A U B par des ensembles de diametre



LES MESURES DE HAUSDORFF 245

au plus € on pourra donc en extraire des sous-recouvrements disjoints de A et B
en considérant d’une part les ensembles qui intersectent A, d’autre part ceux qui
intersectent B. On en déduit que HI[A U B] = HI[A] + HI[B], et la conclusion en
découle par passage a la limite. O

ExXEMPLES VII-4. (i) Soit A = {x¢} un singleton. Il est clair que 'on peut
recouvrir A par une boule de rayon nul, ce qui est de volume d-dimensionnel
nul pour tout d > 0. Il s’ensuit que H°[A] = 1, H¢[A] = 0 pour tout d > 0.
Par g-additivité, pour tout A dénombrable, H°[A] n’est autre que le cardinal
de A; et cette identité reste valable si A n’est pas dénombrable. On conclut
que HY n’est autre que la mesure de comptage.

(ii) Il est facile de vérifier que la mesure de Hausdorff #' dans R n’est autre que
la mesure de Lebesgue. Le caractére intrinséque de la définition de H! garantit
que le mesure H' restreinte & un segment de droite de R? est également la
mesure de Lebesgue sur ce segment de droite (vu comme sous-ensemble d'une
copie de R).

(iii) Soit x4 la mesure définie sur R? par

/fdu = /Olf(O,t)dt.

Un peu de réflexion montre que p = dy @ H'|[p.1], ot le symbole | signifie
“restriction”.

(iv) On pourra montrer en exercice que si I = [z,y] est un segment de droite
dans R? (non réduit & un point), alors He[I] vaut +oo si d < 1, |z — y] si
d=1let0sid>1.

VII-2.2. Propriétés élémentaires. Commencons par un critere de négligea-
bilité, conséquence immédiate de la structure de mesure extérieure :

PROPOSITION VII-5 (critere pratique de Hausdorff-négligeabilité). Soit A C R™.
Alors HAA] = 0 si et seulement si on peut inclure A dans une union d’ensembles
By, tels que Y, diam (By,)? est arbitrairement petit.

Cet énoncé généralise le critere de négligeabilité habituel pour la mesure de
Lebesgue dans R : un sous-ensemble de R est de mesure nulle si et seulement si on
peut I'inclure dans une union dénombrable d’intervalles dont la somme des longueurs
est arbitrairement petite.

Voici maintenant une propriété bien commode des mesures de Hausdorff, qui
explique en partie le role privilégié des fonctions Lipschitziennes dans ce contexte :

ProOPOSITION VII-6 (borne sous I'action des fonctions Lipschitziennes). (i) Soit
f une fonction k-Lipschitzienne définie sur un borélien de R™, d valeurs dans R™,
alors pour tout ensemble borélien B C A et pour tout d € [0,n] on a

HIF(A)] < BOHIA]

(ii) Plus généralement, si f et g sont deuz fonctions définies sur un borélien de
R™, a valeurs dans R™, telles que pour tous x,y € A on ait

|f(x) = f(y)] < g(z) — g(y)l,

alors pour tout borélien B C A et pour tout d € [0,n] on a

HO[F(A)] < H[g(A)].
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DEMONSTRATION. Si f est k-Lipschitzienne, en passant au supremum pour
(x,y) € B x B dans l'inégalité |f(x) — f(y)| < k|x — y|, on voit que pour tout
ensemble C' C A, diam (f(C)) < kdiam (C). L’énoncé (i) en découle immédiate-
ment.

La démonstration de (ii) est similaire : ’hypothese implique diam (f(C)) <

diam (g(C)). O

Passons maintenant a des propriétés d’invariances, qui elles aussi découlent di-
rectement de la définition :

PROPOSITION VII-7 (invariance par isométrie-multiplication). Soit T une appli-
cation affine de la forme

T(x) = aAz + b,
ou A est une isométrie, a > 0 et b € R". Alors
THH = a4 H.

En particulier, pour tout borélien C, on a He[C +b] = HYC] et H[aC] = o HIC],
et H? est 2¢-doublante.

REMARQUE VII-8. Lors d'un changement de variables dans une intégrale faisant
intervenir des mesures de Hausdorff, ce n’est donc pas le déterminant jacobien qui
apparait, méme pour des opérations de multiplication scalaire.

La Propriété VII-7 peut sembler étrange si I’on se souvient de la caractérisation de
la mesure de Lebesgue par son invariance sous l'action des translations : les mesures
de Hausdorff vérifient la méme propriété d’invariance! Il n’y a pas de contradiction
car les mesures de Hausdorff, malgré leur propriété de doublement, sont souvent tres
singuliéres (ou triviales), comme le montre la propriété suivante.

PRrOPOSITION VIL-9. Soit C,, := [0,1["C R"; alors HC,] = +oo pour tout
d < n et 0 pour tout d > n. En particulier,

- si d < n, alors HYO] = +o0 pour tout ouvert (non vide) de R™ ;

- sid>mn, alors H? est la mesure nulle sur R".

DEMONSTRATION. Pour tout k& > 1, on peut partager C,, en 2™F “petits” cubes
semi-ouverts de coté 27%, qui sont tous de mesure 27% H4[C,], par la Proposi-
tion VII-7. La o-additivité implique donc

HAC,] = 2% 2~k [ C, ).

Si HYC,] ¢ {0,+00} on a donc forcément n = k.

Dans le cas ou d > n, on peut appliquer la Proposition VII-5 : les petits cubes
sont de diameétre /n27%, et la somme de leurs diametres & la puissance d vaut donc
orkpd/29=dk ___ ),

k—o0
Il s’ensuite que H?[C,] = 0. Comme R™ est union dénombrable de copies de C,,, il
s’ensuit que HYR"] = 0.
Dans le cas ot d < n, pour montrer que H?[C,] = +oo il suffit de montrer que
H?[C,] > 0. On peut raisonner comme suit : si By est un ensemble de diametre 2ry,
alors on peut 'inclure dans une boule euclidienne de rayon 2ry, et A\,[Bg] < 2"a(n)r}.
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On a donc, pour tout recouvrement de C,, par des ensembles Bj de demi-diameétre

Tk S ]-7
L= M[Co] > M[Bi] < 2%a(n) ) rp <2"a(n)> rf,
k k k

et en passant & l'infimum on voit que H?[C,,] > 1/(2"a(n)). 1l s’ensuit que H[C,,] =
+00, et donc HC] = +oo pour tout cube semi-ouvert de R™. On conclut en notant
que tout ouvert contient un cube semi-ouvert. 0

VII-2.3. Régularité. Il résulte de la Proposition VII-9 que la mesure de Haus-
dorff H en dimension n > d n’est ni o-finie, ni régulie¢re au sens de la Définition I1-56.
Cependant, la propriété II-57 (que de nombreux auteurs appellent aussi régularité)
reste vraie :

THEOREME VII-10 (régularité faible de la mesure de Hausdorff). Soit d > 0, et
soit A C R™ une partie quelconque. Alors

(i) Il existe G, intersection dénombrable d’ouverts contenant A, telle que

HIG] = HIA];

(ii) Si A est H-mesurable et H[A] < +o00, alors il existe F, union dénombrable
de fermés contenus dans A, telle que

HIF) = HY[A].
En particulier,

HIUA] = sup{Hd[K]; K compact; K C A},

REMARQUE VII-11. L’énoncé (i) peut surprendre, puisque G est 'intersection
décroissante des Uy, ou chaque Uy est une intersection finie d’ouverts, donc un ou-
vert ; si HY[A] < +o00 on a donc

HYUA] = HYG)] < lim HA[Uy] = +oo.
Pourquoi cela n’est-il pas en contradiction avec la o-additivité de H??

DEMONSTRATION DU THEOREME VII-10. (i) Sans perte de généralité, on sup-
pose que HA] < +oo. Pour tout k, on a ’H‘li/k[ ] < HYA] < +oo, et par la
remarque VII-2(ii), on peut trouver un recouvrement de A par des ouverts C} ; de
diametre au plus 2/k, tel que

S ald) r(Chy)" < HiulA] + 1

J

Ok = U Cllv,jv G := m Ok

jeN k>1

On pose alors

Il est clair que G contient A, et d’autre part pour tout k on a
1
z/k Z r(Cy ) %1/k[ ]+ i

Il s’ensuit que H4[G] < H[A], d’ott la conclusion.
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(ii) Chacun des ouverts Oy peut s’écrire comme union dénombrable croissante
de fermés Fy, ; (j € N). Par o-additivité,

lim HYAN Fl. ] = H[AN O] = HYA]

j—00
Pour tout § > 0 et £ > 1 on choisit j, tel que
HIUAN ] > HYA] —27%6.

On pose
F' = ﬂ Fij

k>1

on a alors HYA N F'| > HI[A] — 4. Attention, rien ne garantit que F” soit inclus
dans A! Cependant, F’ est inclus dans NOy = G, et H4[G \ A] = 0, il s’ensuit que
HIF'\ A] = 0. Par la partie (i) du théoréme, il existe un ensemble G’, intersection
dénombrable d’ouverts, de mesure nulle, tel que F'\ A C G'. Alors Fs := F'\ G’ est
contenu dans A, c¢’est une intersection dénombrable de fermés, et

HAF5) > HIF'] — HYG') = HYF'] > HI[A] - 6.
On conclut en posant F' := mkz1 Fip. O

Les mesures de Hausdorff vérifient certaines des propriétés de densité au sens de
Lebesgue. On établit ainsi le théoreme suivant [Evans-Gariepy, pp. 72-75]

THEOREME VII-12 (densité au sens de Hausdorff). Soit A C R™ un ensemble
He-mesurable, avec HA[A] < +o0, 0 < d < n. Alors pour H-presque tout x € A,

_ . HYB,(z) N A]
274 < lim
- 1T_?(1)1p al(d)rd

<1

et pour He-presque tout v € R™\ A,

lim HYB,(z) N A]

r—0 O{(d) Td =0

REMARQUE VII-13. Il ne faut pas étre surpris par la dissymétrie des deux énon-
cés : les ensembles H%-mesurables de mesure finie sont “trés petits”, en particulier
leur complémentaire est toujours de mesure infinie. En tous les cas, il n’est pas
toujours vrai que H%presque tout point x de A soit régulier, au sens ot on aurait

i HAB(z,r) N A

= 1.
r—0 a(d) rd

Un travail considérable a été accompli dans la deuxieme moitié du vingtieme
siecle pour préciser I'énoncé ci-dessus et décrire les ensembles H?-mesurables de
maniére plus précise. De maniére générale, on peut décomposer un ensemble H9-
mesurable en une “partie réguliére”, dont H%presque tous les points sont réguliers, et
une partie “totalement irréguliere”, dont H%-presque aucun point n’est régulier. Les
propriétés de ces ensembles et leur description géométrique (existence de tangentes,
etc.) occupent une bonne partie de [Falconerl], et constituent encore un domaine de
recherche en activité.
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VII-2.4. Généralisation abstraite. Il est facile de généraliser la notion de
mesure de Hausdorff & un espace métrique X arbitraire : il suffit d’utiliser la for-
mule (65) pour A C X, en prenant U'infimum sur tous les recouvrements de A par
des parties By de X, de diametre au plus .

VII-3. Identification des mesures de Hausdorff

Quand d n’est pas un entier, il est difficile d’interpréter la mesure de Hausdorff #¢
d’une maniere intuitive ; elle définit une sorte de volume en dimension fractionnaire,
qu’il vaut sans doute mieux considérer de maniere purement formelle. En revanche,
quand d est un entier, la question se pose de savoir si on retrouve des concepts
familiers de longueur, surface, volume, etc.

Juste apres avoir défini la notion de mesure de Hausdorff, on a remarqué que la
mesure de Hausdorff 0-dimensionnelle coincide avec la mesure de comptage. Nous
allons maintenant voir qu’il y a bien identité entre les deux notions naturelles de “vo-
lume n-dimensionnel dans R™”, données respectivement par la mesure de Lebesgue
et par la mesure de Hausdorff n-dimensionnelle. On verra en outre que la mesure de
Hausdorff 1-dimensionnelle prolonge une définition courante de la longueur.

VII-3.1. Inégalité isodiamétrique. Soit A C R", de demi-diametre r. Il est
clair que le volume de A est égal & a(n)r™ si A est une boule, mais que peut-on dire
dans le cas général 7 On est tenté de penser que A est inclus dans une boule de rayon
r,our+e avec € > 0 arbitrairement petit, mais ce n’est pas forcément le cas, comme
le montre I'exemple d’un triangle de coté 1 dans R? est de diametre 1. Cependant,
I'inégalité isodiamétrique assure que le volume d’un tel ensemble est inférieur ou
égal a celui d’'une boule de méme rayon.

THEOREME VII-14 (inégalité isodiamétrique). Soit A C R™ un ensemble Lebesque-
mesurable, et r son demi-diameétre. Alors

A'A] < a(n)r”.

En d’autres termes, a diamétre fixé, les boules maximisent le volume.

REMARQUES VII-15. (i) On pourra comparer cet énoncé a celui de 'inégalité
isopérimétrique, qui stipule qu’a surface fixée, les boules maximisent le vo-
lume.

(ii) L’inégalité isodiamétrique peut paraitre évidente a premiere vue, mais elle
ne 'est pas, car un ensemble de diametre 2r ne peut pas, en général, s’inclure
dans une boule de rayon r.

La preuve du Théoreme VII-14 sera l'occasion d’utiliser pour la premiere fois la
technique puissante de symétrisation de Steiner.

DEFINITION VII-16 (symétrisation de Steiner). Soit A C R", et soit a € R™
un vecteur de norme 1. Soit P, I’hyperplan passant par 0, orthogonal a a. On peut
écrire A comme lunion disjointe des L,, N A, ou L, . est la ligne dirigée par a,
passant par z € P,. Pour chaque z € P,, on construit le segment A’, centré en z, tel
que H'[A] = H'[L,. N A]. La réunion disjointe des segments A, ainsi obtenus est
appelé symétrisé de Steiner de A par rapport a l'hyperplan P,.

J’admettrai le lemme suivant [Evans-Gariepy pp. 67-68], et suggére comme exer-
cice de le démontrer informellement.
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FIGURE 2. Le triangle équilatéral ne rentre pas dans le disque de
méme diametre.

FIGURE 3. Représentation schématique de la symétrisation de Steiner

LEMME VII-17 (propriétés de la symétrisation de Steiner). La symétrisation de
Steiner réduit le diamétre et préserve la mesure de Lebesgue.

DEMONSTRATION DE LINEGALITE ISODIAMETRIQUE. Soit (e1, ..., e,) une base
euclidienne de R"™. On note S, la symétrisation de Steiner par rapport a P,, et
A* =S5, S, ... 5 A. Le diametre de A* est alors inférieur ou égal a celui de A,
tandis que la mesure de Lebesgue de A* est égale a celle de A; il suffit donc de
montrer le résultat pour A*.

Par récurrence, et en utilisant le fait que la réflexion autour de P, laisse e; inva-

riant pour tout j # k, on montre que A* est symétrique par rapport a P,,,..., P, ,
et donc symétrique par rapport a l'origine. Il s’ensuit que A* est contenu dans une
boule de centre 0 et de rayon diam (A*)/2. Le résultat en découle. O

VII-3.2. Dimension n : le volume. La mesure de Hausdorff n-dimensionnelle
en dimension n coincide avec la mesure de Lebesgue A, :

THEOREME VII-18 (H™ = \,). Soit A C R™ un ensemble Borélien. Alors
H"[A] = M. [A]

En particulier, si Ey est un sous-espace affine de R™, de dimension k, alors la
restriction de H* & Ej, coincide avec la mesure de Lebesque sur Ej,.

Je vais commencer par présenter une démonstration simple d’un énoncé plus
faible selon lequel H"™ est proportionnelle a \,. La démonstration complete du Théo-
reme VII-18 est plus subtile et utilisera I'inégalité isodiamétrique.
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DEMONSTRATION PARTIELLE DU THEOREME VII-18. Il est clair que H" est

invariante par translation (de méme que toutes les mesures de Hausdorff sur R").
Pour montrer que H" et A, sont proportionnelles (il existe ¢(n) > 0 tel que H" =
c(n) A\,), il suffit donc de montrer que H?[C,,] € (0, +o0), ou C,, = [0, 1]™.
Soit £ > 0, et k € N tel que 2% < ¢/\/n < 2751, On peut recouvrir C, par
cubes de c6té 2%, dont chacun aura un diameétre \/52”“ < e. Il s’ensuit que
HC,] < C(n) 2727 = C(n), ot C(n) est une constante ne dépendant que de n.
En prenant la limite quand € — 0 on conclut que

H"[C,] < +o0.

2nk

Par ailleurs, si A est un ensemble quelconque, sa mesure de Lebesgue extérieure
est majorée par C'(n)diam (A)", ou C’(n) est le volume de la boule de rayon 2 dans
R™. Si I'on a un recouvrement de C, par des ensembles A;, la somme de toutes
les mesures extérieures de ces ensembles est au moins égale a celle du cube, d’ou
> C'(n)(diam (A))™ > 1. On en déduit que HZ[C,] est minoré par une constante
positive indépendante de ¢, et en faisant tendre £ vers 0 on conclut que

H"[C,] > 0.
0J

DEMONSTRATION COMPLETE DU THEOREME VII-18. La deuxiéme partie de
ce théoreme se déduit de la premiere grace au caractere intrinseque de la définition
de mesure de Hausdorff : la restriction de la mesure de Hausdorff H* & Ej est
exactement la mesure de Hausdorff #* définie sur Ej, qui est une copie de R¥.

Soit (Ck)k>1 un recouvrement de A par des ensembles de diametre inférieur ou
égal a €. Grace a I'inégalité isodiamétrique, on a

MlA] <D TNIC] <D an)r(Cy)™

En passant a I'infimum, on voit que A\, [A] < H?[A], et donc A\, [A] < H"[A]. Il nous
reste a montrer I'inégalité inverse.
Il est facile de montrer, en utilisant des cubes dyadiques, que

An[A] = inf {i MlQil; A JQk r(@r) < 8} ;

ol les @ sont des cubes dyadiques de c6tés paralleles aux axes. Pour de tels cubes,
on peut trouver une constante c,, dépendant uniquement de n, telle que

a(n)r(Qr)" = cuAn|Qk-

On en déduit que H" < ¢, \,.

Pour conclure, on utilise le résultat suivant, conséquence du Lemme de recou-
vrement de Vitali, et plus précisément de son Corollaire II-103 (et de la Propriété
VI-7 : Etant donné un cube Q et € > 0, on peut écrire

Q:UBjUN7
J<1

ou les B; sont des boules fermées de rayon au plus ¢, disjointes, et N est un ensemble
Lebesgue-négligeable.
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Soit maintenant A un ensemble Lebesgue-mesurable, on choisit une famille (Cy)
de cubes @), recouvrant A, telle que

S MIQu] < AA]+6,

ou § > 0 est arbitrairement petit. Pour chaque @) on introduit une famille de
boules (By;);j>1 et un ensemble négligeable Ny, vérifiant les conclusions du lemme
admis ci-dessus; en particulier, H[Ny| < ¢, - 0 = 0. On donc

HIA] <Y H Q] =Y (O HIBiy] + H(NK))

k>1 k>1 j>1
<D MalBigl =) AalUBis =D AlQk] < AafA] + 6.
k>1 j>1 k>1 k>1
Ceci conclut 'argument. O

VII-3.3. Dimension 1 : la longueur. On pourrait convenir a priori de choisir
H! comme définition de la longueur d’une partie de R™. Cependant, il existe une
autre notion simple et populaire de longueur, batie sur le concept de rectifiabilité.
Commencons par en rappeler les propriétés principales.

DEFINITION VII-19 (rectifiabilité). Soient I un intervalle de R et v : I — R™
une courbe continue injective. On dit que ~y est rectifiable sur I si pour tout intervalle
compact [a,b] C I,

L[a,b] (7) =
N
sup {Z Y(ther) —7(te);  a=to<t <...<ty<tyy1=b Ne N} < 400
k=0
ot le supremum est pris sur toutes les subdivisions finies (a = to,t1,...,tn,tny1 = b)
de [a,b]. On appelle alors
(66) L(v) == sup Lpy(7y)

[a,b)CI
la longueur de 7.

En d’autres termes, la longueur d’une courbe est le supremum de toutes les
longueurs des “approximations polygonales” de cette courbe. Ce procédé de calcul
de longueur est la rectification de la courbe.

REMARQUES VII-20. (i) Par définition, L4 (7y) est toujours supérieur ou
égal a |y(b) — v(a)l|, et on peut vérifier qu’il y a égalité quand la courbe est
une fonction affine : la ligne droite est bien le plus court chemin entre deux
points!

(ii) On généralise sans difficulté cette notion a un espace métrique abstrait.

Noter I'hypothese d’injectivité faite dans la définition : des maux de téte s’en-
suivraient si 'on devait prendre en compte la multiplicité; ou alors il faudrait bien
prendre garde a définir la longueur de la courbe 7, et non simplement de son image
v([a, b]). Mais par souci de simpliciité, dans cette partie je ne travaillerai qu’avec des
courbes injectives.
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7(to)

FIGURE 4. Approximation polygonale d'une courbe

Une courbe « étant donnée, on appelle reparamétrage de v toute courbe (in-
jective) 7, dont I'image est la méme que celle de 7. On note que la longueur est
invariante par reparamétrage.

Si v est une courbe rectifiable définie sur un intervalle I, et zy est un point arbi-
traire de I, alors on peut définir un reparamétrage privilégié de v, dit paramétrage
par longueur d’arc : on définit la longueur orientée a partir de x( par

o) = ) Lma(n) (22 20)
Cry(2) {—meﬂv) (2 < 20)

on vérifie que la fonction ¢,, est continue et strictement croissante, en particulier
inversible sur son image. On définit alors le reparamétrage v par

V(o + lag (7)) = v(@), (&) = Ligga (7).

Les propriétés suivantes découlent presque immédiatement de la définition.

)

PropoSITION VII-21 (propriétés du paramétrage par longueur d’arc). Soit - :
I — R une courbe paramétrée par longueur d’arc. Alors pour tout [a,b] C I,

L[a,b] (7) =b— a;
En particulier,
(67) [v(6) —y(a)] < b —aq,
et
L(v) = [1].

Le théoréme suivant montre que la dimension de Hausdorff de dimension 1 est
une généralisation du concept de rectifiabilité.

THEOREME VII-22 (L = H'). Soient I un intervalle de R, et v : I — R une
courbe injective rectifiable. Alors

H ()] = L().

DEMONSTRATION. Sans perte de généralité, on supposera que 7y est paramétrée
par longueur d’arc. Si (Ag)ken est un recouvrement de (7), on définit un recouvre-
ment (By)ren de I en définissant By, := v~ 1(Ay). I'inégalité (67) implique alors que
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diam (By) > diam (Ag). En utilisant les définitions des mesures de Hausdorff, on en
déduit
H(V(I) = HA(I) = |I] = L(v).

Pour établir I'inégalité inverse, commencons par remarquer que H!(v([a,b])) >
|7(b) — v(a)|. En effet, si 7 est la projection orthogonale de ~y([a,b]) sur la ligne
droite joignant ~y(a) et y(b), alors 7 réduit les distances, donc, par définition des
mesures de Hausdorff, H'(y([a,b])) > H (7(v([a,b]))) = H'([y(a),7(b)]). On peut
identifier la droite passant par y(a) et v(b) & R ; en utilisant alors I'identié H! = A; en
dimension 1, on constate que H!([y(a),v(b)]) n’est autre que la longueur du segment
[v(a),7(b)], ie. |v(b) —~y(a)-

Enfin, soit [a,b] C I et soit a = to < t; < ... <ty < tyy1 = b une subdi-
vision de [a, b]; cette subdivision découpe l'intervalle I en sous-intervalles ouverts
In, 11, ..., Int1, Inyo. Les points étant de mesure de Hausdorff H! nulle, on a

N+2 N+1

H (v(I) =D H' (1) = Y H (Y(Ie) = ) Iyltesr) — (k)]

En prenant le supremum sur toutes les subdivisions possibles, puis sur [a,b] C I, on
conclut que

H (v(1) = L(v),
ce qui acheve la preuve. O

VII-3.4. Autres dimensions entieres. On vient de constater que la mesure
de Hausdorff n-dimensionnelle s’identifie a la mesure de Lebesgue, i.e. au volume
n-dimensionnel, et que la mesure de Hausdorff 1-dimensionnelle s’identifie a une
notion de longueur, au moins dans le cas des courbes rectifiables. Il convient d’étre
plus prudent en ce qui concerne les autres dimensions entieres! Appliquées a des
objets suffisamment “réguliers”, les mesures de Hausdorff donneront les résultats
attendus : par exemple, la mesure H? définit une notion de surface, etc. Cependant,
pour des objets irréguliers, ces notions peuvent ne pas recouper les autres notions en
vigueur... Cette remarque vaut aussi pour la dimension 1, dans le cas d’objets peu
réguliers.

Le cas le plus frappant est celui ou d = n — 1. Soit A C R™ une partie com-
pacte (pour simplifier), comment définir la “surface” (ou volume n — 1-dimensionnel)
S(0A) de son bord 0A? 1l existe trois définitions, plus ou moins naturelles selon les
contextes. La premiere fait intervenir les mesures de Hausdorff, la seconde est une
définition possible du “contenu de Minkowski”, et la troisieéme est naturelle en théorie
des distributions, ou en physique mathématique.

(i) S(A) :==H""H(0A);

(ii) S(A) := lim inf AnlAe] = AnlA] :

e—0 £

(iii) S(A) := sup {/ V-J; Je CXRY,RY), |J]| < 1} , ol le supremum est pris

A
sur ’ensemble des fonctions J de R™ dans R", de classe C* et a support compact,
bornées par 1 en norme, et I’on a noté
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la divergence de J.

C’est probablement la formule (ii) qui est la plus intuitive, et la plus simple a
se représenter visuellement. D’autre part, le lecteur qui se souvient de la formule de
Green—Ostrogradski ne sera pas surpris par I'apparition de 'opérateur divergence
dans la formule (iii); en effet, cette formule énonce que, sous des conditions de

régularité suffisante,
/ V-J= / J(z) - N(x)do(z),
A 9A

ou N(z) désigne la normale & A en x et o... la mesure de surface sur 0A.

FIGURE 5. Surface au sens de Minkowski : I’accroissement infinitési-
mal du volume est donné par le produit de la surface par la largeur
d’épaississement

Les trois définitions précédentes de la surface de A peuvent donner des résultats
différents pour des ensembles A “pathologiques”. Attention donc, dans un contexte
peu régulier, a préciser la notion de “surface k-dimensionnelle” employée.

VII-4. Dimension

VII-4.1. Echelle des mesures de Hausdorff. La proposition suivante éta-
blit le fait intuitif que si une dimension convient pour évaluer la taille d’'un objet,
les dimensions supérieures sont trop grossieres (ainsi, si une courbe a une surface
positive, sa longueur doit étre infinie; si elle a une longueur finie, sa surface doit étre
nulle).

PROPOSITION VII-23 (au plus une dimension donne une mesure non triviale).
Soit A C R"; alors

(i) si HY[A] < +o0 pour un certain d > 0, alors H* [A] = 0 pour tout d’ > d ;

(ii) si HU[A] > 0 pour un certain d > 0, alors H* [A] = 400 pour tout d' < d ;

(iii) pour tout d >n, on a HIA] =0;

DEMONSTRATION DE LA PROPOSITION VII-23. Soient A C R”, d; < ds, et
soit (Cg)ren un recouvrement de A par des ensembles de demi-diameétre respectif
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rr < e/2. Alors
Z r,fQ < g~ Z r,‘fl.
k k

Si maintenant on a H%A] < +oo pour un certain d > 0, alors pour tout € > 0
on a HIA] < +oo, et il existe donc un recouvrement dénombrable de A par des
ensembles de demi-diametre r, < £/2, tel que

Zr,‘f§0<+oo.
k

Pour ce méme recouvrement, on a alors Y, 7{ < Ce?~¢ — 0 dés que d’ > d. Cela
prouve que He [A] = O(e?~9), et en particulier H¥ [A] = 0.

Si d’autre part H%[A] > 0 pour un certain d > 0, alors pour tout ¢ > 0 assez
petit on a HZ[A] > § > 0; en particulier, tout recouvrement dénombrable de A par
des ensembles de demi-diametre ry < e/2,

)
E d>_
- rk_a(d)>o’

d’ou, pour tout d’ < d,

et finalement H% [A] = +oo.

L’assertion (iii) a déja été établie ; nous allons reproduire briévement le raisonne-
ment. Comme R" est union dénombrable de pavés, il suffit de prouver qu’un pavé de
R™ est de mesure d-dimensionnelle nulle pour d > n. Puisque ce pavé est de mesure
de Lebesgue finie donc de mesure d-dimensionnelle finie, (iii) découle de (i). O

VII-4.2. Dimension de Hausdorff. Au vu de la Proposition VII-23, la fonc-
tion d — H?[A] est trés particuliere : on se convainc facilement qu’elle vaut +oo
quand d est strictement plus petit qu'un certain dy, et 0 quand d est strictement
supérieur a d.

HUA]  nrr

dy d

FIGURE 6. Graphe de H4[A]; H%[A] peut se situer n’importe ou sur
la ligne pointillée.
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Ceci meéne naturellement a la définition de la dimension de Hausdorff.

DEFINITION VII-24. Soit A C R™. On définit sa dimension de Hausdorff, que
l’on note dim(A) ou dimy(A), par

dim(A) := inf{d > 0; H[A] =0} € [0,n]

De manicére équivalente, dim(A) est l'unique dy tel que HY[A] = +oo pour tout
d < dy, et HY[A] =0 pour tout d > dy.

La dimension de Hausdorff se préte bien a de nombreux énoncés théoriques, car
elle est associée naturellement aux mesures de Hausdorff ; en revanche elle est parfois
difficile a calculer. Le théoreme suivant se déduit facilement de la Proposition VII-6 :

THEOREME VII-25 (dimension des graphes et images). Soit f : R™ — R™ une
fonction Lipschitzienne. Soit A une partie mesurable de R"™, on note G(f,A) =

{(z, f(x)); = € A} le graphe de f sur A. Alors
(i) dimya(f(A)) < dim(A) < n;
(i7) Si \p[A] > 0, alors dimy (G(f, A)) = n.

REMARQUES VII-26. (i) On se souvient que le graphe d’une fonction conti-
nue est de mesure de Lebesgue nulle; nous voyons ici que le graphe dune
application lipschitzienne a la dimension attendue. De maniere générale, la
dimension de Hausdorff d’un graphe est supérieure ou égale a la dimension
de l'espace de départ; elle peut étre strictement supérieure pour des appli-
cations qui sont seulement holderiennes (ou encore moins régulieres) et pas
lipschitziennes.

(ii) L’application de Peano montre que l'image du segment [0, 1] par une appli-
cation continue peut étre de dimension 2 (bien siir, cette application n’est pas
lipschitzienne!). Une trajectoire typique du mouvement brownien plan pour
les temps t € [0, 1] fournit un autre exemple de courbe dont I'image est de
dimension 2, cependant la mesure 2-dimensionnelle de cette image est nulle!
Les trajectoires du mouvement brownien ne sont bien stir pas lipschitziennes,
mais elles sont Hélder-a pour tout oo < 1/2 (il est naturel d’imaginer que 'ex-
posant 1/2 est critique pour de tels contre-exemples). En revanche, I'image
d’une courbe lipschitzienne est toujours de dimension inférieure ou égale a 1.
Si on considére une fonction lipschitzienne définie sur un segment [0, 1], a
valeurs dans R", son image sera soit réduite a un point, soit de dimension 1.

(iii) En corollaire de ce théoréeme, on voit que les applications bilipschit-
ziennes préservent la dimension de Hausdorff (bilipschitzienne = bi-
jective lipschitzienne de réciproque lipschitzienne). C’est une des raisons pour
lesquelles les applications bilipschitziennes constituent une notion naturelle
d’“isomorphisme” dans I’étude des objets fractals.

VI1I-4.3. Dimension de Minkowski. Expliquons maintenant une autre no-
tion populaire, souvent plus simple a calculer et antérieure a celle de Hausdorff, dite
dimension de Minkowski.

Commencons par nous interroger sur le moyen de faire la différence entre un
objet monodimensionnel et un objet bidimensionnel ? Intuitivement, le second est
beaucoup plus “recouvrant”; on peut formaliser cela en considérant I’ensemble des
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points qui leur sont proches. Placons-nous dans le carré [0,1]? pour simplifier. On
quadrille ce carré en petits sous-carrés de cdté ¢ = 1/K, K > 1. On s’attend
a ce qu'un objet monodimensionnel X rencontre environ L/e tels sous-carrés, ot
L désigne la longueur de X, tandis qu'un objet bidimensionnel Y en rencontrera
environ S/e?, ou S désigne l'aire de Y. Et si 'on considere la réunion de tous les
sous-carrés rencontrés par ces objets, sa surface est environ Le dans le premier cas, S
dans le deuxieme. Par extrapolation, on a envie de dire qu'un objet est de dimension
d si le nombre de petits carrés nécessaire a son recouvrement est de I'ordre de ¢~¢.

Cette idée conduit a la dimension de Minkowski d’un sous-ensemble A de
R™ : on pose

dimp(A) = lim log Ne(4)
e—0 | loge]

ou N.(A) est, au choix : le nombre minimal de boules de diametre e (resp. de
cubes de coté e, resp. de cubes pris parmi un réseau de coté €, resp. d’ensembles
de diametre €) par lequel on peut recouvrir A; ou encore le nombre maximal de
points que I'on peut placer dans A de telle sorte qu’ils soient tous a une distance
supérieure ou égale a e les uns des autres. Toutes ces équivalences sont passées
en revue dans [Falconer2, Chapitre 3] ou la dimension de Minkowski est appelée
dimension de [comptage de] boites (“box dimension”). Notons que dans le cas ou la
limite quand ¢ — 0 n’existe pas, on peut toujours définir une dimension supérieure
(resp. inférieure) en remplacant la limite par une limsup (resp. liminf). Enfin, il
existe encore une autre fagon équivalente de définir cette dimension :

1
dimp(A) :=n + lim 208 Anlfle] AnlAd]
=0 |loge|

ou A, est le e-voisinage de A, i.e.
A, ={zx e R"; d(z,A) < ¢e}.

La définition de la dimension de Minkowski est assez intuitive, et elle est souvent
relativement facile a calculer ou estimer ; mais elle a quelques défauts troublants. Par
exemple, ensemble ([0, 1] N@Q)? est dense dans [0, 1]?, et la définition précédente lui
attribue une dimension 2 ; pourtant, un point est de dimension 0, et dans un cadre
de mesures o-additives, on trouverait naturel qu’une union dénombrable d’objets de
dimension donnée d soit également un objet de dimension d. La conclusion est que
la dimension de Minkowski n’est pas associée a une notion naturelle de mesure.

V1I-4.4. Comparaisons. Nous voici avec deux notions de dimension fraction-
naire : Hausdorff et Minkowski, qui ne coincident pas forcément.

De maniere générale, la dimension de Minkowski est toujours supérieure ou égale
a la dimension de Hausdorff; mais I'inégalité peut étre stricte, puisque [0, 1] N Q est
de dimension de Hausdorff 0 et de dimension de Minkowski 1...

Par ailleurs, la dimension de Minkowski vérifie I'identité

ce qui n’est pas toujours vrai de la dimension de Hausdorff.
On trouvera dans [Falconer2, Chapitre 3] d’autres définitions en usage de la
notion de dimension, et une discussion des liens qui existent entre ces notions.
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VII-4.5. Ensembles de Cantor. Commencons par ’exemple utilisé par Haus-
dorff lui-méme pour illustrer sa notion de dimension : ’ensemble triadique de Cantor,
défini comme la limite des ensembles fermés Cy, on Cy = [0, 1] et Cj est obtenu a
partir de Cy_; en supprimant le tiers (ouvert) central de chacune des composantes
connexes de C_;. L’ensemble résultant est clairement de mesure de Lebesgue nulle,
on peut se demander quelle est sa dimension.

FIGURE 7. Premieres étapes de la construction de I’ensemble tria-
dique de Cantor

Si 'on prend € = 37, on voit que I'ensemble triadique de Cantor C' dans [0, 1]
peut se recouvrir par 2¥ = ¢~ segments de longueur ¢ (soit des boules de rayon
£/2), avec d = log2/log 3, et que ce recouvrement est le plus économique que 1'on
puisse réaliser. Il est facile d’en déduire que

~ log2

dimp (C) = g 3"

La dimension de Hausdorff est déja plus difficile a calculer. On sait qu’elle n’est
pas plus grande que la dimension de Minkowski, soit log 2/ log 3. Par ailleurs, on peut
faire un calcul heuristique simple en tirant parti de la construction auto-similaire
de I'ensemble C' et de lidentité HUNA] = N HIYA], facile & vérifier. il existe un
exposant d tel que H[C] €]0, +oo, alors, comme C' est I'union de deux copies de

C'/3, on aura
2
— @

HIC) = 2H[C/3] H[C),

ce qui impose 3¢ = 2, i.e. d = log2/log 3.

On est donc tenté de conclure que la dimension de Hausdorff de C' est égale a
la dimension de Minkowski. C’est effectivement le cas : le raisonnement esquissé ci-
apres prouve en effet que pour tout recouvrement de C' par une famille dénombrable
d’intervalles ouverts (Ij)gen, on a

(68) > It >

Y

N | —

et il s’ensuit que H[C] > 0.
Pour établir I'inégalité (68), on remarque d’abord que par compacité on peut se
limiter a une famille finie d’intervalles ouverts, dont chacun a une longueur comprise



260 CHAPITRE VII (1" janvier 2026)

entre 3~ (1 et (strictement) 3¢, pour un unique ¢ = ¢(k). L’intervalle I;, peut alors
intersecter au plus une des composantes connexes de Cy, et donc pour 7 > £ il ne
peut intersecter plus de 2/7¢ < 293¢ |4 composantes connexes de C;. On choisit j
suffisamment grand pour que 377 soit plus petit que toutes les longueurs |I| ; alors
toutes les composantes connexes de C; doivent étre intersectées par les Iy, il y en a
27 et on a donc

27 < Z(nombre de composantes connexes intersectées par I)
k
<> V3L
k

dou >, [Ii* > 374 =1/2.

Avec un peu plus d’efforts, on peut montrer que H4[C] = 2174, qui constitue une
sorte de mesure de la taille de C' en dimension d. Notons que ’on ne peut utiliser la
o-additivité pour cela : pour tout k, on a H[C}] = +oo0...

Le contenu de Minkowski permet, ici encore, de prédire le résultat de maniere
tres simple : par définition, le contenu de Minkowski d’un sous-ensemble de dimension
d de R™ est le produit de «(d) par le coefficient dominant de N, quand ¢ — 0, et
fournit une sorte de volume d-dimensionnel qui cadre bien avec 'intuition que 1’on
se fait des notions de longueur, surface, etc. Ici on a a(1) = 2 et N, ~ 27%4 de
sorte que le contenu de Minkowski coincide bien avec H%[C|]. Mais cette égalité n’est
pas la regle!

On note que du point de vue topologique, 'ensemble triadique de Cantor est
“totalement discontinu” : bien qu’il ne soit pas dénombrable, il ne contient aucun
segment, et toutes ses composantes connexes sont donc des points. Du point de vue
topologique, il est naturel de lui attribuer une dimension nulle! On peut montrer
d’ailleurs que c’est le cas de toute partie dont la dimension de Hausdorff est stricte-
ment inférieure a 1 [Falconer2, Proposition 2.5]. On peut mettre cette remarque en
regard d’une suggestion de Mandelbrot, selon laquelle on pourrait définir un objet
fractal comme un objet dont la dimension de Hausdorff est strictement supérieure a
la dimension topologique.

De maniere générale, on appelle ensemble de Cantor un espace topologique com-
pact totalement discontinu (dont les composantes connexes sont des points) et sans
point isolé (un point zy d'un espace X est dit isolé sl existe un voisinage V' de zg
qui ne rencontre X qu’en xg). Ces ensembles jouent un role important dans diverses
branches des mathématiques; on peut en construire de nombreux exemples par des
variantes du procédé de construction diadique de Cantor. Voici quelques exemples
intéressants :

- On coupe le segment [0, 1] en k segments (k > 3, supposons k impair pour sim-
plifier), on élimine les k£ —2 intervalles centraux pour ne garder que les deux segments
extrémes. On coupe chacun des segments ainsi obtenus en k parties égales, et sur ces
k parties on élimine les k — 2 parties centrales. Et ainsi de suite! On construit de la
sorte un ensemble de Cantor “k-adique fin” de dimension log 2/ log k (arbitrairement
petite). Si au contraire a chaque étape on choisit d’éliminer seulement le segment
central, I’ensemble limite C' est un ensemble de Cantor “k-adique gras” de dimension
log2/logc(k), ot ¢(k) = (2k+1)/k est le coefficient de proportionnalité permettant
de passer de 'ensemble a sa “composante gauche” (C' = ¢(k)(C' N [0,1/2])); comme
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¢(k) — 1 pour k — oo, 'ensemble ainsi construit est de dimension arbitrairement
proche de 1.

- On coupe le segment [0, 1] en trois tiers, on élimine le tiers central. On coupe
chacun des segments ainsi obtenus en cing parties égales, et sur ces cinq parties on
élimine les trois parties centrales. On coupe chacun des segments ainsi obtenus en
sept parties égales, et sur ces sept parties on élimine les cinq parties centrales. Et
ainsi de suite! On construit de la sorte un ensemble de Cantor non dénombrable
mais “extrémement fin”, en fait de dimension 0.

- On construit un Cantor triadique sur [0,1/2], un Cantor 5-adique gras sur
[1/2,3/4], un Cantor 7-adique gras sur [3/4,7/8], un Cantor 9-adique gras sur
[7/8,15/16], etc. L’ensemble ainsi obtenu est de mesure de Lebesgue nulle, comme
union dénombrable d’ensembles de mesure nulle ; mais il sera de dimension 1, puisque
la mesure d-dimensionnelle d'un Cantor k-adique gras est +oo pour d > log 2/ log c(k).

VII-4.6. Autres exemples. Le flocon de von Koch dans R? est I'un des fractals
les plus simples et les plus célebres : partant d’un triangle équilatéral, on construit
sur chaque cdté un triangle équilatéral plus petit d'un facteur 1/3, pointant vers
Iextérieur. Puis on recommence.... La frontiere de la figure limite est appelée flocon
de von Koch (voir [Falconer2], p.xv). Il n’est pas tres difficile de montrer que sa
dimension fractale est log4/log3, ce qui correspond au fait qu’a chaque étape on
remplace chaque segment de longueur ¢ par quatre segments de longueur ¢/3 (com-
parer au Cantor triadique, dans lequel on remplagait chaque segment de longueur ¢

par deux segments de longueur ¢/3).

F1GURE 8. Brique élémentaire de la construction du flocon de von Koch

Ici encore, la dimension de Hausdorff est strictement supérieure a la dimension
topologique “naturelle” qui est 1. En particulier, le flocon de von Koch est de “lon-
gueur” infinie, et de “surface” nulle. Selon une argumentation célebre de Mandelbrot,
avec une bonne approximation on peut considérer qu'un objet tel que la cote de la
Bretagne présente le méme comportement : sauf a aller a des échelles ridiculement
précises (de l'ordre du rocher), il est impossible de mesurer sa longueur; des esti-
mations de la dimension de cette cote ont méme été proposées. D’autres fractals
célebres se trouvent dans [Falconer2], comme les ensembles de Julia, de Mandelbrot,
ainsi que de nombreux fractals aléatoires.

Le calcul de la dimension des fractals a motivé le développement de méthodes de
calcul de la dimension de Hausdorff, passées en revue dans [Falconer2]. On mention-
nera en particulier la puissante et élégante technique de la distribution de masse
(pp. 64-66) : étant donné une partie A de R™, si 'on peut trouver une mesure de
probabilité u sur A telle que

/=i

alors dimy (A4) > s.
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Malgré ces méthodes, le calcul de la dimension de Hausdorff est parfois un casse-
téte insoluble, ou presque. Voici un exemple “simple” discuté en pp. 148-153 de ce
méme ouvrage : sur le segment [0, 1] définissons, pour A > 1 et s €]1,2[, la fonction

o0
forit— Z A\(E=2)k sin(A*t).

k=1
Cette fonction, dite “fonction de Weierstrass”, est continue (elle est donnée par un
développement en série absolument convergent) mais différentiable nulle part sur
[0,1] (noter que la série des dérivées est violemment divergente; cela ne constitue
bien stir pas une preuve, mais rend plausible la non-différentiabilité). Il est prouvé
dans [Falconer2] que pour A assez grand, la dimension de Minkowski du graphe de
fs est exactement s. On a longtemps conjecturé que la dimension de Hausdorft a la
méme valeur, et cela a été affirmé par Benoit Mandelbrot ; mais pendant longtemps
cela restait une conjecture, on savait seulement que limy_, o, dimy (G(fs.,[0,1])) = s;
ce n'est qu’en 2015 que le mathématicien chinois Weixiao Shen fournit une preuve
complete [Mathematische Zeitschrift. 289 (1-2) : 223-266 (2018)].

Enfin, comme je I’ai mentionné en début de chapitre, ’estimation de la dimension
minimale des ensembles de Besicovitch, aussi appelée probleme de Kakeya, a tenu
en haleine des générations de spécialistes, a l'interface de la théorie géométrique de
la mesure et de ’analyse harmonique ; et on sait aujourd’hui résoudre ce probleme
seulement en dimensions n < 3.

VII-5*Changements de variables : aire et co-aire

Les mesures de Hausdorff sont particulierement utiles pour énoncer des change-
ments de variables de R™ dans R™ de manieére unifiée. Ce sont les fameuses formules
de l'aire et de la co-aire. On les donne ici sans preuve; le chapitre 3 de [Evans-
Gariepy] leur est entierement consacré.

THEOREME VII-27 (formule de 'aire). Soit T : R® — R™ une application lip-
schitzienne, avec m > n, et soit A C R™ un ensemble Lebesque-mesurable. Alors

/ |det VT|d\, = [ H[ANT Hy}] H"(dy).
A R™

THEOREME VII-28 (formule de la co-aire). Soit T : R™ — R™ une application
lipschitzienne, avec m < n, et soit A C R™ un ensemble Lebesgue-mesurable. Alors

/ | det VT'|d\,, = / H ™ [ANT Hy} An(dy).
A m

EXEMPLE VII-29. Soit f : [0,1] — R™ une courbe lipschitzienne simple ; alors
par la formule de 'aire,

(69) [ 1 lds = [ 1) = #1702

ce qui identifie H! avec une notion naturelle de plus de longueur d’une courbe. Fi-
nalement, pour une courbe lipschitzienne simple a valeurs dans R", on peut calculer
la longueur de trois fagons équivalentes : par mesure de Hausdorff, par rectification
(Définition VII-19) ou par intégration de la vitesse. Cela reste vrai si la courbe est
absolument continue.



CHAPITRE VIII

Espaces de Lebesgue et mesures signées

Jusqu’ici, on a considéré des fonctions “individuellement”. Dans ce chapitre et le
suivant, 'attention portera sur des familles entieres de fonctions : des “espaces de
fonctions”, ou espaces fonctionnels. On munira ces espaces de structures géomé-
triques et topologiques : par exemple un produit scalaire pour définir I’orthogonalité
et plus généralement les angles, une norme pour mesurer la taille des fonctions et
leur éloignement, une description de leurs formes linéaires, qui sont autant de fa-
cons de les cartographier par des coordonnées. En premiere approximation, on peut
dire que c’est cette étude des propriétés géométriques et topologiques des espaces de
fonctions qui constitue I’analyse fonctionnelle.

Le but premier de I'analyse fonctionnelle est de mettre en place des schémas
de démonstrations intuitifs ou simples, similaires aux arguments géométriques ou
topologiques que l'on fait dans un espace euclidien (usage de coordonnées, ortho-
gonalité, construction de limites, etc.). On peut faire remonter ce point de vue a
Fourier lui-méme, avec des motivations issues de la physique mathématique.

Dans ce chapitre, j'introduirai deux types d’espaces fonctionnels. Dans un pre-
mier temps, je fixerai une mesure, et construirai des espaces de fonctions mesu-
rables, définis par leur “degré d’intégrabilité” : intégrabilité de la puissance p pour
les espaces LP de Lebesgue. L’exploration de ces espaces fut, sous 'impulsion des ma-
thématiciens polonais du Café écossais, le premier grand projet de ’analyse fonction-
nelle. Leur étude nous menera a quelques développements sophistiqués, en particulier
les puissantes techniques d’interpolation entre espaces de Lebesgue. Par extension,
on considerera également 1'espace de toutes les fonctions mesurables.

Le deuxieme type d’espace fonctionnel ne sera pas constitué de fonctions a pro-
prement parler, mais des fonctions d’ensembles : ce sera 1’espace des mesures, ou plus
précisément des mesures signées, que 'on peut considérer comme des “fonctions
généralisées”.

Les questions prioritaires que ’on se pose sur les espaces fonctionnels sont : les
normes, la complétude, la séparabilité, la réflexivité, I'uniforme convexité, I’existence
de systemes de coordonnées commodes. L’étude de ces questions commencera dans
le présent chapitre, et se poursuivra dans le chapitre suivant.

La section la plus importante de ce chapitre est la Section VIII-1, qui introduit
les espaces de Lebesgue et leurs propriétés élémentaires, approfondies ensuite dans
la Section VIII-2. La Section VIII-2.4 explore les fonctions mesurables en général.
La Section VIII-4 est consacrée aux mesures signées.

VIII-1. Espaces L” de Lebesgue
VIII-1.1. Définitions.

DEFINITION VIII-1 (espaces LP). Soit (X,.A, 1) un espace mesuré.
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- Pour tout p €0, +oc[ on définit l’espace de Lebesque d’ordre p comme [’ensemble
des fonctions mesurables de X dans R telles que |f|P soit intégrable.

- On définit 'espace de Lebesgue d’ordre oo comme ['ensemble des fonctions
mesurables de X dans R telles qu’il existe C < oo tel que |f| < C' en-dehors d’un
ensemble de mesure nulle.

- On définit l'espace de Lebesgue d’ordre 0 comme l’ensemble des fonctions me-
surables de X dans R qui sont nulles en-dehors d’un ensemble de mesure finie.

L’espace de Lebesgue d’ordre p est noté LP(X, A, ), ou simplement LP(u) (ou
encore LP(X, p) ou LP(X) ou LP(du) ou LP, etc).

REMARQUES VIII-2. (i) L’espace LP(u) dépend de p; c’est évident pour p <
00, mais on se laisse plus facilement piéger dans le cas p = oo. Ainsi la fonction
1/x appartient a L*([0, 1], 61 /2).

(ii) On rencontre aussi parfois 'exposant de Lebesgue en bas : L,(X); mais
je recommande de garder la place d’indice en bas pour le comportement a
'infini, comme dans Cy(X), C.(X); dans le cadre des espaces L, cela pourra
se traduire par des poids a l'infini.

ExXEMPLES VIII-3. (i) Si X = N, muni de la tribu triviale de toutes les
parties, et p est la mesure de comptage, l'espace LP(X, 1) pour 0 < p < 400
est 'ensemble des suites réelles (u,),en telles que (avec la convention 0° = 0)

> funl? < 4o0.

neN
Pour p = oo c’est 'ensemble des suites réelles bornées.

Dans ce cas, on utilise traditionnellement les notations / ou ¢?(N) pour l'es-
pace de Lebesgue d’ordre p.

(ii) Soient By = B;1(0) C R”, et A, la mesure de Lebesgue sur la tribu boré-
lienne de R". Alors, la fonction f, : x — |z|~® appartient a LP(By, \,) si
et seulement si p < n/a, et et a LP(R™\ By, A,) si et seulement si p > n/a.
Elle n’appartient a aucun espace LP(R", \,,). En pratique, pour vérifier I'ap-
partenance d’une fonction a un espace de Lebesgue, on est souvent amené a
étudier séparément l'intégrabilité LP “locale” et I'intégrabilité LP “a 'infini”.

REMARQUES VIII-4. (i) On rencontre exceptionnellement des espaces de Le-
besgue d’ordre négatif. La définition ne fait pas de mystere : f € LP (p < 0)
si et seulement si 1/|f] € LP. Cette notion n’a guere d’intérét que si p est
finie.

(ii) Les espaces de Lebesgue constituent en général une tres bonne “échelle” pour
quantifier I'intégrabilité des fonctions mesurables; mais parfois cette échelle
n’est pas assez précise. On ne peut, par exemple, en termes d’appartenance
a des espaces LP, faire la différence entre des fonctions de référence telles que

[log(1/]x])]”

[

ha.p

)

pour des valeurs différentes de (5. D’autres espaces fonctionnels plus “fins”
permettent de distinguer ces fonctions : par exemple, les espaces de Lorentz
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LP1 introduits par I'analyste russo-américain George G. Lorentz dans les
années 1950. Si X = B;(0) C R™ est muni de la mesure de Lebesgue, alors
la fonction h, g pour 5 > 0 appartient a L? si et seulement si p < n/a; et
a LP? si et seulement si p < n/a oup =n/aet ¢ < 1/8. Pour f =0, cette
fonction appartient a 7>, que 'on appelle aussi espace de Marcinkiewicz
MP du nom de Jézef Marcinkiewicz (brillant représentant de l'illustre école
d’analyse harmonique polonaise, tué en 1940 dans les massacres des élites
polonaises par I'armée soviétique). Les définitions, données ci-apres, peuvent
étre omises en premiere lecture.

DEFINITION VIII-5. Soit (X, A, j1) un espace mesuré, et soient p, q €]0, +oo[. On
appelle espace de Lorentz LP1(X, u) l'ensemble des fonctions mesurables f : X — R
telles que

1 1
I f|lzpa(x ) = Po tu[|f| > t] /p

L9 ((0,400),%)
1

= (/Ooopt“u[\f\ 2t}5dt)q

soit fini (attention, malgré la notation, il ne s’agit pas d’une norme).

DEFINITION VIII-6. Soit (X, A, u) un espace mesuré, et soit p €]0,+oo[. On
appelle espace de Marcinkiewicz MP(X, ) l'ensemble des fonctions mesurables f :
X — R telles qu’il existe une constante C' > 0 telle que

w20 alte iz < ($)

t

On notera alors || f||me(x ) o || fllzee(x,p Uinfimum des constantes C' admissibles
(ce n’est pas une norme non plus).

EXERCICE VIII-7. En utilisant I'inégalité de Tchebychev, montrer que pour tout
p>1, LP(X,u) C LP>°(X, u), avec injection continue au sens ol || f||zee < || f]lLe-
Montrer, en considérant des puissances inverses, que cette inclusion est stricte dans
R". L’espace LP* est donc “un peu plus grand” que 'espace LP.

EXERCICE VIII-8. En utilisant le principe de sommation par tranches, montrer
que pour tout p > 1, LPP(X, u) = LP(X, p).

On peut étendre facilement la définition des espaces LP a des espaces de fonctions
a valeurs vectorielles, plus précisément a valeurs dans un espace muni d’une
distance invariante par translation :

DEFINITION VIII-9. Soit E un espace vectoriel ; on dit qu’une distance sur d est
invariante par translation si pour tous x,y,z € £ on a

d(z +z,y+ 2) = d(z,y).

Il est clair qu'une norme définit une distance invariante par translation. Mais
le concept de distance invariante par translation est beaucoup plus général : par
exemple, si N est une norme, alors N/(1+ N) est une telle distance.

DEFINITION VIII-10 (espaces LP & valeurs vectorielles). Soient (X, i) un espace
mesuré, et E un espace vectoriel muni d’une distance d invariante par translation.
Pour tout p € [0,+00|, on définit alors l’espace LP(X;E) = LP(X,u; E) comme
Uespace des fonctions mesurables f : X — E telles que d(0, f) € LP(X, u).
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VIII-1.2. Inégalité de Minkowski. Le point de départ de I’analyse fonction-
nelle des espaces de Lebesgue est I'inégalité suivante, dont le coeur remonte aux
travaux de Hermann Minkowski sur les volumes a la fin du dix-neuvieme siecle.

THEOREME VIII-11 (inégalité de Minkowski). Soit (X, A, u) un espace mesuré,
et soit p € [1,4+o00[. Alors, pour toutes fonctions f, g mesurables X — R,

(/!f+g\pdu)1/p < (/Iflpdu>l/p+ </\g\pdu)1/p,

ot par convention |(+00) + (—o0)| = +00. De plus, si p > 1 et si les deuz intégrales
apparaissant au membre de droite sont finies et mon nulles, il y a égalité si et
seulement st il existe a > 0 tel que f = a g presque partout.

La preuve la plus populaire de cette inégalité découle de celle de Holder [Rudin
p. 64, Lieb—Loss p. 48], voir Exercice VIII-14 ci-apreés. On va donner un autre argu-
ment ci-dessous, et en méme temps démontrer quelques variantes de 1'inégalité de
Minkowski, selon un plan parallele a la présentation de I'inégalité de Holder dans la
Section 1V-4.4.

THEOREME VIII-12 (variantes de l'inégalité de Minkowski). Soit p € [1, +o0].
(i) Soient (X, A, n) un espace mesuré, et f et g deux fonctions mesurables sur
X, a valeurs dans R. Alors, pour tout A €]0, 1],
/ l9” dp.

/ |f + gl dp <
(ii) Soient (X, A, /L)_un espace mesuré, k € N, f1,..., fr des fonctions mesurables
sur X, a valeurs dans R. Alors

(/gfﬁdu>l/p<; (/rfirpdu)l/p

(7ii) Soient (X, A, pn) et (Y, B, ) deux espaces mesurés o-finis. Alors, pour toute
fonction F' mesurable de X XY dans Ry U{+oc}, on a

(] ([ pesman) wan) " < [ ([ repruan)” «w.

(iv) Soient X et Y deur ensembles quelconques, et L un opérateur linéaire, défini
sur un sous-espace vectoriel de ’ensemble des fonctions de X dans R, a valeurs dans
I’ensemble des fonctions de Y dans R. On suppose que L est positif, i.e. Lf > 0 si
f>0. Soient f,g > 0 dans le domaine de L. Alors

L((f + g)")'" < [L(M)VP + [L(g"]'?,
ce qui est une inégalité entre deux fonctions de 'Y dans R.

(v) Soient (X, A, 1) un espace mesuré, (E,|| -||) un espace vectoriel normé, et
f,9: X — E des fonctions mesurables. Alors

(Josrs) "< (f ) " (fors)
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(vi) Soient (X, A, 1) un espace mesuré, f,g: X — C deuz fonctions mesurables
a valeurs complezes. Alors

()< (fora)” (fors)”

De plus, st p > 1 et si les deux intégrales apparaissant au membre de droite sont
finies et non nulles, il y a égalité si et seulement si il existe o« > 0 tel que f = ag
presque partout.

DEMONSTRATION. On va se contenter ici de démontrer 'inégalité (i) du Théo-
reme VIII-12 et d’en déduire I'inégalité de Minkowski du Théoreme VIII-11. Le
reste (discussion des cas d’égalité dans le Théoreme VIII-11, énoncés (ii) a (vi) du
Théoreme VIII-12) est laissé en exercice.

Pour démontrer (i), on écrit d’abord, par convexité de la fonction ¢ — |¢[P,

[f(@)+g(@)[" = [AMS (@) /A)+A=N)(g(x)/ (1= < A f(2)/AP+(1=N)[g(z)/(1=A)]".

On integre ensuite contre p, pour trouver
P
N Tl / |g]".

/If + 9P dp <

On optimise alors en A (on minimise le membre de droite). L’inégalité de Min-
kowski est obtenue en utilisant 'identité élémentaire

) a b TR S O

ogifgl ()\P—l * (1-— )\)p—l) = (v +07)".

On peut étre plus explicite : cela correspond a choisir
1
o U

= T T

(S1f)7 =+ ([ lgl)”

qui donne l'inégalité souhaitée. O

)

REMARQUE VIII-13. Cette méthode de preuve (démonstration d’une inégalité
auxiliaire dépendant d’un parametre, puis optimisation sur ce parametre) est tres
répandue en analyse.

EXERCICE VIII-14. Ecrire (f +g)? = f(f —|—g)7’_1 +g(f+g)P~! et appliquer I'in-
égalité de Holder pour controler [ f(f+g)P et [g(f+g)P~! séparément. Retrouver
ainsi l'inégalité de Minkowski.

VIII-1.3. Distances L”. A ce stade on a seulement défini ’ensemble des fonc-
tions L”; on va maintenant munir cet ensemble d’une structure qui, selon les cas,
sera soit une “semi-distance”, soit une semi-norme.

THEOREME VIII-15 (semi-distances L?). Soit (X, A, u) un espace mesuré. Pour
tout p € [0,400], on définit sur LP(X, ) une application N,, a valeurs dans [0, oo,

par les formules
min(1,1/p)
= ([1sran) (0 < p < oo

Noo(f) = it { s u[{as £(2)] > C}] = 0
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No(f) = nl[{s f(x) #0}].
La quantité No(f) est appelée supremum essentiel de | f|, ce que ’on note esssup | f|.
Les quantités Ny(f) sont également notées | fl|re(x,n) ou || fllerx) 0w || flirw), ou
[fllze, voire || fl,-
L’application N, définit alors sur LP

(i) pour 1 < p < oo : une semi-norme, i.e. pour toutes fonctions f,g et tout
AER,

Np(f) > 0; Np(f +9g) < Np(f) + Np(g)S NpO‘f) = |)‘|Np<f)$

(i) pour 0 < p < 1 : une application positive, homogéne de degré p, vérifiant
I’inégalité triangulaire, i.e. pour toutes fonctions f,qg et tout A € R,

Np(f) > 0; Np(f) < Np(f) + Np(Q)? Np()\f) = |)‘|pr(]()~

En outre, pour tout p € [0, +00], une fonction f dans LP(X, ) vérifie N,(f) =0 si
et seulement si elle est nulle p-presque partout.

DEMONSTRATION. Les assertions d’homogénéité sont évidentes, ainsi que le trai-
tement des cas d’égalité. Les inégalités triangulaires sont donc le coeur de cette pro-
position. Pour p = 1, p = 0 ou p = 00, on les vérifie aisément ; pour 1 < p < oo
c’est I'inégalité de Minkowski; pour 0 < p < 1 c’est une conséquence immédiate de
I'inégalité élémentaire

(a+b)F < aP+ 0.
O

Nous pouvons maintenant définir les espaces fonctionnels de Lebesgue. Pour ce
faire, on va transformer les semi-distances L” en distances, en quotientant ’espace
par le noyau de V,,.

DEFINITION VIII-16 (espaces de Lebesgue). Soit (X, A, p) un espace mesuré, et
soit p € [0,+00]. On appelle espace de Lebesgue (quotienté) d’ordre p, et on note
LP(X, 1) (ou LP(X) ou LP(u) ou LP(du), ou simplement LP), 'espace vectoriel de
toutes les classes d’équivalence de fonctions dans LP(X, u), pour la relation d’équiva-
lence définie par l’égalité p-presque partout. Si une classe d’équivalence f est donnée,
N, attribue la méme valeur a tous ses représentants; on note cette quantité N,(f),
ot | fllzscegy o s, ou simplement | £l
L’espace (LP(X, ), N,) ainsi défini est un espace vectoriel qui est

- normé pour 1 < p < oo;

- muni d’une distance invariante par translation pour 0 < p < 1.

REMARQUES VIII-17. (i) En clair, il y a deux espaces de Lebesgue LP. Le
premier est ’espace vectoriel des fonctions mesurables dont la puissance p est
intégrable; des qu’il existe des ensembles négligeables non vide, ce n’est pas
un espace normé. Le deuxieme est obtenu a partir du premier en identifiant
des fonctions qui coincident presque partout, et ¢’est un espace normé. Cette
identification nous mene dans un univers a priori peu rassurant ou les “fonc-
tions” ne sont pas définies partout, mais seulement presque partout, et ou la
valeur d'une fonction en un point donné n’est jamais déterminée. Mais sans
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cette identification, on ne peut aller bien loin dans ’analyse fonctionnelle.
Certains auteurs distinguent les deux espaces, par exemple en utilisant la no-
tation L£P pour l'espace non quotienté, mais la plupart du temps on tolere la
confusion entre les deux, et ce sera le cas dans ce chapitre.

(ii) Siune fonction appartient & L?, ’ensemble des points ou elle est infinie est de
mesure nulle. Quand on passe aux classes d’équivalence par la relation d’éga-
lité presque partout, on peut donc supposer que les “fonctions” considérées
sont & valeurs dans R plutét que R.

(iii) Pour p € [0, 1] 'espace LP, quotienté par la relation d’égalité presque par-
tout, est un espace vectoriel muni d’'une distance invariante, mais ce n’est pas
un espace vectoriel normé : I'inégalité de Minkowski du Théoreme VIII-11 ne
s’applique plus, et 'inégalité triangulaire non plus. Il existe en fait une inéga-
lité de Minkowski dans ce cas, mais seulement pour des fonctions positives,
et elle est renversée par rapport a celle du Théoréeme VIII-11 (de méme que
I'inégalité de Holder). On peut aller plus loin et montrer que LP n’est pas
normable pour 0 < p < 1. L’existence de la distance IV, dans ce cas ne suffit
pas a en faire des espaces fonctionnels agréables, de sorte qu’on ne les utilise
presque jamais. On pourra démontrer I'inégalité de Minkowski renversée en
exercice.

Pour conclure ce paragraphe, introduisons les semi-distances LP sur les espaces
de Lebesgue a valeurs vectorielles LP(X; E).

PropPOSITION VIII-18 (espaces de Lebesgue a valeurs vectorielles). Soit (X, A, u)
un espace mesuré, et soit B un espace vectoriel muni d’une distance invariante par
translation : pour tout p € [0, 00| on définit

Ny (f) = Np(d(0, f)).

L’application N, est alors une application positive, vérifiant ['inégalité triangulaire.
Si B est un espace vectoriel normé et d la distance associée a la norme, N, est
homogéne de degré min(p, 1), et en particulier définit une semi-norme pour p > 1.

Si lon quotiente LP(X; E) par la relation d’égalité presque partout, on obtient
un espace vectoriel sur lequel N, définit une distance invariante par translation. Si
E est un espace vectoriel normé, et p > 1, alors l’espace LP(X; E) ainsi obtenu est
un espace vectoriel normé.

Beaucoup des propriétés que nous verrons par la suite se généralisent sans dif-
ficulté a ce cadre a valeurs vectorielles; j’en admettrai quelques-unes sans démons-
tration. Le seul point un tant soit peu délicat dans le maniement des espaces de
Lebesgue a valeurs vectorielles ne concerne pas les opérations dans les espaces L,
mais la construction de l'intégrale.

VIII-1.4. Théoréme de convergence dominée LP. Avant d’aller plus loin,
voici une variante simple et utile du théoreme de convergence dominée, adaptée aux
espaces de Lebesgue.

THEOREME VIII-19 (convergence dominée dans les LP). Soient (X, A, pn) un
espace mesuré et p €]0,4+o00[. Soit (fi)ren une suite de fonctions mesurables de X
dans R, convergeant presque partout vers une fonction f. On suppose qu’il existe
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une fonction g € LP(X) telle que |fx| < g presque partout, pour tout k. Alors,
feLr(X,p) et

R
—00

c’est-a-dire que fr converge vers f dans LP.
Le méme énoncé reste vrai si l’on suppose que | fr| < gr presque partout, avec g — g
presque partout et [ gf — [ gP.

DEMONSTRATION. Il est clair que |f(z)] < g(x) pour presque tout z, et donc
que f € LP. On applique alors le théoréeme de convergence dominée a la famille
|fx — fIP : cette famille est dominée par la fonction intégrable (2¢)?, et converge
presque partout vers 0, son intégrale converge donc vers 0. O

VIII-1.5. Théoreme de Riesz—Fischer. L’analyse étant basée pour une grande
part sur des procédés de limite et d’approximation, on n’utilise le plus souvent les
espaces vectoriels normés que s’ils sont complets, c’est a dire que toute suite de
Cauchy converge. Le théoreme suivant assure la complétude des espaces de Lebesgue
et ouvre donc la voie a leur usage dans toutes sortes de problemes. Il est issu des tra-
vaux simultanés du mathématicien juif hongrois Frigyes Riesz, déja rencontré dans
le Chapitre III, et du mathématicien juif autrichien Ernst Sigismund Fischer, qui
fut éleve entre autres de Minkowski. Trois ans a peine apres I'intégrale de Lebesgue,
ils réalisaient ainsi un pont entre cette nouvelle branche de ’analyse, et des idées
issues de la géométrie et de I'algebre, et offraient a ’analyse fonctionnelle naissante
I'un de ses premiers succes.

THEOREME VIII-20 (théoréme de complétude de Riesz—Fischer). Soit (X, A, 1)
un espace mesuré, et soit p € [0,+00]. Soit (fi)ren une suite de Cauchy dans

LP(X, ). Alors
(i) il existe f € LP tel que fr, — f dans LP;

(i) il existe une suite extraite de (fy), notée (fx/), et une fonction g fixée dans
LP, telle que

|fw] < g p-presque partout;
fr () = f(z) pour p-presque tout x.

COROLLAIRE VIII-21 (statut des espaces LP). Soit (X, A, ) un espace mesuré.
Alors,

(i) Pour tout p € [1,400], l'espace LP(X, ), muni de la norme LP, est un espace
de Banach, i.e. un espace vectoriel normé complet.

(77) L’espace L*(X, ), muni de la forme bilinéaire symétrique

(f.9) — /fgdu

est en outre un espace de Hilbert, i.e. un espace vectoriel complet muni d’une
forme bilinéaire symétrique définie positive.

(7ii) Pour tout p € [0, 1], 'espace LP(X, u), muni de la distance LP, est un espace
de Fréchet, i.e. un espace vectoriel muni d’une distance invariante par translation,
et complet.
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REMARQUE VIII-22. La complétude éventuelle de I’espace X ne joue aucun role;
ce qui est utilisé en revanche de maniere cruciale, c’est la complétude de 1’espace
d’arrivée, ici R. Ces résultats se généralisent aux espaces de Lebesgue a valeurs
vectorielles, LP(X; F), si F est

- un espace de Banach dans le cas (i) ;

- un espace de Hilbert dans le cas (ii);

- un espace de Fréchet dans le cas (iii).

L’analyse de Banach et I’analyse de Hilbert sont les branches les plus développées
de 'analyse fonctionnelle. On en développera dans le chapitre suivant les résultats
les plus fondamentaux, et on les appliquera aux espaces de Lebesgue. L’analyse dans
les espaces de Fréchet est plus délicate et d’'usage moins répandu.

DEMONSTRATION DU THEOREME DE RIESZ-FISCHER. Soit (fi)reny une suite
de Cauchy dans LP(X, u1). Si 'on démontre I'existence d’une sous-suite convergente,
alors toute la suite convergera (c’est une propriété générale des suites de Cauchy
dans les espaces métriques).

Par récurrence, on construit une suite extraite, disons (fx, )sen, telle que

Np(f’wH - sz) < 27",

Le probleme est de construire une limite a cette suite. Dans la suite, pour alléger la
notation, jécrirai (fx)ren au lieu de (fg,)een-
Pour construire la limite, distinguons plusieurs cas.

1. Supposons d’abord 1 < p < oo. On pose fy = 0, et, pour tout x € X,

k 00
a@) = S ~ Sl ge) = Y1) = )
Par convergence monotone,

[owrdn=lin [ gu(op au

et par inégalité de Minkowski,

k
lgkllee < 1 follee + D15 = Fizalle < llfolles +2,
=1

on en déduit que g € LP(X, ). En particulier, il existe un ensemble négligeable N
tel que g(z) < +o0 pour tout z ¢ N.

Pour z hors de N, la série Y | f;(x)—fj—1(x)| converge; la série Y (f;(x)—fi—1(2))
est donc aussi (absolument) convergente, par complétude de R. On pose

(e}

F@) = S () = () = Tim fu(z).

j=1

On définit ensuite f arbitrairement (par exemple f = 0) sur N. la suite (f,) est
alors dominée par une fonction LP et converge presque partout vers f, on en déduit
qu’elle converge vers f dans LP.
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2. Pour p = 00, on sait qu’en-dehors d'un ensemble de mesure nulle on a

@< Wfollzs + Y 1w = frsallie
k=0

ce qui montre que f € L*>; en outre,
[e.@]
Ful@) = F@ < S = Frsalle — 0,
P n—oo

ce qui prouve la convergence de f vers f dans L*°.

3. Dans le cas ou 0 < p < 1, on pose

Par convergence monotone, on a toujours

1@ d = fin [ lgete)l

et c’est cette fois I'inégalité triangulaire qui assure que

k
No(gr) < Np(fo) + D Npl(fs = fi-1) < Np(fo) +2

on en déduit que |g|P € L'(X) et on conclut comme dans le cas 1 < p < oo.

4. Enfin, pour p = 0 on peut écrire

/ Zlfwéfk L dp = Z/ Lpt oy dp < +00;

k>1 k>1

en particulier, 'ensemble N des z € X tels que fi(x) # fr—1(x) pour une infinité de
k est de mesure nulle. Pour tout ¢ N on sait que la suite (fx(x)) est constante a
partir d’un certain rang, et en particulier converge vers une fonction que I'on note

f(z). On redéfinit f = 0 sur N. Comme

li 1 du =
kogﬂwz:/x Fotfoa A =0,
k>ko

on voit que pour ko assez grand la mesure de I'ensemble des x tels qu’il existe
un k > ko pour lequel fr(x) # fr_1(x) est arbitrairement petite. On conclut que
No(fx,— f) est arbitrairement petit pour kg assez grand. La preuve est donc complete
(c’est le cas de le dire). O

REMARQUE VIII-23. Dans le cas ou p = 1, on a retrouvé une variante de la
réciproque du théoreme de convergence dominée (Théoreme 1V-24).

1

aule) = (15o(@ |p+Z|fJ —Fa@P)". o = (1) Ip+2|fj - Fa@P)”
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VIII-1.6. Produit tensoriel d’espaces de Lebesgue. Soient (X, Ay, 1)
et (Xa, Az, p2) des espaces mesurés. Nous avons acces aux espaces LP(Xy, pu1) et
LP(Xy, o), faits de fonctions p-intégrables dans la variable z; ou dans la variable
2. Quand on manipule des fonctions L intégrables dans les deux variables z; et
Z9, elles peuvent étre

- données intrinsequement comme fonctions de x; et s ;

- ou construites a partir de fonctions de x; et de fonctions de zo, et d’opérations
¢élémentaires ou de passages a la limite.

Pour produire une fonction p-intégrable dans les deux variables a partir de fonc-
tions p-intégrables d'une variable, une opération élémentaire particulierement simple
et naturelle consiste a multiplier de telles fonctions. Soient donc f; € LP(X7, 1) et
fo € LP(Xs, u2), on note

(f1 ® fa) (w1, 22) = fi(z1) fola).

Cette fonction est appelée produit tensoriel de f; par fs.

Nous avons donc deux espaces a priori intéressants :

- lespace LP(X x Xo, pi1 ® po) ;

- Vespace LP( X1, 1) ® LP(Xs, 112), qui par définition est 'adhérence dans LP( X x
Xo, 11 ® p2) de lespace vectoriel engendré par les produits tensoriels; c¢’est donc
I’ensemble de toutes les limites de combinaisons linéaires finies de produits tensoriels.

Le théoreme suivant, dont la démonstration est repoussée au chapitre suivant,
donne des conditions suffisantes pour qu’il y ait identité entre ces deux notions, et
pour que toute fonction LP-intégrable dans les deux variables puisse étre approchée
par des combinaisons linéaires de produits tensoriels :

THEOREME VIII-24. Soient (X1,dy) et (Xa,ds) des espaces métriques séparables,
équipés de mesures de Borel j11 et po, régulieres et o-finies. On munit X; X Xy
de la topologie produit; alors pour tout p € [1,+oo[, LP(X1, 1) ® LP(Xo, us) =
LP( Xy x X, 1 ® pia).

On trouvera une démonstration en p. ?77.

VIII-1.7. Espaces de Lebesgue locaux. Il est souvent utile de travailler avec
des fonctions qui sont intégrables, ou LP-intégrables, sur des ensembles bornés (par
exemple) sans étre nécessairement intégrables sur tout 'espace. Dans ce cours, on
adoptera la définition suivante.

DEFINITION VIII-25 (espaces de Lebesgue locaux). Soit (X, d) un espace mé-
triqgue. On note LY (X) l'ensemble des fonctions mesurables X — R qui sont LP-

intégrables sur toutes les boules de X .

Bien noter que cette définition dépend fortement de la métrique, pas seulement
de la topologie. On pourrait bien stir définir les espaces locaux en utilisant des
ensembles compacts ; mais en pratique c’est le concept précédent qui nous sera utile.

VIII-2. Inégalités et relations entre espaces de Lebesgue

Dans cette section on va passer en revue des inégalités précieuses qui lient les
normes de Lebesgue LP pour des exposants p différents.
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VIII-2.1. Inégalité de Holder LP et dualité des normes LP.

THEOREME VIII-26 (inégalité de Holder dans les espaces LP). Soit (X, A, 1) un
espace mesuré, et soient f,g deuzx fonctions mesurables de X dans R, p € [1, 4+00],

p =p/(p—1). Alors
/ Fdu| < / Faldp < |1 llor gl
X X

(ot le membre de gauche est par convention +00 si fg n’est pas intégrable).
Plus généralement, soit k € N, sotent fi,..., fr des fonctions mesurables, et
P, ..., pr des exposants dans [1,+00], tels que Y p, ' > 1. Alors

LA <TI0l 0i 2=3" 1
J J

PREUVE DU THEOREME VIII-26. Si r = oo, nécessairement p = ¢ = oo et
I'inégalité est évidente. Dans le cas contraire, il suffit d’appliquer I'inégalité de Holder
habituelle (Théoreme IV-83) aux fonctions |f|" et |g|", avec les exposants conjugués

p/r et q/r (en effet, (r/p) + (r/q) = 1). O

COROLLAIRE VIII-27 (convergence de produits). Soient (X, A, u) un espace me-
suré, p € [1,00] et p’ := p/(p —1). Soient (f,) et (gn) des suites de fonctions me-
surables, telles que f, — f dans LP(X, ) et g, — g dans LP (X, p). Alors fogn
converge vers fg dans L', et en particulier

/fngn dp —>/fgdu.

Plus généralement, si l'on se donne k suites de fonctions mesurables (fin), - -, (frn)
telles que

Vi, fin —f; dans LP7 (),
avec ij_l <1, alors

A |
Hfm L wa ou ;:Zp_j'
7=1

DEMONSTRATION. Il est clair que le deuxiéme énoncé implique le premier, et que
par récurrence, il suffit de traiter le cas £k = 2. On se donne donc deux exposants p et
q, et f, — f dans L, g, — g dans LY, et on cherche a montrer que f,g, — fg
dans L", avec 1/r = (1/p) + (1/q). Pour cela on écrit

[fngn=Fallr < N falgn =)l +1g(fn—=Dller < M fnlleellgn—gllza+lgllee | fn— flla-

Puisque la suite (f,,) converge dans L?, elle est bornée dans cet espace ; on en déduit
que l'expression précédente converge vers 0 quand n — oo. O

On verra au chapitre suivant que 'espace LP peut étre identifié a ’espace des
formes linéaires continues sur L”, p' := p/(p — 1), sous certaines restrictions sur p
(1 < p < 00, X o-fini pour p = c0); on dit qu’il y a dualité entre les espaces LP
et L*'. Indépendamment de ce théoréme non trivial, on peut démontrer simplement
certains liens trés utiles entre norme LP et norme L?', valables pour tous p € [1, 00].



ESPACES DE LEBESGUE ET MESURES SIGNEES 275

THEOREME VIII-28 (représentation duale des normes LP). Soient (X, u) un
espace mesuré, et p € [1,00[. Alors, pour tout f € LP(u),

fgdp
o = s [ o ol =1} = s LS00

b
ol 70 119112 )

oup :=p/(p—1) €]1,00]. En outre, le supremum peut étre restreint a ’ensembles
des fonctions g qui s’écrivent comme combinaisons linéaires (finies) de fonctions
indicatrices d’ensembles mesurables de mesure finie.

Si (X, A, ) est o-fini, cet énoncé est également valable pour p = 0.

DEMONSTRATION. Si f = 0 (presque partout), I'identité est évidente; on se
limite donc au cas ou f # 0. L’égalité entre les deux suprema est une conséquence
de ce que || - ||zr est une norme. L'inégalité de Holder se réécrit

[ fgdu

<1 £l
19l oy 2

pour tout g € L (), ce qui implique

sup [ fgdu

< fllzrn-
ol v, 70 191 20" )

Il suffit donc de montrer que

fgd
(70) oy < sup  LI9%
ol 70 119112 )

Commencons par le cas ol p < oo; pour montrer (70) il suffit de choisir g :=
2 f € 1),

Montrons maintenant, toujours dans le cas p < oo, que le supremum peut étre
restreint a des fonctions “tres simples”. On sait que la partie positive f, de f est
limite d’une suite croissante de fonctions simples hy; puisque fy € LP(X, ), ces
fonctions sont LP-intégrables, et par convergence monotone, h; converge vers f.
dans LP. En appliquant le méme raisonnement a f_, on voit que f est limite dans L?
d’une suite f; de fonctions simples L”, qui s’écrivent forcément comme combinaisons
linéaires de fonctions indicatrices d’ensembles mesurables de mesure finie. Il en est
de méme de gy, := |fi|P"2fx. On a alors || fxllr» = [ fegr du. On écrit, en utilisant
I'inégalité de Holder,

/ Fondyi = / fegrdu + / (f = F)gndi > [ felle — 1 — Filloollgell -

Le premier terme du membre de droite tend vers || f||z», tandis que le second tend
vers 0 puisque f, — f dans L”. On en déduit que

lim in / Foudi > I1f e,

ce qui conclut la preuve.

Passons maintenant au cas ot p = co. Par définition de || f]|z~, pour tout £ >
0, 'ensemble Y. := {x; |f(z)| > ||fllL — €} est de mesure strictement positive.
Comme X est o-fini, on peut trouver dans Y, un sous-ensemble Z. de mesure finie
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et strictement positive (c’est la d’une maniere tres faible d’utiliser la o-finitude). On
pose alors
= 1. sign(f)
plze]
c’est une fonction intégrable, ||g||z: =1 et

1 1
d = — d r—— oo — d o — &
/ng 2 ulZ.] ’. | fldp > ulZ.] /ZE(Hf”L e)du>|fllz €

On conclut en faisant tendre ¢ vers 0. O

VIII-2.2. Relations d’inclusion. Il faut garder en téte les relations d’inclu-
sion entre espaces de Lebesgue. Limitons la discussion au cas ou p > 1. Si 'espace
X est de mesure finie, alors les espaces de Lebesgue LP(X) sont emboités :

THEOREME VIII-29 (emboitement décroissant des espaces de Lebesgue). Soit
(X, A, 1) un espace mesuré ﬁi’w' s p[X] < Hoo. Alors, dés que ¢ > p > 1 on a, pour
tout f mesurable de X dans R,

1o < I f Nl X5

En particulier, les espaces de Lebesque LP(X, ) (p > 1) sont emboités dans le sens
décroissant :
g>p>1= LTCL?,

et cette injection est continue.

Dans le cas général, les espaces de Lebesgue ne sont pas emboités, et il n'y a pas
de regle générale. On peut d’ailleurs trouver des situations ou 'emboitement a lieu,
mais dans le sens opposé a celui que I'on vient de voir.

THEOREME VIII-30 (emboitement croissant des espaces de Lebesgue). Soit (X, A, p)
un espace mesuré tel que

Je > 0; Vee X, p[{z}] >e.

Alors, dés que g > p > 1, pour tout f mesurable de X dans R on a

1
[fllze < —— [[fllzr-

epr q
En particulier, les espaces de Lebesque LP(X, ) (p > 1) sont emboités dans le sens
croissant :

q>p>1= LP(X,p) C LYX,p),
et l’injection est continue.

EXEMPLES VIII-31. Soit X = B1(0) C R™, muni de la mesure de Lebesgue A\, :
alors les espaces LP(B;) sont emboités dans le sens décroissant. En revanche, les
espaces (P(N) sont emboités dans le sens croissant. Quant aux espaces LP(R), ils ne
sont emboités ni dans le sens croissant, ni dans le sens décroissant.

PREUVE DU THEOREME VIII-29. C’est une conséquence de I'inégalité de Hol-

der : on écrit ) )
Jur << (fase) ([1)

et on éleve les deux membres de 'inégalité a la puissance 1/q. 0
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PREUVE DU THEOREME VIII-30. Sans perte de généralité, supposons f posi-
tive. Pour tout o € X, on a

[ = ultad) Sy = <o)
En passant au supremum essentiel, on obtient
1Fllze = Pl fl e

En reportant cette information dans I'inégalité
[z [,

1 _
[ 1<
d’ou 'on déduit facilement le résultat. ]

on trouve

Méme quand ils ne sont pas emboités, les espaces de Lebesgue sont “en inter-
polation”, 'espace de Lebesgue LP est “entre” LPO et LP' deés que p est entre pg et

P

THEOREME VIII-32 (interpolation des espaces de Lebesgue). Soit X un espace
mesuré. Alors, dés que 1 < p < q < r < 00, on a, pour toute fonction mesurable
f: X =R,
(71) £ llee < IANZ LA,

otu 6 est choisi de sorte que

1 6 1-0

q P r
En particulier,

LPnl" c LY,

et cette injection est continue. En outre, LP N L" est dense dans L9.

DEMONSTRATION. La preuve de I'inégalité (71) consiste a écrire f9 = fof° ou
q = a + b, et a appliquer I'inégalité de Holder avec des exposants bien choisis; il
s’agit d'un excellent exercice, vivement recommandé a la lectrice. On en déduit bien
stir que LP N L" est inclus dans LY. L’injection est continue si 'on munit L” N L"
de sa norme “naturelle” ||f||z» + ||f]l-- Reste a prouver la densité : au vu des
relations d’inclusion, on a L' N L>® c LP N L™ C L4, il suffit donc de montrer que
L' N L* est dense dans L. Soit donc f € L% on pose fi := f1j<k. Alors f, est
borné par construction, et intégrable puisque [ |f|? > k97! [|f;|. En appliquant le
Théoreme VIII-19, on vérifie facilement que ||fx — f|lr« — 0 quand & — co. O

REMARQUE VIII-33. Je présenterai en fin de chapitre des théoremes plus géné-
raux, dits d’interpolation, qui vont dans la méme direction.

Voici un corollaire simple et utile du théoréme précédent.

COROLLAIRE VIII-34 (convergence via interpolation). Soit X un espace mesuré,
et soient p, q deux exposants compris entre 1 et 0o. Soit (f,)nen une suite de fonctions
mesurables convergeant vers f dans LP, et bornée dans L1. Alors, pour tout exposant
r compris entre p et q (exclus), la suite (f,) converge vers f dans L".
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VIII-2.3. Continuité de la norme en p. On a défini une famille de normes L?
pour un parametre p variant continiment entre 0 et co. Une question tres naturelle
est la continuité de cette norme en le parametre p.

THEOREME VIII-35 (continuité de la norme L? en p). Soient (X, A, u) un espace
mesuré, et f : X — R une fonction mesurable. Soit

J={pe 0,00 Ny(f) < +oo}.

Alors J est un intervalle (éventuellement vide) et p — N,(f) est continue sur
Uadhérence de J (a valeurs dans [0,400]).

REMARQUES VIII-36. (i) Remarquons que p — N,(f) n’est en général pas
continue sur [0, +00] tout entier; ¢’est pourquoi on se restreint a ’adhérence
de J. Par exemple, si I'on considere X = R, muni de la mesure de Lebesgue,
alors la fonction identiquement égale a 1 n’appartient a aucun autre espace de
Lebesgue que L>, donc N,(f) = +oo pour tout p < 4+o00; mais Noo(f) = 1,
il n’y a donc pas continuité quand p — oo. En fait, pour tout py > 0 on peut
trouver, en jouant sur la décroissance a l'infini et une singularité en 0, une
fonction qui appartienne a LP(R) uniquement si p = p, (exercice).

(ii) L’intérét principal de ce théoreme est la continuité en +oo. En fait, d’apres
la démonstration qui suit, des qu’il existe ¢ > 1 tel que f € L(X), alors

Ny(F) = ISl

Cet énoncé est utile dans des problemes de recherche tres concrets (par
exemple le “schéma d’itération de Moser” en théorie des équations aux déri-
vées partielles).

(iii) L'inégalité (71) entraine que log N,(f) est une fonction convexe de 1/p,
et on peut montrer que cette fonction est semi-continue inférieurement. Ces
propriétés impliquent que N,(f) est continue sur J (la convexité implique
seulement la continuité dans U'intérieur de J). Cependant, on va donner une
démonstration qui n’utilise pas explicitement cet argument.

DEMONSTRATION. 1. Le fait que I'ensemble des valeurs de p ot N,(f) < 400
est un intervalle découle facilement du Théoreme VIII-32. En fait on peut montrer
que la fonction log N,(f) est une fonction convexe de 1/p, ce qui implique aussi le
résultat.

2. Considérons d’abord la continuité en p # {0, c0}. Par continuité de 'applica-
tion p — X™RLI/P) pour p €]0, 400, il suffit de prouver que pour toute suite py
convergeant vers p, f € LPk,

/!f|pkdum/!f|”du-

Notons bien que I'hypothese f € LP n’est pas faite, de sorte que p pourrait étre
au bord de l'intervalle J. On supposera par exemple que p; tend vers p en crois-
sant. Alors on a convergence monotone (I'une croissante, 'autre décroissante) de
|fIPEL 1 et [ fIP#1p<1 vers |fPLip<1 et |fP1)fj<1 respectivement. Le passage a la
limite croissante ne pose pas de probléme; et puisque |f|P* € L', on peut passer
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aussi a la limite décroissante. On conclut que

/1 e [ /" e g
[f]1>1 |f|>1 |fl<1 [fl<1

Le théoréme en découle.

3. Un raisonnement du méme type permet de traiter le cas p = 0, en séparant
les trois cas |f| =0,0 < |f] <1, |f] > 1.

4. Passons maintenant au cas ou p = oo. Soit ¢ > 1 tel que f € L?. En utilisant
les identités élémentaires

1
1f e = A0S Az = [1f]1%e,

on voit que 'on peut remplacer le probléme sur f par le probleme sur |f|?, et que
I’'on peut donc supposer sans perte de généralité

felL f>0.
On supposera également que f n’est pas identiquement nulle, auquel cas la solution
est triviale; donc || f]|z~ # 0.
5. Soit K > 0 tel que K < ||f]|z~. Par définition du supremum essentiel, on a

a(K) == p[{f = K}] > 0;
il s’ensuit, par inégalité de Tchebychev,

I £lle > [a(K)MP]YP = Ma(K)Y? —— M.

p—o0

En faisant tendre M vers || f| L, on en déduit (que || f||z soit fini ou non)

lminf || fllze = [[f] 2o
p—s00

Si || f]l e = 400, ceci acheve la preuve.

6. Supposons maintenant que ||f||r~ < +00. Comme f € L!, on peut utiliser,
pour tout p > 1, I'inégalité d’interpolation

1 1—1
1 llee < NP

(qui se démontre trés simplement, sans méme que 'on ait besoin de recourir a
I'inégalité de Holder). En faisant tendre p vers 'infini dans cette inégalité, on obtient

limsup || fllze < || f]|zoe,
p—r00

ce qui conclut la preuve. O]

VIII-2.4. Interpolation entre espaces de Lebesgue. Le Théoréme VIII-32
montre comment, a partir d’informations dans des espaces de Lebesgue L” et LY,
on peut parfois obtenir des informations dans des espaces de Lebesgue L™ pour tout
r compris entre p et ¢g. Nous allons maintenant voir des théorémes plus généraux
qui rendent ce point de vue systématique. Dans la suite, on note LP(X) + L?(X)
I'espace vectoriel de toutes les fonctions mesurables de la forme f+ g, ou f € LP(X)
et g € LI(X). En outre, si T est un opérateur linéaire d’un espace vectoriel normé
E dans un espace vectoriel normé ', on pose

T
Tlmr = sup I
lelz=0 ||ZllE
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Les deux théorémes qui suivent sont les deux principaux théoremes d’interpola-
tion entre espaces de Lebesgue. Ils reposent sur des techniques tres différentes, et ne
sont pas comparables. Le premier a donné naissance a la théorie de I'interpolation
complexe, et le second a la théorie de l'interpolation réelle, techniques d’une
grande importance en analyse.

THEOREME VIII-37 (théoréme d’interpolation de Riesz—Thorin). Soient X etY
deux espaces mesurés et py, p1, qo, g1 des exposants compris entre 1 et oo au sens
large. Soit T un opérateur linéaire continu de LP°(X) dans L% (X), et de L (X)

dans L2(Y'). Alors, pour tout 6 €0, 1[, l'opérateur T admet un unique prolongement
continu de LP*(X) dans L% (Y'), ou

1 1-6 6 1 1-60 0

Do P D o o ¢

En outre, si l'on pose My = ||T||ro 19, alors

My < My~ M?.

Cas particulier important : 57 1 < p < ¢ < o0, et T est un opérateur
linéaire, borné de LP dans LP et de LY dans L9, alors T se prolonge uniquement en
un opérateur borné de L™ dans L", pour tout r € [p,q].

Le Théoreme de Riesz—Thorin peut se reformuler comme suit : I’ensemble des
couples (1/p,1/q) tels que T soit continu de LP dans L? est un ensemble conveze,
et log ||T|| r— e est une fonction convexe du couple (1/p,1/q). Ce théoréme a pour
avantage de donner des bornes trés précises, qui sont optimales dans le cas général
(ce qui n’exclut pas qu’'on ne puisse les améliorer quand on considére un opérateur
T particulier). Le théoréeme qui suit ne donne pas de bornes aussi bonnes, mais
permet d’inclure dans la discussion les espaces de Marcinkiewicz, dont nous avons
vu qu’ils sont “légerement” plus gros que les espaces de Lebesgue; ce raffinement
s’avere parfois précieux.

THEOREME VIII-38 (Théoréme d’interpolation de Marcinkiewicz). Soient (X, A, u1)
et (Y,B,v) des espaces mesurés, et soient po,qo,p1,q1 € [1,+00]| avec qo # ¢,
Po < qo, p1 < q1. Si T est linéaire continu de LP(X) dans L9>°(Y) et de LP*(X)
dans L1*°(Y"), alors pour tout 0 €]0, 1, l'opérateur T" admet un unique prolongement
continu de LP?(X) dans L% (Y), ot

1 1-6 6 1 1-60 40
= = +—,  -= + —.
p Po P1 q do a1
En outre, st l'on note M() = ||T||Lp0_>qu,<>0, M1 = ||T||Lp1_>Lq1,oo, Mg = ||T||Lp9_>L119,

alors il existe une constante Cy, ne dépendant que de 0, py, p1, qo, q1, telle que

My < Cy My~ M?.

Cas particulier important : Soient (X, A, u) et (Y, B,v) des espaces mesurés
o-finis, et soit T un opérateur linéaire continu de L*(X) dans L¥*°(Y) et de L™(X)
dans L>(Y'). Alors, pour tout p €1, +0o0], il existe un unique prolongement de T' en
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un opérateur continu de LP(X) dans LP(Y'). Plus précisément, il existe une constante
numérique C' (C = /¢ < 2 convient) telle que pour tout p € [1, +oo],

L1100 Loo— e

Cp 1 1-1
It < I, 1 T2

Parlons maintenant des démonstrations de ces théoremes. C’est Marcel Riesz,
le petit frere de Frigyes Riesz, qui eut le premier I'idée, vers 1926, de la technique
d’interpolation entre espaces de Lebesgue, et prouva le théoreme maintenant appelé
théoreme de Riesz—Thorin, dans une forme un peu plus restrictive. Vers la fin des
années 1930, le mathématicien suédois Olof Thorin mit au point la preuve esquissée
ci-aprés, basée sur l'analyse complexe et devenue trés populaire. A peu prés au
méme moment, Jozef Marcinkiewicz démontrait le théoréme qui porte son nom par
des méthodes tres différentes.

Un outil-clé dans la preuve de Riesz—Thorin est le lemme suivant, qui est bien sfir
une variante du principe du maximum pour les fonctions holomorphes (voir [Rudin]
par exemple) :

LEMME VIII-39 (Lemme des trois droites). Soit S := {x +iy; = € [0,1]; y €
R} € C une bande du plan complexe, et soit f : S — C une fonction continue
bornée, holomorphe dans l'intérieur de S. Alors,

(i) supg | f| = supys | f| ;

(ii) soit My := sup,cg | f(0 +iy)| ; alors

My < MIMI.

DEMONSTRATION. 1. Supposons d’abord que f a pour limite 0 & 'infini, et soit
e < ||flloo ; puisque f tend vers 0 a I'infini, il existe M € R tel que | f| (vu comme une
fonction sur R?) atteint son maximum sur [0, 1] x [~ M, M]. On conclut la preuve de
(i) en appliquant le principe du maximum pour les fonctions holomorphes définies
sur des ouverts bornés.

2. Dans le cas général ou f ne converge pas forcément vers 0, on s’y rameéne en
considérant zy tel que |f(z0)| = (1 — 0)||f]ls et en posant g(z) = e 20" f(2),
A > 0. En appliquant le résultat précédent, on voit que |g(z)| atteint son maximum
sur le bord ; or ce maximum est au moins |g(zo)| > (1 — 0)|| f||c- En particulier,

sup 1] > (1= 9)]f
oS

et on conclut (i) en faisant tendre 9 vers 0.

3. L’énoncé (ii) est obtenu a partir de (i) en posant h(z) = e *f(2), X € R.
Alors
My < e sgp |h| < e S;SP |h| < e max (M, e My).
On choisit A de sorte que
My = e M,
i.e. e* = M, /M. L’estimation ci-dessus devient alors

My < MIMI.
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DEMONSTRATION DU THEOREME DE RIESZ—THORIN. Onnote p = py, ¢ = qp ;
et M; = ||T||zrs _ze. On va utiliser le Théoreme VIII-28, sous la forme

_ J fadp
[fllzagy = sup =i,
lgll, o #0 ||g||Lq’(u)

ou le supremum est pris sur toutes les fonctions g qui sont combinaisons linéaires
de fonctions indicatrices d’ensembles de mesure finie; nous appellerons “fonctions
simples” de telles fonctions.

Montrer que T est borné LP — L9 avec norme au plus M? M&_e revient a prouver
que

(72) T flles < MYMG™0| f| e

pour toute fonction f € LP, ou, de maniere équivalente, pour toute fonction f simple.
Encore une fois, par densité et en traitant a part le cas p = oo, on voit qu’il suffit
d’établir (72) dans le cas ou f est une fonction simple. Notre but est donc

(73)

[@ng| < Moo

Nous allons maintenant introduire un parametre d’interpolation z € S, et faire
varier toutes les quantités ci-dessus en fonction de z. Etant données deux fonctions
simples f et g, on pose donc

z

fz(x) — |f(x)|p(11:0z+a> f(:v)

|f(z)]”
9:(y) = \g(y)|q/<1;6z+fi>M

lg(y)|’

avec la convention 0/0 = 0. Ces fonctions f, sont simples, en particulier dans tous
les espaces L, et il s’ensuit que T'f, € L% N L% pour tout z; la fonction

Pz /(sz)gz

est donc bien définie. En décomposant f, et g, en combinaison linéaire de fonctions
indicatrices, on voit qu’en fait on peut écrire ¢ sous la forme

o(z) = Z az’“Z”L”k, AER, ueR;
1<k<K

en particulier ¢ est holomorphe et bornée dans S, et on peut appliquer le lemme des
trois droites :

o) < (sup el ) (suplett+ i)
teR teR
Mais ¢(6) n’est autre que [7Tfg. Par ailleurs,

'/Tfit Yit

et 'on peut faire une majoration similaire pour les z = 1 + it. La conclusion en
découle facilement. 0

! !
<NT fiell oo lgiell .y < 1T Nmos ool LI gl 1%,
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DEMONSTRATION DU THEOREME DE MARCINKIEWICZ. On se contentera de dé-
montrer le “cas particulier”, qui est utile dans de nombreuses situations. La lectrice
pourra essayer de reconstituer la démonstration générale en adaptant la technique
utilisée ci-dessous; ou consulter [Zygmund, tome II, chapitre XII, théoreme 4.6].

Cette fois on va démontrer le théoreme directement, sans passer par des fonctions
simples. La preuve fait intervenir deux idées principales :

- représenter les normes des fonctions en jeu au moyen de la taille de leurs
“ensembles de sur-niveau”, i.e. le lieu des points ou ces fonctions sont plus grandes
qu’un certain parametre t,

- décomposer la fonction en jeu en la somme de deux fonctions appartenant aux
espaces que 1’on interpole, ou les deux fonctions sont choisies indépendamment pour
chaque valeur du paramétre.

Ecrivons donc
[T fl[poe < Millfllzoe, T fllree < Mol |21
La deuxieéme inégalité se réécrit
Vi >0, tu[{|Tf] >t} < Mol f]l.

Sans perte de généralité on supposera que MOI_QM 9 = 1; on peut toujours se ramener
a ce cas en multipliant 7" par une constante convenable.

On se souvient de la formule (25) :

/ |fIP = p/om pl{|f] > t}tPt at.

De méme,

[rse=p [ uttizs > opetar
Pour tout ¢ > 0 on écrit alors '
F=r"+#1 A =fpcan £ = hlpsan
La borne L>* — L entraine que pour tout t > 0,
TFY| < M, At.
En particulier,

WIS > 8] < nl{ITf"| > (1= MA)Y].
En reportant cette inégalité dans la représentation de [ [T [P, on trouve

+o0 .
[ <p [ uTs? > 0= e
+o0

— (1= MA) Y / (1= MAYIT A > (1 - 242t

+o0 400
< (=0) M [ = =202 My [ [
0 0

On applique alors Fubini et un changement de variable évident pour réécrire le
dernier terme sous la forme

If1/A
(1—M1A)‘1pM0/|f| (/0 tp—2dt>
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pMoy p
_ (p_l)(l_MlA)Ap_l/lfl |

On pose M1 A = A, la constante apparaissant en facteur de [ |f[P est minimale

pour A = 1/p/, et vaut ¢, MoM? ™", avec

. pp+1 _ pl/p D p
Po(p—-1)p p—1) "

que I'on majore en utilisant p'/? < e'/¢. La preuve est compléte. O

Pour conclure cette section, mentionnons une variante intéressante du théoreme
de Riesz—Thorin, ou I'on s’autorise une dépendance de l'opérateur, est la suivante.
Convenons qu'une famille (77,) définit une famille holomorphe d’opérateurs si la
fonction z — T, f est holomorphe pour tout f simple. On peut alors changer, dans
I’énoncé du Théoreme de Riesz—Thorin, 'opérateur T en une famille holomorphes
d’opérateurs T, ; 'hypothese de bornes LP0 — L% et LP* — L% sur T est alors
remplacée par une hypothése similaire sur Tq et T respectivement.

THEOREME VIII-40 (théoréme d’interpolation de Stein). Soient X et Y deux
espaces mesurés o-finis, et po, p1, Qo, 1 des exposants compris entre 1 et 0o au sens
large. Soit (T.).ep une famille holomorphe d’opérateurs linéaires définis sur une
partie D du plan complexe incluant la bande S des nombres complexes dont la partie
réelle est comprise entre 0 et 1. On suppose que Ty est borné de LP°(X) 4+ LP(Y)
dans LP*(X) + L1 (Y'), tel que Ty est borné LP(X) — LP(Y), et L®(X) — L2(Y).
Alors,

Ty est borné LP(X) — LI(Y),
En outre, si on pose My = ||T,||1ro 190, alors
My < My~ M?.

La démonstration de cet énoncé di a Elias Stein (éleve d’Antoni Zygmund,
comme Marcienkiewicz) est similaire a celle du théoreme de Riesz—Thorin.

ExXEMPLE VIII-41. Soit p une mesure et w une fonction positive; la famille
d’opérateurs
T,: fr—wf
satisfait aux hypotheses du théoreme. Le théoreme d’interpolation de Stein de-
vient alors un théoreme d’interpolation entre espaces de Lebesgue a poids.
Par exemple, si v est une fonction positive et si 'on définit

Ly = LP,
1Al e = (L7

alors on a, pour tout opérateur linéaire .S,

1-6 0
|’SHL£2—>L§% < ”S”ngﬁLg%HSHL’;11—>L§11'

VIII-3*Espace des fonctions mesurables

On va maintenant introduire une notion naturelle de convergence des fonctions
mesurables, ne présupposant aucune intégrabilité, et étudier ses liens avec la conver-
gence LP. Sans étre particuliecrement difficile, cette section contient des notions
d’usage beaucoup moins fréquent que les autres de ce chapitre, et pourra étre omise
en premiere lecture.



ESPACES DE LEBESGUE ET MESURES SIGNEES 285

VIII-3.1. Convergence dans L. Une premiere idée qui vient a 1’esprit consiste
a utiliser la convergence presque partout, comme naturellement associée au cadre
de la théorie de la mesure. Cependant, cette notion présente de graves défauts : en
particulier, la convergence LP (1 < p < oo) n’implique pas la convergence presque
partout. En outre, la convergence presque partout n’est pas associée a une métrique :
en effet, dans un espace métrique, si une suite (f,,) a la propriété que toute sous-suite
extraite admet une sous-sous-suite convergeant vers un certain f, alors la suite f,
entiere tend vers f (exercice). Or on a vu (Exemple IV-23(i)) que cet énoncé n’est
pas vrai pour la convergence presque partout.

La notion naturelle de convergence est en fait celle que nous venons d’invoquer
implicitement.

DEFINITION VIII-42 (convergence au sens des fonctions mesurables). Soient X
et Y deux espace mesurés. On dit une famille (f,,)n>1 de fonctions mesurables de X
dans Y converge vers f si de toute sous-suite extraite (f,/) de (f,) on peut extraire
une sous-sous-suite extraite (f,») qui converge presque partout vers f.

Pour abréger, on pourra dire que f, converge “presque partout a extraction
pres”. Cette notion a en commun avec la notion de convergence presque partout la
propriété de stabilité par composition : si f, : X — Y converge vers f et ® est
n’importe quelle fonction mesurable de Y dans un autre espace mesurable Z, alors
® o f,, converge vers ® o f.

Contrairement a la convergence presque partout, la convergence presque partout
a extraction pres est en général associée a une métrique. Pour se souvenir que cette
notion de convergence est plus faible que toutes les convergences LP, on I'appellera
“convergence dans L”.

PrOPOSITION VIII-43 (convergence dans L et convergence en mesure). Soient
(X, A, p) un espace mesuré o— fini, (Y, d) un espace métrique, et soit p une fonction
strictement positive partout sur X, d’intégrale convergente. Alors la formule

[ dU@e)
Alf.g) = [ T o) dite)

définit une distance sur l'espace L(X, ;YY) des fonctions mesurables de X dans 'Y,
quotienté par la relation d’égalité p-presque partout. On note cet espace L(X, i) dans
le cas ou'Y est R muni de la distance euclidienne. Les trois assertions suivantes
sont équivalentes :

(ii) de toute suite extraite (fn/) on peut extraire une suite extraite (fnr) qui
converge presque partout vers f ;

(i) f. converge vers f en mesure sur les parties finies, i.e. pour toute partie A
de mesure finie on a

Ve >0, pl{z€A; d(f.(z), f(x)) >e}] —0.

n—o0

Si'Y est complet, l'espace L ainsi défini est un espace métrique complet. Si
Y =R, alors L' N L™ est dense dans L.
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REMARQUE VIII-44. L’existence d’une fonction ¢ intégrable et strictement posi-
tive est garantie par I'hypothese de o-additivité : soit (Ag)g>1 une famille d’ensembles
mesurables disjoints, de mesure finie, dont la réunion est X, on peut poser

La,
Pr = Z 2 :
k>1 k2 [ Ay]
DEFINITION VIII-45 (convergence en probabilité). Dans (X, A, 1) un espace de
probabilité, la convergence en mesure est aussi appelée convergence en probabilité.

En mots, la convergence en probabilité dit que la probabilité de dévier sensible-
ment de la limite tend vers 0.

PREUVE DE LA PROPOSITION VIII-43. Je donnerai la preuve uniquement dans
le cas ou Y = R. Supposons que I'assertion (i) du théoreme est vérifiée, et soit (f,)
une suite extraite de (f,). La fonction positive intégrable o(x)|f(x) — f(2)|/(1 +
|fu(x) — f(2)]) converge vers 0 dans L'(X), on peut donc extraire une sous suite
n” pour laquelle cette expression converge vers 0 presque partout. Comme ¢ est
strictement positive partout, on en déduit que f,,» converge presque partout vers f.
L’assertion (ii) est donc vraie.

Pour montrer que (ii) implique (i), on extrait une sous-suite n’ quelconque, et
de cette sous-suite on extrait une sous-sous-suite pour laquelle la convergence a lieu
presque partout, et on applique le théoréeme de convergence dominée a la famille
olfw — fI/(L+ |for — f|), dominée par ¢. On montre ainsi que A(f,~, f) — 0.
Comme la sous-suite extraite f,, était arbitraire, et que A définit une métrique, on
en déduit que A(f,, f) — 0.

Supposons de nouveau que l'assertion (i) du théoreme soit vérifiée, et soit B,, .
I'ensemble des x € X tels que |f,(x) — f(x)| > ¢ : alors

g
A(fn, f) > d,
(fu: f) 1+€/Bwso i

et donc

n—oo

/ pdy —— 0.
Bn,e

Soit maintenant A une partie de mesure finie. Comme X est la réunion dénombrable
croissante des {¢ > 1/k, on peut trouver K = K(n) tel que

pl{e =2 1/K} 0 Al = plA] =,
ou 7 est arbitrairement petit. On a alors
p[Bne NA] < pu[Bye NAN{p > 1/K}| +n < K(n)/ pdp+ 1.
Bn,s
A n et e fixés, le premier terme du membre de droite tend vers 0 quand n — oo}
comme 7 est arbitrairement petit, on conclut que
p[Bne N A —— 0,

n—oo

ce qui veut dire qu’il y a bien convergence en mesure sur toutes les parties de mesure
finie.
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Finalement, supposons I’assertion (iii) du théoréme vérifiée, et prouvons 'asser-
tion (i). Pour tout € > 0 on peut écrire

€

Mwh) <o [ edutulBod < [ odut B,
+ € chz,a

Le premier terme est arbitrairement petit quand € — 0, et le deuxieme tend vers 0

quand n — oo, € étant fixé. On en déduit que A(f,, f) — 0.

Montrons maintenant la complétude de 1'espace (L, A). Soit (f,)nen une suite
de Cauchy pour A ; Pour tout £ € N, on pose

Ay = {x; (k+1)72 < p(x) < k2.

La famille (14, fn)nen est alors une suite de Cauchy. On pose 6(f,g) = |f —g|/(1 +
|f — g|). Quitte a extraire une sous-suite, on peut supposer que

k=1
Pour presque tout z € A on a donc convergence de la série > 6(fn(z), fu_1(x)), et

la suite (f,(z)) converge donc vers un nombre noté f(x) (on utilise ici la complétude
de (R,9)). Par convergence dominée, on montre alors que

/A 5o @), fule)) dps(x) — [ 6(fm(a), F(2)) dula).

o
n—oo Ak

Comme la suite (f,,) est de Cauchy, le membre de gauche est arbitrairement petit
quand m est grand et n > m. On conclut finalement que

/A 5(fon (), f(x)) dp) ——> 0,

m—ro0

ce qui est bien sir équivalent a

/A (), f(2)) dps(x) — 0.

m—00

On a donc, pour tout ko,

> [ obthnla). @) dule) > 0

o m—00
et d’autre part, puisque ¢ € L'(du),
> [ebthnla) f@)du) < Y [0

k0—>oo
k>ko k>ko

On conclut que

/ 6 Fnl), f(2)) dp() — 0.

m—0o0

Enfin, dans le cas Y = R, montrons que L' N L* est dense dans L. Soit f une
fonction mesurable a valeurs réelles, on pose

Ay ={zeX; |f(x)| < ket ) >k}

Puisque f est a valeurs réelles et ¢ strictement positive, les A; forment une famille
croissante dont l'union est égale a X tout entier, donc v[X \ A;y] — 0. Soit € > 0
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arbitrairement petit, on choisit k tel que v[X \ Ax] < e. Alors, pour toute fonction
g € L'(dp),

/ 5(F.9) dn < VA < <.
X\ Ay

En particulier, A(f, f14,) < e. La fonction f1,4, est bornée par construction, et elle
est également intégrable puisque Ay, est de mesure finie (a cause de l'intégrabilité de
¢). Ceci conclut I'argument. OJ

VIII-3.2. Lien avec les autres notions de convergence. La convergence
dans L est une notion plus faible que la convergence au sens LP, mais elle lui est
intimement liée, comme le montre le théoreme suivant, que je limiterai aux fonctions
a valeurs réelles.

THEOREME VIII-46 (convergence dans L et dans LP). Soit (f,,)nen une suite de
fonctions mesurables a valeurs rélles sur un espace mesuré (X, ) ; soit également f
une fonction mesurable a valeurs réelles. Alors

(i) Si fr, — f dans LP(X,p) (0 < p < o0), alors f,, — [ dans L(X, u).

(ii) Si fn, — f dans L(X,u) et qu’il existe g € LP(u) (0 < p < o0) tel que
|ful < g pour tout n, alors f, — f dans LP(X, u).

DEMONSTRATION. L’assertion (i) est facile : pour toute sous-suite extraite n/,
on a f,» — f dans LP, et on peut donc trouver une sous-sous-suite pour laquelle il
y ait convergence presque partout.

Pour prouver l'assertion (ii), il suffit de montrer que pour toute sous-suite ar-
bitraire n’, on a convergence d'une sous-sous-suite f,» vers f dans LP. On peut
supposer que f,» converge presque partout vers f. La conclusion découle alors du
théoréme de convergence dominée, appliqué a la suite |f,,» — f|P, que 'on peut ma-
jorer par la fonction intégrable max (2, 27)|g|?. O

La condition de domination peut étre remplacée par une condition plus faible
qui suppose seulement certaines bornes en moyenne. On va utiliser ici la notion
d’équi-intégrabilité, étudiée dans la section IV-4.5.

THEOREME VIII-47. Soient (X, A, u) un espace mesuré o-fini, p €]0,+o0], et
(fn)nen une suite de fonctions dans LP(X, ), convergeant dans L(X,u) vers une
fonction mesurable f. On suppose que (| fn|P) est équi-intégrable et équi-intégrable a
Uinfini. Alors f,, converge vers f dans LP(X, ).

REMARQUE VIII-48. Dans le chapitre suivant, on retrouvera le cas particulier
p = 1 de ce théoréeme comme une conséquence du théoreme de Schur.

DEMONSTRATION DU THEOREME VIII-47. Soit € > 0; on sait par hypothése
qu'il existe M7 > 0 et un ensemble A; de mesure finie, tels que pour tout n,

[ ApPda [ AfPde<e
| frn|>M X\A1

Notons que cela impose bien stir

/ P dp < Myp[Ay] +
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et par le lemme de Fatou on en déduit

/|f|pd,u < liminf/|fn|p < +o00.
n—oo

L’espace X étant o-fini, on peut donc trouver M, > 0 et un ensemble Ay de mesure

finie, tels que
[irdus [ ifrduse
|f|>M2 X\AQ

On pose A := A1 U Ay, M := max(My, Ms).

On a alors

| V=1 < max(z 2 ( [ onpans [y du) < max(2, 2.
X\A X\A; X\ Az

La méme majoration est valable sur I'ensemble des x pour lesquels | f,(z)| > M ou
|f(x)| > M ; donc en particulier pour 'ensembles des z tels que | f,,(x)— f(x)| > 2M.
On conclut que

/ ’fn—f\pduﬁ/ |fr — fIP dpn + 2max(2,2P)e.
X An{|fn—fl<2M}

On distingue alors deux cas.

Sip>1, on écrit

/ [ fo = 1P dp < (2M)P7H (1 + 2M) / =S,
An{|fn—fI<2M} AN{|fu f|<2M} 14+ |fn _ f|

et on conclut que
/ \fo — fIPdp < (2M)PH(1 4+ 2M)A(fr, f) + 2max(2, 2P)e;
X

comme par hypothese A(f,, f) — 0, on a bien la convergence de f, vers f dans
Lr.

Si en revanche 0 < p < 1, on écrit

p
/ o= fPdu < (/ Ifn—f!du) WA {1 fo — £l < 2V}
AN{|fn—F|<2M} AN{| fn—fI<2M}

1+ 92M 1/p( Md )p AP
= (120 /Aﬂ{lfn—ﬂgzM}lﬂfn_f’ i) Al

On conclut que
/ [fo = fIPdp < 2M)PH L+ 2M) VP u[A] PA(fr, f) + 2max(2, 2°)z;
X
ce qui entraine encore la convergence de f,, vers f dans LP. 0

VIII-4. Espaces de mesures

Dans cette derniere section, nous allons étudier les mesures signées, qui consti-
tuent une généralisation des fonctions mesurables, et les mesures signées finies,
qui constituent une généralisation des fonctions sommables.
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VIII-4.1. Mesures signées. Commencons par un rappel (Proposition IV-7).
Si (X, A, p) est un espace mesuré, et f une fonction positive mesurable sur X, on
peut définir sur X une nouvelle mesure, notée fu, par la formule

il = [ rau

Le théoréme de convergence monotone montre que fu est bien o-additive. La mesure
fu détermine f uniquement, a un ensemble p-négligeable pres (en effet, si f > g
sur un ensemble non négligeable A, on a (fu)[A] > (gu)[A]). On voit donc que,
des que l'on a fixé une mesure de référence u, I’ensemble des fonctions mesurables
positives (modulo I’égalité u-presque partout) s’identifie & une partie de 1’ensemble
des mesures; en ce sens, les mesures constituent une généralisation des fonctions
mesurables positives.

Une fonction mesurable quelconque peut toujours s’écrire comme différence de
deux fonctions positives : f = f, — f_; en outre, f, et f_ sont “étrangeres”, au sens
ou elles ne sont jamais simultanément non nulles. Il est facile d’étendre cette notion
a des mesures :

DEFINITION VIII-49 (mesures étrangeres). Soit (X, A) un espace mesurable; on
dit que deux mesures j et v sur X sont étrangeéres si elles sont concentrées sur

des ensembles mesurables disjoints; en d’autres termes, s’il existe deux ensembles
mesurables A et B tels que AN B =10, u[X \ Al =0, v[X \ B] =0.

On peut maintenant définir la notion de mesure signée, comme une généralisation
du concept de fonction mesurable :

DEFINITION VIII-50 (mesure signée). Soit (X, A) un espace mesurable. On ap-
pelle mesure signée sur X un couple p = (4, pu—) de mesures étrangeres sur X,
appelées respectivement partie positive et partie négative de p. On notera formelle-
ment = py — pi—. On note alors |p] = py + p—.

On dira que 1 est finie (ou bornée) si py et u_ sont finies. On dira que u est
o-finie si py et p_ le sont. On dira que p est de Borel si jiy et u_ le sont. On dira
que 1 est régquliere si iy et p_ le sont.

REMARQUE VIII-51. Si A est mesurable et (pug[A], p_[A4]) # (400, +00), on
peut définir sans ambiguité la quantité

plA] = py[A] = p-[A] € R;

mais si py[A] = p_[A] = 400, la valeur de p[A] n’est pas définie a priori. C’est
pourquoi ’écriture p, — p_ doit étre considérée comme formelle.

EXEMPLES VIII-52. Sur R, dy est une mesure qui n’est pas une fonction ; oy — oy
est une mesure signée; oy — dp ne constitue pas une mesure signée au sens de la
définition précédente (les deux mesures ne sont pas étrangeres); p = > -, 0ar —
> k>0 O2k+1 est une mesure signée, mais on ne peut attribuer aucune valeur a u[R].

VIII-4.2. Décomposition de Hahn. Soit p = (u4, ) une mesure signée
sur un ensemble mesurable (X, A). Comme nous 'avons remarqué, il est en général
impossible de définir g comme une fonction A — [—o0, +00], sauf si gy ou p_ est
finie. A partir de maintenant nous allons concentrer notre attention sur les mesures
signées finies. Le remarquable théoreme de décomposition de Hahn montre que de
telles mesures sont caractérisées par la propriété de o-additivité.
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DEFINITION VIII-53 (c-additivité & valeurs réelles). Soit A une o-algébre de
parties d’un ensemble X, et soit y : A — R une fonction d’ensembles. On dit que
p est o-additive si, pour toute suite (Ay)ren d’éléments deuz d deux disjoints de A,
on a

(74) ulUAK] = ulAd,

ot le membre de droite est défini comme la limite des sommes partielles Y, o, [ Ag]-

REMARQUE VIII-54. Le membre de gauche de (74) est invariant par permutation
des Ay, donc le membre de droite aussi, ce qui veut dire que la série Y u[Ax] est
commutativement convergente. Par un résultat classique d’analyse réelle, cette série
est forcément absolument convergente : > |u[Ax]] < +o0.

THEOREME VIII-55 (théoréme de décomposition de Hahn). Soit (X, A) un es-
pace mesurable ; alors on peut identifier

- d’une part, les fonctions i : A — R, o-additives ;

- d’autre part, les mesures signées finies (pi,p—) sur A;
via la formule u[A] = py[A] — p_[A].

En outre, on a alors, pour tout A € A,

(75)

\u|[A] = pi[A] + p_[A] = sup {Z Iw[A5]; Aj € A, (A))jen partition de A} :

jEN

REMARQUE VIII-56. Tout le travail dans ce théoreme consiste a décomposer

[t en sa partie positive et sa partie négative, d’ou l'appellation “théoreme de dé-

composition”. Bien noter que 1’énoncé contient 1'unicité de cette décomposition. Ce

résultat est dii au mathématicien autrichien Hans Hahn, grand spécialiste d’analyse
fonctionnelle, tres actif dans I'entre-deux guerres.

REMARQUE VIII-57. La conclusion du Théoreme VIII-55 est bien siir en défaut
pour des fonctions o-additives A — R ou méme A — [0, +00] (une mesure o-additive
n’est pas pour autant finie!).

DEMONSTRATION. 1. Il est clair qu'une mesure signée finie définit une fonction
o-additive d’ensembles; c¢’est bien str la réciproque qui présente un intérét.

2. Montrons maintenant I'unicité de la décomposition éventuelle. Soient py, pu_, vy, v_
des mesures finies vérifiant, au sens des fonctions o-additives,

By — - =Vy =V,
et telles que (4, u— ) d'une part, (v, v_) d’autre part, forment des couples étrangers.
Introduisons S(p) et S(u—) des ensembles mesurables disjoints tels que py[X \
S(ps)] =0, u_[X\S(p-)] =0, S(ps+)NS(p—) = 0; et de méme, des ensembles S(v )
et S(v_) avec des propriétés similaires vis-a-vis de v4.. L’ensemble A := S(uy)NS(v-)
vérifie
AL = py[S(v)] = —v-[S(p4)];

la quantité p[A] est donc a la fois positive et négative, et donc nulle. On en déduit
que py[S(v_)] =0 = v_[S(uy)]; et de méme, p_[S(vy)] = vi[S(u-)] = 0. Pour
tout A C S(vy) on a donc p[A] = vi[A], mais aussi p[A] = pi[A] — p_[A] = pi[A];
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on conclut que py et vy coincident sur S(vy), et donc en fait u, = v,. De méme,
o =v_.

3. Définissons provisoirement |u| par la formule de droite dans (75) : |u|[4] =
sup Y |u[A;i]], ot le supremum est pris sur toutes les partitions, finies ou dénom-
brable, de A en parties mesurables A;. Vérifions que |u| ainsi définie est une mesure.
Si (AF)gen est une famille de parties mesurables disjointes, et si on se donne des par-
titions (A?)jeN de chaque A*, on définit automatiquement une partition (Af)meN

de A = UA*. Donc
ul[A] > |ul[AF].
keN
Soit maintenant (A;);en une partition de A, et A;? = AF N A;, de sorte que (Ag‘?)jeN
constitue une partition de A*. Par o-additivité de pu,

> lulAj)l = Z‘ZM[Aﬂ SO A =0 WA < Y [ul[A;

jeN JEN keN jEN keN keN jeN keN

en passant au supremum on obtient

ul[A] < |ul[A¥],

keN
et on a bien la g-additivité de |pu.

4. L’étape suivante consiste & montrer que |u| est une mesure finie. Si A est
un ensemble mesurable tel que |p|[A] = 400, alors on peut trouver une partition

(Aj)jen de A telle que
> ulAS)] = 2|plA]l + 3;
jeN

et donc on peut trouver J fini tel que

> IulA]l = 2(1ulA] + 1),

1<5<J

En distinguant selon le signe des p[A;], on peut trouver une famille finie J d’indices

J tels que
>oula,

JjeT
Soit E=nN{A;; j€ J};onadonc EC Aet |u[E]| > |p[A]] + 1 11 s’ensuit

[WAN El| = [u[A] = plE]| = [p[E]| = [p[A]] = 1.

Par ailleurs, |u| étant o-additive, 'une au moins des deux quantités |u|[E] et |u|[A\ E]
vaut +o0o. Conclusion : on peut séparer A en deux parties, disons A’ et B, telles que
||[A1] = +oo et [u[B]| = 1.

Supposant par 'absurde que |u|[X] = 400, on peut appliquer ce résultat avec
A = X et séparer X en deux parties disjointes A; et By telles que |u|[A;] = +00 et
|[Bi]| > 1; puis réappliquer le résultat avec A = Ay, et ainsi de suite. On construit
ainsi une famille de parties disjointes (By)ren telle que |u[Bg]| > 1. Ceci contredit la
o-additivité puisque la série > u[Bg] ne converge pas. On conclut que |pu|[X] < +o0.

La définition de |u| entraine alors

plB] < [ul[B] < [ul[X] < +oo:

[A]| + 1.

la fonction p est bornée.
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5. Une fois cette propriété acquise, il est facile de vérifier que p vérifie des pro-
priétés de passage a la limite similaires a celles des mesures : pour toute famille
(Ay) croissante, en appliquant la relation de o-additivité a la famille (A \ Ax_1), on
obtient

pll Al = Jim [ Ay].

Enfin, en passant au complémentaire et en utilisant |u[X]| < 400, on voit que pour
toute famille (Ay) décroissante,

pl() Arl = lim pfAy].

6. Soit maintenant
M := sup u[A] > 0.
AcA
D’apres ’étape 4, M < 4o00. Le but est de montrer que ce supremum est atteint par
un ensemble mesurable A, et de montrer que p, est concentrée sur A. Si M = 0,
il suffit de poser S, = 0); nous supposerons donc M > 0. Soit (Ag)ren une suite de
parties mesurables vérifiant

1
([ Ar] > (1 - ?> M
Posons
A:=limsup A, = ﬂ U Ap.
(N k>0
La famille C, := Ukzz Ay étant décroissante, on sait que p[A] = limy_ o pu[Cll.

D’autre part, en appliquant de maniere répétée l'inégalité
u[Ar U Bl = p[Ay] + p[B] — u[Ax N B) > p[Ay] + u[B] = M > p[B] = 27" M,

on voit que, pour tout m > £,

plAgU. . UA,] > plA] — Zm: 27K M > p[Ag] — 27V M.
k=0
En passant a la limite quand m — 0o, on obtient
plCf > plA =27 VM > (1 -3-279M.
Il ne reste plus qu’a faire tendre ¢ vers l'infini pour obtenir
pulA] > M;
d’ou p[A] = M.
7. Posons S, = A, S = X \ A, de sorte que (S;,S_) réalise une partition de

X ; on va montrer que pour tout C' C Sy on a u[C] > 0. Dans le cas contraire, on
aurait

u[S+\ C] = p[S4] = plC] > p[S4] = M,
ce qui contredirait la définition de M. De méme, s’il existait C' C S_ tel que u[C] > 0,
alors on aurait

p[S+ U CT = plSy] + plC] > p[Si] = M,
ce qui est tout aussi impossible. On conclut que la restriction de p aux parties
mesurables de S, est positive, tandis que la restriction de p aux parties mesurables
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de S_ est négative. Il s’ensuit que (Sy,u) et (S_, —u) sont deux espaces mesurés;
on peut alors écrire p comme différence de deux mesures :

WAl = WA S,] — (~plAN S]).

Les mesures p4 := p[- N Sy] et p_ := —u[- N S_] sont finies et étrangeres, ce qui
acheve la preuve de la décomposition.

8. Il reste seulement a montrer ’équivalence des formules de variation totale;
pour le moment la notation |u| désigne la formule de droite de (75), le probleme est
de montrer que cela coincide avec p, + p—. Pour cela on note d’abord que pour tout
A€ A, [ulA]] = [p[ANS]+p[ANS ]| < |p[ANS ]|+ [u[ANS_]| = pi [A]+ p-[A];
en reportant cette inégalité dans la définition de |u| on obtient |u| < py + p—. Pour
prouver I'inégalité inverse, on note que (AN S,, AN S_) réalise une partition de A,
de sorte que

pi[Al + p-[A] = [p[AO S+ [p[AN S]] < |ul[A].
O

REMARQUE VIII-58. La fin de la preuve montre a posteriori que dans le membre
de droite de la formule (75), on peut se limiter aux partitions a deux éléments.

Il sera utile dans la suite de traiter des mesures régulieres. Pour faire cela, nous
utiliserons la proposition suivante :

ProprosITION VIII-59 (Reformulation de la régularité des mesures signées). Soit
(X, A) un espace mesurable et |1 une mesure signée finie sur X ; soit (piy,pu—) la
décomposition de Hahn de p. Alors les trois propositions suivantes sont équivalentes :

(i) py et pu_ sont régulieres;

(i) || est réguliere ;

(111) pour tout A € A et pour tout € > 0 il existe un compact K et un ouvert O
tels que K C AC O et

(76) Al = plK] <&, [p[O] = plA]] <e.

DEMONSTRATION. L’implication (i) = (ii) est (presque) triviale, il suffit donc
de montrer (ii) = (iii) = (i). On notera S, et S_ des parties disjointes sur lesquelles
[+ et p_ sont concentrées.

Supposons que (ii) est vérifiée, soit A un ensemble mesurable quelconque. Par
régularité de |u|, on peut trouver une suite croissante de compacts (K, )nen inclus
dans A, telle que |u|[A\ K,] — 0; et une suite décroissante d’ouverts (O,,)nen
contenant A, telle que |u|[O, \ A] — 0. Alors

|1[On] = pl[A]| = 11[On \ A]] < ][O0\ A] — 0,
donc p]O,] — u[A], et de méme p[K,] — u[A]. La propriété (iii) est donc vérifiée.

Supposons maintenant (iii), et prouvons par exemple que g, est réguliére. Soit
A un ensemble mesurable quelconque, et A’ = ANS,. Par (76) on peut trouver une
suite de compacts (K, )nen, inclus dans A’ et donc dans A, tels que

p (K] = pliG] — p[A] = py[A] = i [A];

la mesure ., est donc intérieurement réguliere.
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Pour montrer la régularité extérieure, on applique la régularité intérieure a B =
S, \ A : on trouve ainsi une famille (L,)neny de compacts inclus dans B, tels que
p[Ln) = pi[Ln) — py[B] = u[B]. L'ouvert O,, = X \ L,, contient alors A, et on a

14+[0n] = pa [ X\ g [Lo] — p [X]\ g [B] = py [X\ B] = py [AUS_] = py [A].
0

Le corollaire suivant est une conséquence immeédiate du Théoreme VIII-55 et de
la Proposition VIII-59 :

COROLLAIRE VIII-60 (Théoreme de Hahn pour les mesures régulieres). Soit
(X, A) un espace mesurable ; alors on peut identifier

- d’une part, les fonctions p : A — R, o-additives, telles que pour tout A € A il
existe des suites de compacts (Kp)nen et d’ouverts (Op,)nen vérifiant K, C A C O,
et

lim pu[K,] = lim p[O,] = p[A];
n—oo n— oo
- d’autre part, les mesures signées finies réguliéres (i, pu_) sur A;
via la formule u[A] = py[A] — p_[A].
En outre, p est réguliére si et seulement si |u| est réguliére.

VIII-4.3. Espace des mesures signées finies. Comme nous l’avons vu, le
théoreme de Hahn identifie les mesures signées finies avec les fonctions o-additives
d’ensembles a valeurs réelles. Il est clair que ce dernier espace est un espace vec-
toriel, ce qui n’était pas évident a priori pour les mesures signées finies. On peut
donc munir les mesures signées finies d’une structure naturelle d’espace vectoriel :
il devient possible d’ajouter ou de soustraire des mesures signées, ou de les multi-
plier par des nombres réels. L'écriture p = gy — p_, qui jusqu’ici était purement
formelle, peut maintenant s’interpréter, dans le cas ou u, et p_ sont finies, comme
une soustraction au sens usuel dans un espace vectoriel.

Le Corollaire VIII-60 montre de méme que les mesures signées finies régulieres
constituent un sous-espace vectoriel de ’espace des mesures signées finies.

Ces résultats ouvrent la voie a un traitement “fonctionnel” des mesures signées.
La proposition suivante se démontre sans difficulté :

ProposITION VIII-61 (inégalités élémentaires pour les mesures signées). Soient
(X, A) un espace mesurable, u et v deur mesures signées finies sur X, identifiées d
des fonctions o-additives d’ensembles, a valeurs réelles; alors

PV = g Sy, fo 2V
Vo >0, (ap)sr = apy; Vo <0, (ap)s = |o|ps;
(—w)s=p-s | =pl=1ul;
(Wt v)e <pet+ves |ptv[<|p[+ ]

Pour mesurer la taille d'une mesure signée, un concept naturel est fourni par la
variation totale :

DEFINITION VIII-62 (variation totale). Soient X un espace mesurable, et i une
mesure signée sur X ; soitent p et y_ les parties positive et négative de . On appelle
variation totale de i, et on note ||p|lvr(x) ou simplement ||i||vr, la quantité positive

|l [XT] = gy [XT + p[X].
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St A est une partie mesurable de X, on notera ||p|vray = |p|[A].

PROPOSITION VIII-63 (propriétés de la variation totale). Soient X un espace
mesurable et |1 une mesure signée sur X . Alors

(1) A — |lullvra) est une fonction o-additive d’ensembles, qui coincide avec
|l 5

(ii) Pour toute partie mesurable A de X,
|ulA]l < lpllvr.
Plus généralement, pour toutes parties disjointes (Ax)ren,

Dl Ad] < Jlplivee.

keN
(iii) |||y = sup /hd,u, ot le supremum est pris sur toutes les fonctions
<1

mesurables sur X (majorées en valeur absolue par 1); on peut également restreindre
le supremum aux fonctions mesurables valant +1.

() ||p|lvr = inf{y+[X] +v [X]; p=v"-— 1/’}, ot Uinfimum est pris sur

tous les couples de mesures (v, v™), non nécessairement étrangéres, telles que p =

vt — v en outre il y a égalité si et seulement si 4 = v,

DEMONSTRATION. L’énoncé (i) est évident. Pour obtenir (ii), il suffit d’écrire
LAY = Vi [4] — i [A]] < i (A + i [A] < gy [X] + o [X].

Pour démontrer (iii), introduisons des ensembles disjoints S, et S_ tels que p soit
supportée par Si. Il est alors clair que, des que |h| <1, 0n a

[ hdi= [ b <l = elx)
S, Sy

et de méme

/ hdp < p[X].

On conclut que [hdu < ||u||yr. L'égalité est obtenue pour h = 1g, — 1g_, ce qui
acheéve la preuve de (iii). Enfin, pour démontrer (iv) il suffit de démontrer que

p=v"—v- = v[Si] + v [Sy] > ps[St].

Démontrons par exemple v [Sy]| + v~ [Sy] > p4[S4]. Puisque py[S4] = p[Sy] =
v[Sy] — v [S4], cette inégalité se réduit a v~ [S;] > —v~[S4], ce qui est évident.
Le traitement des cas d’égalité ne s’effectue sans difficuté. 0

Décrivons maintenant de maniere un peu plus précise l’espace des mesures signées
finies :

THEOREME VIII-64 (espace des mesures signées). Soit (X, A) un espace me-
surable. L’ensemble des mesures signées finies sur X, muni de la variation totale,
constitue un espace de Banach, que l'on note M(X). Pour toute mesure finie v
sur X, lespace L'(v) s’identifie isométriquement d un sous-espace de M(X) wvia
l'injection f — fv : en particulier,

1wy = [ Fv v



ESPACES DE LEBESGUE ET MESURES SIGNEES 297

L’espace des mesures signées finies réquliéres sur X, muni de la variation totale,
est un sous-espace de Banach de M(X), que l'on notera Myeg(X).

REMARQUE VIII-65. Si X est polonais, Mes(X) = M(X) en vertu du Théo-
reme I1-62.

DEMONSTRATION. 1. Il est facile de vérifier que la variation totale définit bien
une norme, en utilisant la Proposition VIII-61.

2. Montrons maintenant que M (X) est complet : soit (py)ren une famille de
mesures signées finies telles que

| e — peel|jyr —— 0.
kf—00

Pour toute partie A mesurable, on a, d’apres la Proposition VIII-63(i),

[ A] — el ]| < s — prllyr —— 0.

Il s’ensuit que la suite (ug|[A])ren est de Cauchy, et elle converge donc (par complé-
tude de R!) vers un nombre réel que nous noterons p[A].

Montrons que 'application p ainsi définie est une mesure signée. Par le théoreme
de Hahn, il suffit de vérifier que c’est une fonction o-additive; pour cela on se
donne une famille dénombrable d’ensembles A; disjoints, et on écrit la relation de

o-additivité pour py :
well A=l Ay).
J

On peut passer a la limite quand ¢ — oo dans le premier terme; pour passer a la
limite dans le deuxiéme, et donc prouver la o-additivité de p, il suffit d’établir

Z e[ Aj] = p[Aj]] — 0.

L—o0
Mais, les A; étant disjoints, on a, pour tout k > ¢, grace a la Proposition VIII-63(ii),

> el A = k[ A)] < e — el
i

et le membre de droite converge vers 0 quand ¢ — oo, uniformément en k. En faisant
tendre d’abord k vers l'infini, puis ¢, on obtient le résultat souhaité.

A ce stade nous savons quil existe une mesure signée i telle que pour tout A
mesurable, p[A] converge vers u[A] quand k — oo. Pour prouver la complétude, il
reste & montrer que ||ux — pl|vr tend vers 0. Soit A une fonction mesurable valant
+1 sur X, et e(k) := supysy || e — peel|vr. On a, d’apres la Proposition VIII-63(ii),

[ i~ [ < <)

La fonction h est de la forme 14 — 15; on peut donc passer a la limite dans f h dyi,
quand ¢ — oo, et on trouve

/hduk—/hdugs(ls).

En prenant le supremum sur A et en appliquant la Proposition VIII-63(ii) encore,
on conclut que ||ux — pllvr < e(k), ce qui conclut 'argument.
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3. Vérifions maintenant l'identité

[l = 1 fvllve

pour toute mesure finie v. Pour cela il suffit de noter que f,v et f_ v constituent
la décomposition de Hahn de la mesure signée fv; en utilisant la définition de la
variation totale on trouve donc

| fr|ve = frv[X]+ fov[X /f+d1/+/f_dl/—/f++f du—/\f|du

4. Comme on l'a déja remarqué, le Corollaire VIII-60 montre que M,e,(X) soit
un sous-espace vectoriel de M (X). Supposons maintenant que gy est une suite de
mesures régulieres finies, convergeant vers p en variation totale, et montrons que pu
est réguliere. Soit € > 0, et soit k tel que ||ux — p|] < €/2. Comme gy, est réguliere,
on peut trouver un ouvert O contenant A, et un compact K inclus dans A, tels que
luelO\ Al <e/2, |uk[A\ K| < e/2. On écrit alors

O\ Al < |lpx — pllve + (1O \ A]| <,
et de méme
AN K| < [ — pllvr — [m[A\ K] < e.

La propriété (iii) de la Proposition VIII-59 est donc satisfaite, ce qui prouve la
régularité de pu. O

VIII-4.4. Théoréme de Riesz pour les mesures signées. Comme nous
I’avons vu au chapitre III, les mesures peuvent étre introduites soit a partir du
concept de o-additivité, soit comme formes linéaires sur des espaces de fonctions
continues, le théoreme de Riesz garantissant 1’équivalence de ces deux points de vue
dans le cas localement compact. Il en va de méme des mesures signées : nous les
avons introduites comme différence de deux mesures, mais on aurait aussi pu les
introduire a partir du point de vue des formes linéaires. C’est le contenu de 1’énoncé
suivant.

THEOREME VIII-66 (théoréeme de Riesz pour des mesures signées). Soit X un
espace topologique séparé, localement compact. Alors on peut identifier (mettre en
correspondance bijective et isométrique)

- d’une part, les formes linéaires A continues sur l'espace C.(X) des fonctions
continues sur X a support compact, muni de la norme de la convergence uniforme ;

- ou, de maniére équivalente, les formes linéaires A continues sur ’espace Cy(X)
des fonctions continues sur X tendant vers 0 a linfini, muni de la norme de la
convergence uniforme ;

- d’autre part, les mesures de Borel signées, régulieres et finies p sur X ; c’est-
a-dire de la forme py — p_, ot puy et pu_ sont des mesures de Borel régulieres finies
étrangéres sur X ;

via les formules, valables pour toute fonction f € Cy(X) et tout ouvert O,

A7 = [ fan —/fdu+—/fdu—
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et

ulO] = sup{Af; f >0, f€Cy(X), Spt(f)C O}
+inf{Af; f<0, feCo(X), Spt(f)c O}

En bref,
Co(X)" = Mreg(X),

ou Co(X) est muni de la norme uniforme et M,ee(X) de la norme de la variation
totale. En particulier

lallvr :sup{ /X Fdu If1 <1, fe cc<x>}
zsup{/xfdu; e fGCo(X)}-

REMARQUE VIII-67. Si X est un espace topologique séparé compact, alors
on peut bien str remplacer 'espace C.(X) dans I’énoncé ci-dessus par C(X). En
revanche, si X n’est pas compact, le théoreme n’affirme rien sur le dual de C,(X),
et il est en fait impossible d’identifier Cy(X)* & M(X). En effet, sous hypothese
de I’axiome du choix, on peut identifier C,(X)* a l'espace des fonctions d’ensemble
finiment additives régulieres, et montrer si X est non compact que cet espace est
strictement plus grand que M (X) [Dunford-Schwarz, IV.6].

ExeEMPLE VIII-68. Fixons un espace localement compact non compact, vérifiant
aux hypotheses du Théoreme 11-64 (de sorte que toute mesure borélienne finie sur
les compacts est automatiquement réguliere) ; par exemple X = R". Notons Cy(X)
I’espace de Banach des fonctions continues admettant une limite & I'infini. La fonc-
tionnelle lim,, (limite en l'infini) est linéaire continue, et (si 'on admet I'axiome
du choix) se prolonge par Hahn—Banach en une application L, linéaire continue sur
Cy(X), et non nulle. L’application L ne peut étre représentée par aucune mesure
de Borel : comme L(f) = 0 pour tout f € C.(X), cette mesure ne pourrait étre
que la mesure nulle. En fait, L est représentée par une fonction (finiment) additive
d’ensembles ; noter que cette fonction viole de maniere évidente les hypotheses de la
Proposition II-60, en fait L est “concentrée a I’infini”.

PREUVE DU THEOREME VIII-66. 1. Soit d’abord g = pu, — pu_ une mesure
signée finie sur X ; alors, pour toute fonction f € C.(X),

[anl < [if1ane s [ 1f1an- <l

ot C' = py[X] + p_[X]. La fonctionnelle f — [ fdu est donc bien une forme
linéaire continue sur C.(X).

2. Réciproquement, soit A une forme linéaire continue sur C.(X); pour tout
f e CuX), f>0on pose

O(f) == sup { (A, ); he Cu(X); 0<h< [

La fonctionnelle ®, définie sur I’ensemble des fonctions continues positives a support
compact, est positive et croissante (f < g = ®(f) < ®(g)); montrons qu’elle est
sur-additive. Soient f; et fy deux fonctions continues positives a support compact,
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soit € > 0 et soient hy, ho deux fonctions continues a support compact telles que
pour ¢ = 1,2,
0<h; <fi Ah; > ®(f;) —e.
Alors h := hy + hy est une fonction continue a support compact telle que 0 < h <
fi+ fa, et on a
Ah = Ahl + Ahg Z q)(fl) + q)(fg) — 2e.

En passant au supremum sur tous les A admissibles, on obtient
O(f1+ f2) > ®(f1) + O(f2) — 2e.

En faisant finalement tendre £ vers 0, on conclut a la sur-additivité de ®. On peut
alors appliquer la Remarque I11-64 (v) suivant I’énoncé du Théoréme de Riesz I11-
63 pour conclure que ¢ se représente par une mesure (positive) de Borel presque
réguliére, que nous noterons fi .

3. Montrons maintenant que g est finie. Si 0 < h < f, alors bien str ||hl|s <
| flloo, et par continuité de A il existe C' > 0, indépendant de f et h, tel que Ah <
Cl|f|loo- En passant au supremum, on obtient ®(f) < C/|| f||, soit

/fdu+ <O f .

Pour tout compact K C X, on peut trouver une fonction f, continue a support
compact, qui soit comprise entre 0 et 1, identiquement égale a 1 sur K ; en appliquant
I'inégalité précédente a une telle fonction, on obtient

pe Kl < C.

Par ailleurs, X étant ouvert et pu, étant pré-réguliere, on a

po[X] = sup {u+[K]; K Compact};
ce qui prouve 4 [X] < C. On conclut que p est finie. Par la Remarque I11-64 (iii)
suivant 1’énoncé du Théoreme I11-63 (de Riesz), py est réguliere.

4. Il est maintenant facile de conclure la preuve : la mesure p construite précé-
demment définit une forme linéaire continue sur C.(X), et il est clair que

A§M+

La forme linéaire p — A est donc une forme linéaire positive sur C.(X), et une
nouvelle application du Théoréeme de Riesz nous permet de la représenter par une
mesure de Borel pré-réguliere, que nous noterons p_. On montre, de méme que
précédemment, que p_ est finie et réguliere. La forme linéaire A peut donc s’écrire
sous la forme py — p_, ou py et u_ sont des mesures de Borel finies réguliéres.

5. Il est évident que

v > sup { [ s 1< e co<X>}

Zsup{/deu; If1 <1, feCc(X)}-

Pour conclure la démonstration, il suffit donc d’établir

e < sup { [ram i< se @(X)}.
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Pour cela, on décompose p en parties positive et négative, et on utilise la régularité de
{4 et g pour trouver des ensembles compacts K, et K_ avec ug[Ky| > pa[X] —e.
Les ensembles compacts K, et K_ étant disjoints, on peut trouver des ouverts O,
et O_ tels que Ky C Oy et O, NO_ = () (Cf. paragraphe 11-3.3). Par le lemme
d’Urysohn, on peut trouver ¢, continue a valeurs dans [0, 1], identiquement égale a
1 sur K et a support compact dans O, ; et de méme ¢_ continue a valeurs dans
[0, 1], identiquement égale a 1 sur K_ et a support compact dans O_. On pose alors
f =@+ —p_, de sorte que

/ fp > el + po (K] — lullve(X O\ (Ky U KL))
> (1 [X] — &) + (_[X] — &) — 22 = [|ullyr — de.

On conclut en faisant tendre € vers 0. O

VIII-4.5. Représentation duale de la variation totale. Comme corollaire
du Théoreme VIII-66 (Théoreme de Riesz pour les mesures signées), nous avons
obtenu une représentation duale de la variation totale :

() lulier =sup{ [ sas 1121, £ o)
(78) —swf [ gaw <1 reaon}.

Mais cette formule n’a été établie que dans le cas ou X est localement compact, et en
fait elle peut facilement étre en défaut dans des espaces non localement compacts.
Pourtant, sous des hypotheses tres générales elle demeure vraie, pourvu que 1’on
remplace Cy(X) par C'(X) (ou de manieére équivalente par C,(X), puisqu’on impose
|| <1 de toute fagon).

PROPOSITION VIII-69 (représentation faible de la variation totale). Soit X un
espace métrique et i une mesure (de Borel) signée sur X, réguliére. Alors

v = sup{ [rau i<t se cb<x>}.

En particulier, cette formule est automatiquement vérifiée si p est finie et X est un
espace polonais.

REMARQUE VIII-70. En dépit de cette proposition, le dual de C,(X) est a priori
plus gros que Mes(X).

DEMONSTRATION. La premicre partie de I’énoncé implique la deuxiéme puisque
toute mesure finie sur un espace polonais est réguliere (Théoreme I1-62). D’autre
part il est clair que [ du < ||u|lyr pour tout ¢ continu & valeurs dans [—1,1]; il
suffit donc de prouver que ||p|lvr < sup{ [ ¢ du}, ot le supremum est pris sur les
fonctions continues a valeurs dans [—1, 1].

Soient S} et S_ des ensembles disjoints tels que ||ullvr = p4+[S4] + p-[S-].
Comme p est réguliere, pour tout € > 0 on peut trouver des compacts K, C S, et
K_ c S_ (bien sir disjoints) tels que

[llve < pa[Ke] 4+ pe[K-] + &

en particulier, la variation totale de p sur le complémentaire de K, U K_ est au plus
€.
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Sur chaque compact K4, on peut appliquer le théoreme de Riesz : par exemple

el ] = s lvreny = sup{ [ oduss o € O(KL), ol < 1}

On peut donc trouver 4 (continue sur Ky et a valeurs dans [—1, 1]) tels que

p[K 1] S/ i dps + €.
Ky

(Quitte a remplacer p1 par sa partie positive, on peut supposer que ces fonctions
sont positives, donc a valeurs dans [0, 1].) Soit ¢ définie sur K, U K_, qui vaut ¢
sur K et —p_ sur K_ : on a alors

[l vr < / @dp+ 3e.
K UK_

Par le Théoreme d’extension de Tietze—Urysohn (rappelé dans la sous-section 11-3.3),
on peut prolonger ¢ en une fonction continue sur X, toujours notée ¢, a valeurs dans
[—1,1]. On a alors

/ pdp < / o dp + ||pllvroxaur_y) < / pdp+e.
K UK_ X X
On conclut que

H/LHVTS/ ©dp + 4e,
X

et on acheve 'argument en faisant tendre ¢ vers 0. 0

VIII-4.6. Espace des mesures de Radon. Auparavant nous avons concentré
notre attention sur les mesures signées finies. Les mesures de Radon constituent une
classe particuliere de mesures non signées, d’'usage courant en analyse, en relation
avec la théorie des distributions. Elles sont nommées en hommage au mathématicien
autrichien Johannes Radon, pionnier de la théorie de la mesure abstraite (et décou-
vreur de la “transformée de Radon” tres populaire dans les technologies d’imagerie).
Avant d’introduire cette classe de mesures, notons que sa définition méme varie de
maniere assez importante d'un auteur a 'autre.

DEFINITION VIII-71 (mesures de Radon). Soient X un espace localement com-
pact, muni de sa tribu borélienne, et {2 un ouvert de X ; on appelle mesure de Radon
sur £ une mesure signée, localement finie (i.e. finie sur tout compact de ) et
réquliére. On notera M.(S2) Uespace de ces mesures.

Autrement dit, les mesures de Radon sont “localement” des mesures finies régu-
lieres, mais leur variation totale peut étre infinie. Ces mesures sont assez naturelles
en analyse; si 'on munit C,.(Q2) d’une topologie adéquate, dite topologie inductive,
en englobant tous les supports compacts possibles par une suite croissante d’ouverts,
alors C,(2) est un espace complet (contrairement a ce qui se passe pour la topologie
uniforme), et il s’avere que (C.(2))* = Moc(€2) (c’est bien slir un avatar du théo-
reme de Riesz). En d’autres termes, les mesures de Radon s’identifient alors au dual
de I'espace des fonctions continues a support compact. C’est ce que traduit I’énoncé
suivant [Schwartz| (non démontré dans ce cours) :
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THEOREME VIII-72 (mesures de Radon comme formes linéaires). Soit X un
espace topologique séparé, localement compact, dans lequel tout ouvert est union
dénombrable de compacts. Pour tout compact K C X, on note Cx(X) l'espace des
fonctions continues dans X, dont le support est contenu dans K. Alors [’espace
des mesures de Radon s’identifie a l’espace des formes linéaires sur C.(X) dont la
restriction a Ck(X) est continue, pour tout compact K C X.

VIII-4.7. Convergence dans M (X). On reviendra sur ce sujet dans le cha-
pitre suivant, mais dressons dés maintenant la liste des trois notions de convergence
couramment utilisées dans M (X) : on distingue

e la convergence en variation totale :
e == 1 si e = pllve —— 0.
vT k—o00

Cette notion est tres rigide : par exemple, d,, converge vers d, en variation totale
seulement si x;, est égal a x pour k assez grand !

e la convergence faible-étoile :

Pk — p st Vp € C(X), /wdukm/s@du.

La terminologie de convergence faible-étoile n’est licite que dans le cas ou X est
un espace localement compact et si 'on se restreint a des mesures régulieres, de
sorte que 'on peut appliquer le Théoreme de Riesz. Notons que 'on peut remplacer
I'espace C.(X) par Cy(X), et que cette notion est en général sans intérét dans un
espace non localement compact (il se peut que C.(X) = {0}, par exemple si X est
un espace de Banach de dimension infinie, auquel cas la définition de convergence
faible-x devient vide...).

e la convergence faible, ou convergence étroite :

P = p si Vi € Cy(X), /wdukm/wdu-

Cette notion est bien plus faible de la convergence en variation totale, mais plus forte
(un peu plus forte en dimension finie, beaucoup plus forte en dimension infinie) que
la convergence faible-étoile. Elle est trés populaire parmi les probabilistes, quand les
1y sont des mesures de probabilité.
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qu’aux ouvrages et articles originaux. Il y aura quelques exceptions, en particulier
larticle suivant, qui contient de nombreuses remarques et références que 1’on ne
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