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TD 2. Correction

Exercice 1. 1.
Y+ z 1
rT+y 1

On remarque que les contraintes sont qualifiées. Soit (x,y, z, ), on a :

y+z+A=0 (x=1/3
x+z+)\:0<:> y=1/3
r+y+A=0 z=1/3
sty+z=1 |A=-2/3

VL(z,\) =0«

Le lagrangien admet un unique point critique.
Par ailleurs, on a (1,0,0) € K et f(1,0,0) = 0. De plus, pour tout (x,y,z) € K, on a

g(z,y,2) =0
(z+y+2)7°=1

24P+ 224 2ey + 202+ 2z =1
I

flx,y,z) = 1- ||(=’E2,y, 2)

Ainsi, {(z,y,2) € K, f(z,y,2) > f(1,0,0)} C B(0,1). La fonction f est continue sur le
fermé non-vide K et admet un sur-niveau borné. Donc f admet un maximum global sur
K qui est nécessairement 1'unique point critique du lagrangien.

Viz,y) = (Eﬁ) , Vylzy) = @;) :

Le point (0,0) n’appartenant pas a K, on remarque que les contraintes sont qualifiées.
Soit (z,y,\), on a :

20 +2 =0 (I+XNz=0
VL(z,AN) =0 <({-1+2\y=0< Ay =1/2
4yt =1 2+t =1

En distinguant les cas selon x = 0 ou = # 0, on obtient alors quatre points critiques :
(0,41,1/2) et (£4/3/2,—1/2,—1), vérifiant

f(0,1)=—1, f(0,-1)=1, f(£V3/2,-1/2)=5/4.

La fonction f est continue sur le compact K. Donc f admet un maximum global et un
minimum global sur K, nécessairement points critiques du lagrangien. Ainsi f admet
deux maxima globaux en (++/3/2, —1/2) et un minimum global en (0, 1).

Par ailleurs, sur un voisinage U de (0, —1), on peut paramétrer K par

UNK = {(t,—\/l—tQ),tel},
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ou [ est un voisinage ouvert de 0 dans R. On pose ¢(t) = f(t,—v1 —12?). On a

t2
o(t) =1+ 3 + o(t?),

donc ¢ admet un minimum local en 0. Ainsi, f admet un minimum local en (0, —1).

Exercice 2 (D’un ps a lautre). 1.
Vf(z) =2Az, Vyg(x)=2z.
La contrainte est qualifiée car 0 ¢ K. Pour tout z, A\) € R" x R, on a

{V[,(x, A)=0 {QAx +2 =0 {(A + Xid)z =0
g(x) =0 l[|* = 1 lf* =1

La matrice A est symétrique, elle est donc ortho-diagonalisable. En notant, 0 < A\; <
-+ < A, les valeurs propres de A (avec multiplicité) et E; les espaces propres associés,
I’ensemble des points critiques du lagrangien est

{(x,A) €S xR, 31 Sigp,eri,)\:—)\,-}.

La fonction f est continue sur le compact K donc elle admet un maximum et un minimum
global sur K. Pour z € E;NS" ! on a f(x) = \;. Donc x atteint son minimum global en
tout point de F; N'S""! et son maximum global en tout point de E, N S™!.

Par ailleurs, les autres points critiques du lagrangien sont des points-selles pour f. En
effet, soit z € F; NS" ! avec 2 < i < p — 1 et notons e; et e, deux vecteurs propres
associés a A1 et A\, respectivement. Dans ce cas les fonctions

o(t) = f(sin(t)ey + cos(t)z), ¥(t) = f(cos(t)x + sin(t)e,)
vérifient
p(t) = A+ (A = M) +0(t?),  D(t) =X+ (An — M)t + o(t).

Donc ¢ est maximal en 0 et 1 est minimal en 0. Ainsi, x est un point-selle.

2. La contrainte est qualifiée pour la méme raison et on obtient I’ensemble de point critique
du lagrangien suivant :

1
{(ac,,u) ER"xR31<i<pue Byl = = —qu}.

7

Par le méme argument, f admet un minimum et un maximum global sur K. Ils sont atteint

-1 _
sur £, N S(0,4/A, ) et E1 NS0,V ! respectivement. Les autres points critiques du
lagrangiens sont des points-selles.

Exercice 3 (Distance d’un point & une courbe). La distance du point (z,y) a lorigine est
donnée par d(z,y) = v/x? 4+ y?. Pour simplifier les calculs, on optimise sur la distance au carré.
La fonction objectif est donc

f:(z,y) € R? — 2% 4+ 2.
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La contrainte est elle donnée par la courbe :
g:(z,y) €ER? s 28 + 45 — 1.

Le domaine admissible K = {(z,y) € R? g(z,y) = 0} est un compact non-vide. Donc la fonc-
tion continue f admet un maximum et un minimum global sur K. On a

Vf(z,y) =2 (i) , Vy(z,y) =6 (;) -

L’origine n’étant pas un point du domaine admissible, la contrainte g est qualifiée en tout point
de K. Ainsi, d’apres le théoreme des extrema liés, si (z,y) € K est un extremun de f sur K
alors il existe A € R tel que Vf(x,y) + AVg(z,y) = 0. Le systéme associé admet 8 solutions :
(0,41), (£1,0), (£1/v/2,£1/3/2) et (£1/¥/2,F1/v/2). Les maxima et minima globaux de f
sur K sont nécessairement parmis ces points. Par ailleurs, si (x,y) est I'un des quatre premiers,
ona f(z,y) =1 et sic’est 'un des quatre dernier, on a f(z,y) = v/2. Ainsi, les quatre premiers
points sont les minimiseurs de f et les quatre autres sont les maximiseurs de f.

Exercice 4 (Inégalité de Minkowski). 1. On suppose que y = Az, on a alors ||z + y|, =
1+ Mzl ot 2l + lgll, = (1 + Xzl donc l}o + gll, < 2], + gl De méme s
x=0.

2. On pose f : (v,y) € R" x R" = |lo +y[]F, g1 : (v,y) = [[z]]f —aP et g2 1 (z,y) =
|y|[> — BP. L’ensemble admissible K, 5 = {(z,y) € R" X R", g1(x,y) = 0, g2(x,y) = 0} est
ainsi fermé et borné donc compact. Ainsi, f admet un maximum sur K, g.

De plus, si p > 1 alors, f, g1 et g sont de classe C! en tout point de K et on a

(21 +yo)|z1 + P2 x|z [P 0

Ty + Yn)| T + yulP 2 Tp| T, P2 0
Vi) =p | (Tt ot = [T Ve =

(xn + yn)|xn + yn’p_Q 0 yn|yn|p_2

Par ailleurs, si p = 1, elles sont g; et go sont encore C' sur K et f est de classe C! sauf
éventuellement en les points de la forme (x, —z), points que ’'on saura traiter a part. Dans
la suite, on négligera cela.

Donc les contrainte sont qualifiées sur K. Soit (z,y, A1, A2) € R" X R" x R x R, on a

(.Q?Z' + yl)\xl + yi|p_2 + /\1$i’$i‘p_2 =0
&z +y) |z + P+ XayilyP 2 =0

{Vﬁ(m, A) =0
lellp = o, lyllo = 8

g(z) =0

On en déduit que pour tout i, \jz; = Agy;, i.e x et y sont liés. Ainsi, le maximum de f
sur K, 3 est atteint pour des vecteurs colinéaires.

3. Soient z,y € R™, on pose o = ||z, et 8 = ||y[|,- Sia =0 (ou 5 = 0), alors = et y vérifient
I'inégalité. Sinon, il existe (z*,y*) € Kqp vérifiant f(z*,y*) = maxg, , f. En appliquant
la question 1) a x* et y* colinéaires, on a alors

lz +yllp, = flo. ) < fl* 9 = o + o[l < 'l + 1yl = a+ 8 = llzll, + [yll,-

Y1 |y P2
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Exercice 5 (Inégalité d’'Hadamard). 1. K est compact non-vide et f est continue donc f
admet un maximum sur K.
2. On commence par remarque que si (v; . . ., v,,) est une base orthonormée, alors f(vy ..., v,) =
1. Donc si (vy...,v,) est un maximum de f sur K alors f((vy...,v,) > 1. On pose
gi(v1, ..., v,) = ||v;]|* = 1. On a alors

(Vgi(vr ... vn), (hy ... hy)) = (v, hy).

Puisque 0 ¢ K, alors la famille (Vg;(vy...,v,)),

(2

est libre pour tout (vy...,v,) € K et

la contrainte est qualifiée sur K. D’apres le thm des extrema liés, si (vy...,v,) est un
maximum de f sur K, alors on dispose de ()\;); € R™ tel que
Vf(vl...,vn)—i—Z)\ngi(vl...,vn). (1)

Par ailleurs, f est n-linéaire donc pour tout h; € R™, on a

(Vf(vr...,00),(0,... hiyo..,0)) = f((v1 ..o, hiy ooy o).

Ainsi, pour tout ¢ et h; € R" on a f(vq,...hi...,v,) = N(v;, hi). En particulier, en
évaluant avec h; = v; et hy = 0 pour j # i, 1 < f(v) = \i|lvi||*> = ;. D’autre part, en
évaluant en h; = v; avec i # j ,ona 0 = f(vy,...,v,...,0...,0,) = (v;,v;). Donc
(v1,...,v,) est une base orthonormée.

3. le maximum de f sur K vaut donc 1. Pour tout (vy,...,v,) € (R")", on a (IIZZ:II)' c K et
f( o ) < 1. Ce qui conclut.

A

Exercice 6 (Directions admissibles). Pour plus de clarté, on notera £ = {\(y —x)/y € K, A >
0}. On procede par double inclusion.

C Soit h € K(z) on dispose d'une suite (x)r > 0 et d’une suite (hy); de vecteurs telles que
e — 0, i = h et Vk,x + e, hy, € K. On pose alors y, = x +exhy, € K et A\, = 5,;1 > (. Pour
tout cas on a : hy = M\ (yx — z) € E. Par passage a la limite, h € F.

O Soit h € E. On dispose de suites (y,) € K et (M\)r > 0 telles que hy := M\(yr — )
converge vers h. Pour tout k, on a : y, = A, 'hy + 2 € K et 2 € K. Donc

A\ A\
Mt (1 — s e K
T At €
1
_ K
TESY) M

En posant e, = 1 ,on a bien g, — 0 et h € K(z).

_ 1
1+Xk)




