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TD 2. Correction

Exercice 1. 1.

∇f(x, y, z) =


y + z

x+ z

x+ y

 , ∇g(x, y, z) =


1
1
1

 .
On remarque que les contraintes sont qualifiées. Soit (x, y, z, λ), on a :

∇L(x, λ) = 0 ⇔



y + z + λ = 0
x+ z + λ = 0
x+ y + λ = 0
x+ y + z = 1

⇔



x = 1/3
y = 1/3
z = 1/3
λ = −2/3

Le lagrangien admet un unique point critique.
Par ailleurs, on a (1, 0, 0) ∈ K et f(1, 0, 0) = 0. De plus, pour tout (x, y, z) ∈ K, on a

g(x, y, z) = 0
(x+ y + z)2 = 1

x2 + y2 + z2 + 2xy + 2xz + 2yz = 1

f(x, y, z) = 1 − ∥(x, y, z)∥2

2

Ainsi, {(x, y, z) ∈ K, f(x, y, z) ≥ f(1, 0, 0)} ⊂ B(0, 1). La fonction f est continue sur le
fermé non-vide K et admet un sur-niveau borné. Donc f admet un maximum global sur
K qui est nécessairement l’unique point critique du lagrangien.

2.
∇f(x, y) =

(
2x
−1

)
, ∇g(x, y) =

(
2x
2y

)
.

Le point (0, 0) n’appartenant pas à K, on remarque que les contraintes sont qualifiées.
Soit (x, y, λ), on a :

∇L(x, λ) = 0 ⇔


2x+ 2λx = 0
−1 + 2λy = 0
x2 + y2 = 1

⇔


(1 + λ)x = 0

λy = 1/2
x2 + y2 = 1

En distinguant les cas selon x = 0 ou x ̸= 0, on obtient alors quatre points critiques :
(0,±1, 1/2) et (±

√
3/2,−1/2,−1), vérifiant

f(0, 1) = −1, f(0,−1) = 1, f(±
√

3/2,−1/2) = 5/4.

La fonction f est continue sur le compact K. Donc f admet un maximum global et un
minimum global sur K, nécessairement points critiques du lagrangien. Ainsi f admet
deux maxima globaux en (±

√
3/2,−1/2) et un minimum global en (0, 1).

Par ailleurs, sur un voisinage U de (0,−1), on peut paramétrer K par

U ∩K =
{
(t,−

√
1 − t2), t ∈ I

}
,
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ou I est un voisinage ouvert de 0 dans R. On pose φ(t) = f(t,−
√

1 − t2). On a

φ(t) = 1 + t2

2 + o(t2),

donc φ admet un minimum local en 0. Ainsi, f admet un minimum local en (0,−1).

Exercice 2 (D’un ps à l’autre). 1.

∇f(x) = 2Ax, ∇g(x) = 2x.

La contrainte est qualifiée car 0 /∈ K. Pour tout x, λ) ∈ Rn × R, on a{
∇L(x, λ) = 0
g(x) = 0

⇔
{

2Ax+ 2λx = 0
∥x∥2 = 1

⇔
{

(A+ λid)x = 0
∥x∥2 = 1

.

La matrice A est symétrique, elle est donc ortho-diagonalisable. En notant, 0 < λ1 ≤
· · · ≤ λp les valeurs propres de A (avec multiplicité) et Ei les espaces propres associés,
l’ensemble des points critiques du lagrangien est{

(x, λ) ∈ Sn−1 × R,∃1 ≤ i ≤ p, x ∈ Ei, λ = −λi

}
.

La fonction f est continue sur le compact K donc elle admet un maximum et un minimum
global sur K. Pour x ∈ Ei ∩ Sn−1, on a f(x) = λi. Donc x atteint son minimum global en
tout point de E1 ∩ Sn−1 et son maximum global en tout point de Ep ∩ Sn−1.
Par ailleurs, les autres points critiques du lagrangien sont des points-selles pour f . En
effet, soit x ∈ Ei ∩ Sn−1 avec 2 ≤ i ≤ p − 1 et notons e1 et en deux vecteurs propres
associés à λ1 et λp respectivement. Dans ce cas les fonctions

φ(t) = f(sin(t)e1 + cos(t)x), ψ(t) = f(cos(t)x+ sin(t)en)

vérifient

φ(t) = λi + (λ1 − λi)t2 + o(t2), ψ(t) = λi + (λn − λi)t2 + o(t2).

Donc φ est maximal en 0 et ψ est minimal en 0. Ainsi, x est un point-selle.
2. La contrainte est qualifiée pour la même raison et on obtient l’ensemble de point critique

du lagrangien suivant :{
(x, µ) ∈ Rn × R,∃1 ≤ i ≤ p, x ∈ Ei, ∥x∥2 = 1

λi

, µ = −∥x∥
}
.

Par le même argument, f admet un minimum et un maximum global surK. Ils sont atteint
sur Ep ∩ S(0,

√
λp

−1
) et E1 ∩ S(0,

√
λ1

−1 respectivement. Les autres points critiques du
lagrangiens sont des points-selles.

Exercice 3 (Distance d’un point à une courbe). La distance du point (x, y) à l’origine est
donnée par d(x, y) =

√
x2 + y2. Pour simplifier les calculs, on optimise sur la distance au carré.

La fonction objectif est donc
f : (x, y) ∈ R2 7→ x2 + y2.
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La contrainte est elle donnée par la courbe :

g : (x, y) ∈ R2 7→ x6 + y6 − 1.

Le domaine admissible K = {(x, y) ∈ R2, g(x, y) = 0} est un compact non-vide. Donc la fonc-
tion continue f admet un maximum et un minimum global sur K. On a

∇f(x, y) = 2
(
x

y

)
, ∇g(x, y) = 6

(
x5

y5

)
.

L’origine n’étant pas un point du domaine admissible, la contrainte g est qualifiée en tout point
de K. Ainsi, d’après le théorème des extrema liés, si (x, y) ∈ K est un extremun de f sur K
alors il existe λ ∈ R tel que ∇f(x, y) + λ∇g(x, y) = 0. Le système associé admet 8 solutions :
(0,±1), (±1, 0), (±1/ 6

√
2,±1/ 6

√
2) et (±1/ 6

√
2,∓1/ 6

√
2). Les maxima et minima globaux de f

sur K sont nécessairement parmis ces points. Par ailleurs, si (x, y) est l’un des quatre premiers,
on a f(x, y) = 1 et si c’est l’un des quatre dernier, on a f(x, y) = 3

√
2. Ainsi, les quatre premiers

points sont les minimiseurs de f et les quatre autres sont les maximiseurs de f .

Exercice 4 (Inégalité de Minkowski). 1. On suppose que y = λx, on a alors ∥x + y∥p =
|1 + λ|∥x∥p et ∥x∥p + ∥y∥p = (1 + |λ|)∥x∥p, donc ∥x + y∥p ≤ ∥x∥p + ∥y∥p. De même si
x = 0.

2. On pose f : (x, y) ∈ Rn × Rn 7→ ∥x + y∥p
p, g1 : (x, y) 7→ ∥x∥p

p − αp et g2 : (x, y) 7→
∥y∥p

p −βp. L’ensemble admissible Kα,β = {(x, y) ∈ Rn × Rn, g1(x, y) = 0, g2(x, y) = 0} est
ainsi fermé et borné donc compact. Ainsi, f admet un maximum sur Kα,β.
De plus, si p > 1 alors, f , g1 et g2 sont de classe C1 en tout point de K et on a

∇f(x, y) = p



(x1 + y1)|x1 + y1|p−2

. . .
(xn + yn)|xn + yn|p−2

(x1 + y1)|x1 + y1|p−2

. . .
(xn + yn)|xn + yn|p−2


, ∇g1(x, y) = p



x1|x1|p−2

. . .
xn|xn|p−2

0
. . .
0


, ∇g2(x, y) = p



0
. . .
0

y1|y1|p−2

. . .
yn|yn|p−2


.

Par ailleurs, si p = 1, elles sont g1 et g2 sont encore C1 sur K et f est de classe C1 sauf
éventuellement en les points de la forme (x,−x), points que l’on saura traiter à part. Dans
la suite, on négligera cela.
Donc les contrainte sont qualifiées sur K. Soit (x, y, λ1, λ2) ∈ Rn × Rn × R × R, on a

{
∇L(x, λ) = 0
g(x) = 0

⇔


(xi + yi)|xi + yi|p−2 + λ1xi|xi|p−2 = 0
(xi + yi)|xi + yi|p−2 + λ2yi|yi|p−2 = 0
∥x∥p = α, ∥y∥p = β

On en déduit que pour tout i, λ1xi = λ2yi, i.e x et y sont liés. Ainsi, le maximum de f
sur Kα,β est atteint pour des vecteurs colinéaires.

3. Soient x, y ∈ Rn, on pose α = ∥x∥p et β = ∥y∥p. Si α = 0 (ou β = 0), alors x et y vérifient
l’inégalité. Sinon, il existe (x∗, y∗) ∈ Kα,β vérifiant f(x∗, y∗) = maxKα,β

f . En appliquant
la question 1) à x∗ et y∗ colinéaires, on a alors

∥x+ y∥p = f(x, y)1/p ≤ f(x∗, y∗)1/p = ∥x∗ + y∗∥p ≤ ∥x∗∥ + ∥y∗∥ = α + β = ∥x∥p + ∥y∥p.
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Exercice 5 (Inégalité d’Hadamard). 1. K est compact non-vide et f est continue donc f
admet un maximum sur K.

2. On commence par remarque que si (v1 . . . , vn) est une base orthonormée, alors f(v1 . . . , vn) =
1. Donc si (v1 . . . , vn) est un maximum de f sur K alors f((v1 . . . , vn) ≥ 1. On pose
gi(v1, . . . , vn) = ∥vi∥2 − 1. On a alors

⟨∇gi(v1 . . . , vn), (h1 . . . , hn)⟩ = ⟨vi, hi⟩.

Puisque 0 /∈ K, alors la famille (∇gi(v1 . . . , vn))i est libre pour tout (v1 . . . , vn) ∈ K et
la contrainte est qualifiée sur K. D’après le thm des extrema liés, si (v1 . . . , vn) est un
maximum de f sur K, alors on dispose de (λi)i ∈ Rn tel que

∇f(v1 . . . , vn) +
∑

λi∇gi(v1 . . . , vn). (1)

Par ailleurs, f est n-linéaire donc pour tout hi ∈ Rn, on a

⟨∇f(v1 . . . , vn), (0, . . . , hi, . . . , 0)⟩ = f((v1 . . . , hi, . . . , vn).

Ainsi, pour tout i et hi ∈ Rn, on a f(v1, . . . hi, . . . , vn) = λi⟨vi, hi⟩. En particulier, en
évaluant avec hi = vi et hj = 0 pour j ̸= i, 1 ≤ f(v) = λi∥vi∥2 = λi. D’autre part, en
évaluant en hi = vj avec i ̸= j , on a 0 = f(v1, . . . , vi, . . . , vi . . . , vn) = ⟨vi, vj⟩. Donc
(v1, . . . , vn) est une base orthonormée.

3. le maximum de f sur K vaut donc 1. Pour tout (v1, . . . , vn) ∈ (Rn)n, on a
(

vi

∥vi∥

)
i

∈ K et
f
(

vi

∥vi∥

)
i

≤ 1. Ce qui conclut.

Exercice 6 (Directions admissibles). Pour plus de clarté, on notera E = {λ(y−x)/y ∈ K,λ >
0}. On procède par double inclusion.

⊂ Soit h ∈ K(x) on dispose d’une suite (εk)k > 0 et d’une suite (hk)k de vecteurs telles que
εk → 0, hk → h et ∀k, x + εkhk ∈ K. On pose alors yk = x + εkhk ∈ K et λk = ε−1

k > 0. Pour
tout cas on a : hk = λk(yk − x) ∈ E. Par passage à la limite, h ∈ Ē.

⊃ Soit h ∈ Ē. On dispose de suites (yk) ∈ K et (λk)k > 0 telles que hk := λk(yk − x)
converge vers h. Pour tout k, on a : yk = λ−1

k hk + x ∈ K et x ∈ K. Donc

λk

k(1 + λ2
k)yk + (1 − λk

k(1 + λ2
k)x ∈ K

1
k(1 + λ2

k)hk + x ∈ K

En posant εk = 1
k(1+λk) , on a bien εk → 0 et h ∈ K(x).


