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TD 1. Corrections

Exercice 1. Trouver les extrema locaux et globaux des fonctions

2. Ainsi

1. On commence par remarquer que f est continue. De plus on a 2|zy| < |[(z,y)

1
o4yt = (@)l = 22%° = Sl ()|

fe) = 5 ()| ) — 52

On en déduit que f est coercive sur R?. Ainsi, f admet un minimum global. En revanche,
f n’admet pas de maxima globaux pour la méme raison. Par ailleurs, on a

Vi(z,y) = <izz . Sg - 3) '

Il y a trois points critiques (0,0) et +(2, —2). On a

f(2’ _2) =-32= f(_2’ 2)7 f(07 0) =0

Donc +(2, —2) sont les mimima globaux de f. Enfin, en regardant f(¢,t) et f(t,—t) au
voisinage de ¢ = 0 on montre que (0,0) est un point-selle.

y(3x + 4y + 2)
Vf(z,y) ==y :
y(2z + 6y + 2)
On remarque que f n’admet pas d’extremum global.
Points critiques : (0,a), a € R, (b,0), b € R et (—2/5,—1/5). Pour les points de la forme
(0,a) et (b,0), la hessienne ne permet pas de conclure car elle est trop dégénérée. En

revanche, on a
f(h,a+ k) = a*(1 + 2a)h* + h*a[ah + 2k + 6ak] + h*O(||(h, k)||?).

Donc (0,a est un minimum local si 1 4+ 2a > 0 et un maximum local si 1 + 2a < 0. De
plus, (0, —1/2) est un point-selle car le signe de [ah + 2k + 6ak] n’est pas fixe.
L’étude est la méme pour les point de la forme (b,0), avec une séparation en b = —1.

-2 -1 1 (-6 8
(2= |
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Son déterminant est strictement positif et sa trace strictement négative donc (—2/5, —1/5)
est un maximum local.

Pour finir,

Exercice 2. 1. On remarque que f est de classe C? car polynomiale. Pour tout (z,y) € R?,

on a
o (la+B)z— By 5 o fa+pB -8B

2. Pour tout (z,y) € R? on a:

Vf(x,y)ZO@){(aJrﬁ)x_ﬁy:O@{wio

By — Br =0 =0

Donc f admet un unique point critique en (0, 0).
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3. On remarque que Hess(f) est constante et que
det(Hess(f) = af  Tr(Hess(f) = a+ 20.

a) Les deux valeurs propres de Hess(f)(z, y) sont strictement positives, uniformement sur

R2. Donc f est fortement convexe et donc admet un minimum global, nécessairement
n (0,0). Ainsi, (0,0) est un minimum global et unique extremum de f.

b) Dans ce cas, les valeurs propres sont strictement négative. Donc —f est fortement
convexe. Ainsi f admet un maximum global, nécessairement en (0,0). Donc (0,0) est
un maximum global et unique extremum de f.

c) det(Hess(f)(0,0)) < 0 donc admet une valeur propre strictement positive et une valeur
propre strictement négative. Ainsi (0,0) est un point-selle.

Exercice 3. On pose g = —In f. On a

z; —m)?

glm,o) = gln(QWOQ) +> ( 52

Par croissance de In, maximiser f est équivalent a minimiser g. On a

m —x;
2 Z 2 n _4 Z m—x;
20 o2 253
Vyg(m,o) = 2 Hess(g)(m, o) = g mez LGy o) )2
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n (m — x;
Do)
o 2 203

La fonction g admet un unique point critique m* = % YN, of = ﬁ (> (m* — a:i)Q)l/z. De plus,
on a

tesst)o”.o) = 2 ).

o*2

matrice définie positive. Donc g est minimale en (m*,0*) et f y est maximal.

Exercice 4. 1. On a:
2
= ||Ma —yl|.

N

> 1P (i) — il —Z

=1 =1

ot My =2},1<i<N,0<j<n.

2. Remarquons pour commencer que la matrice M € My 41 est une matrice de Vander-
monde dont au moins n+1 lignes sont distinctes deux a deux. Elles est donc de rang plein.
En particulier, ker(M) = {0} et M M est inversible'. On pose f : a € R™™ — ||Ma—yl*.
La fonction f est de classe C? car polynomiale et on a V f(z) = 2'M (Mz — y). L'unique
point critique de f est z* = (t]WM)_1 tMy. De plus, pour tout A € R*™!, en développant,
on a

f@®+h) = f(a") + [|MA]*.

Donc x* est 'unique minimum de f et ¢’est un minimum global.

Remarque. Ce résultat a une explication géométrique. Soit b € R*H1 tel que Mb soit la projection
orthogonal de y surV = {Ma,a € R"™1}. Dans ce cas, Mb est caractérisé par : (y—Mb, Ma) = 0, Ya €
R™*L. On montre alors que b est unique et caractérisé par : b = (!MM)~Y'™My. Par ailleurs, le théoréme
de Pythagore montre alors que pour tout a € R"!, on a : ||[Ma —y||> = ||[Mn — y||*> + | M (b — a)|>.
Et comme ker(M) = {0}, b est l'unique minimum global.

1. tMMz = 0 implique |[Mz| = 0 donc z € ker(M).
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Exercice 5. La fonction f est continue sur le compacte B(0,1). Elle y est donc bornée et
y atteint ses bornes. Si sup f = inf f, alors f est constante sur la boule fermée et donc son
gradient est nul. Si inf f < sup f, alors il existe z # y dans B(0, 1) tels que f(x) = inf f et
f(y) = sup f. f étant constante sur S!, on peut supposer que z € B(0,1). Or f est différentiable
sur 'ouvert B(0,1) donc V f(z) = 0.




