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Chapitre 1

Convexité

1.1 Généralité

Soit E un espace vectoriel sur R ou C.

Définition 1. Soit x, y ∈ E. La droite passant par x et y est {λx + (1 − λ)y/λ ∈ R} et le segment entre
x et y est [x, y] = {λx + (1 − λ)y/0 ≤ λ ≤ 1}.

Définition 2. Un sous-ensemble C ⊂ E est convexe si pour tout x, u ∈ C, [x, y] ⊂ C.

Exemple 3. Si E est un evn alors les boules (ouvertes et fermées) sont convexes. Dans E = Rd cela inclus
aussi les pavés.

Contre-exemple 4. Dans un espace métrique, les boules ne sont pas nécessairement convexes. Par exemple
dans le Fréchet C(R, R) muni de

d( f , g) =
∞

∑
n=1

2−n dn( f , g)
1 + dn( f , g)

, dn( f , g) = sup
|x|≤n

| f (x)− g(x)|

on définit f (x) = (1 − |x|)+ et g(x) = 100 f (x − 2). On a d(0, f ) = 1/2, d(0, g) = 50/101 mais
h = ( f + g)/2 /∈ B(0, 1/2).

La notion de convexité est stable par les opérations suivantes

Proposition 5. (i) Soit I un ensemble et (Ci)i∈I une famille de sous-ensembles convexes de E, alors
∩i∈ICi est convexe.

(ii) (Somme de Minkowski) Si C1 et C2 convexes de E et α, β ∈ R, alors αC1 + βC2 ⊂ E est convexe.
(iii) Soit C1 ⊂ E et C2 ⊂ F convexes, alors C1 × C2 ⊂ E × F est convexe.

Définition 6. Un vecteur y ∈ E est une combinaison convexe des vecteurs x1, . . . xn ∈ E s’il existe
λ1, . . . λn ∈ [0, 1] tel que ∑ λi = 1 et y = ∑ λixi.

Proposition 7. Soit C ⊂ E. C est convexe ssi C est stable par combinaison convexe.

Démonstration. ⇐ Immédiat (le segment [x, y] est l’ensemble des combinaisons convexe de x et
y).

⇒ on procède par récurrence sur la taille n ≥ 2 des combinaisons convexes. On suppose que
C est convexe. Le cas n = 2 (initialisation) correspond à la définition de la convexité. Il est donc
vérifié. On suppose que le cas n est vérifié. Soient x1, . . . xn+1 ∈ C, λ1, . . . λn+1 ∈ [0, 1] tel que
∑ λi = 1 et y = ∑ λixi. On peut supposer que λn+1 /∈ {0, 1}. On a alors

y = λn+1Xn+1 + (1 − λn+1)
n

∑
i=1

µixi,

avec µi = λi/(1 − λn+1). En particulier, µi ≥ 0 et ∑ µi = 1 donc µi ∈ [0, 1] et z = ∑ µixi ∈
C par hypothèse de récurrence. D’où u ∈ C par définition de la convexité. Ce qui achève la
récurrence.
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Définition 8. Soit A ⊂ E. l’enveloppe convexe de A est le plus petit ensemble convexe conv(A) ⊂ E
contenant A, i.e

conv(A) =
⋂

A⊂C,Ccvx
C.

Proposition 9. Soit A ⊂ E, alors conv(A) est l’ensemble des combinaisons convexes de points de A.

Démonstration. Notons C l’ensemble des combinaison convexe de A.
C ⊂ conv(A). conv(A) est convexe et contient A. D’après la Proposition 7, conv(A) contient

les combinaisons convexes d’éléments de conv(A), donc en particulier de A.
conv(A) ⊂ C. Il suffit de montrer que C est convexe. En effet, A ⊂ C et conv(A) est le plus petit

convexe contenant A. Soient x, y ∈ C, il existe x1, . . . , xn et y1, . . . , yp ∈ A ainsi que λi, µi ∈ [0, 1]
tel que ∑ λi = ∑ µi = 1 et x = ∑ λixi, y = ∑ µiyi. pour tout ν ∈ [0, 1], on a

νx + (1 − ν)y =
n+p

∑
i=1

νizi,

avec zi = xi, nui = νλi pour 1 ≤ i ≤ n et zi = yi−n, νi = (1 − ν)µi−n pour n + 1 ≤ i ≤ n + p. On
a bien zi ∈ A, nui ≥ 0 et ∑ νi = 1. Ce qui montre que C est convexe.

Application 10 (Théorème de Gauß-Lucas). Soit P ∈ C[X] non constant. Alors les racines de P′ sont
dans l’enveloppe convexes des racines de P.

Démonstration. P(X) = Πd
i=1(X − zi)

mi . Considérons sa dérivée logarithmique Q = P′/P =

∑d
i=1 mi/(X − zi). Soit z une racine de P′ qui ne soit pas une racine de P. On a alors

0 = ∑
mi

z − zi
= ∑

mi
|z − zi|2

(z̄ − z̄i).

Ainsi z = ∑ α1zi avec αi = mi/(|z − zi|2 ∑ mj/|z − zj|2) ≥ 0 et ∑ αi = 1.

Dans le cas où E est de dimension finie (E = Rd), on peut borner la taille des combinaisons
convexes nécessaires.

Theorem 11 (Carathéodory). Si E = Rd, d ≥ 1 et A ⊂ E, alors conv(A) est l’ensemble des combinai-
sons convexes d’au plus d + 1 points de A.

Contre-exemple 12. Attention ! Le théorème NE DIT PAS qu’il suffit de d + 1 points pour engendrer
conv(A), seulement que pour tout élément de conv(A) il existe d + 1 points dont il est une combinaison.
Par exemple, trois points n’engendreront jamais conv({(±1,±1)}) dans R2.

Démonstration. Notons Cd+1 l’ensemble des combinaisons convexes d’au plus d + 1 éléments. On
a de manière immédiate Cd+1 ⊂ conv(A). Soit x ∈ conv(A). D’après la proposition précédente,
x = ∑n

i=1 λixi. Si n < d + 2 alors x ∈ Cd+1, sinon, on montre que x est une combinaison convexe
d’au plus n − 1 élément de A. En effet, la famille {x2 − x1, . . . , xn − x1} ⊂ Rd est liée. On dispose
donc de α2, . . . , αn ∈ R, non tous nuls, tels que

n

∑
i=2

αi(xi − x1) = 0.

On pose alors α1 = −∑n
i=2 αi de sorte que ∑n

i=1 αi = 0. On en déduit qu’il existe au moins un αi
strictement positif. On définit alors

µ = min
i
{λi

αi
/αi > 0}.

En particulier, pour tout i, on a µi = λi − µαi ≥ 0 et au moins l’un de ses coefficient est nul. De
plus on a ∑ µi = ∑ λi − µ ∑ αi = 1 et x = ∑ µixi. Ainsi, x est combinaison convexe d’au plus n − 1
point. On termine par récurrence.
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Une conséquence de ce théorème est la préservation de la compacité en dimension finie.

Corollaire 13. Si E = Rd et A ⊂ E compact, alors conv(A) est compact.

Démonstration. Notons ∆ = {(λi) ∈ [0, 1]d+1/ ∑i λi = 1}. C’est un fermé borné de Rd+1, donc
compact. On considère alors l’application

φ : Rd+1 × (Rd)d+1 → Rd

(λ1, . . . , λd+1, x1, . . . , xd+1) 7→ ∑i λixi
.

Cette application est continue et vérifie φ(∆ × Ad+1) = conv(A). Donc conv(A) est compact.

En dimension ∞, l’enveloppe convexe d’un compact n’est pas nécessairement compact, ni
même fermée.

Contre-exemple 14. Dans E = ℓ2, on pose un = en/n où en(k) = δnk. On pose A = {0} ∪
{u1, u2, . . .}. A est compact mais la suite xn = ∑n

i=1
1
2i ui ∈ conv(A) converge vers x∗ /∈ conv(A).

En revanche, le caractère borné est systématiquement préservé.

Proposition 15. Soit E un evn et A ⊂ E borné. Alors conv(A) est bornée et de même diamètre que A.

Démonstration. Par inclusion A ⊂ conv(A), on a δ(A) ≤ δ(conv(A)). Par ailleurs, A ⊂ B(0, R)
qui est convexe, donc conv(A) ⊂ B(0, R). Ainsi, conv(A) est bornée.

Soit x ∈ conv(A) et y ∈ A, on a x = ∑i λixi avec xi ∈ A. On a alors

∥x − y∥ ≤ ∑ λi∥xi − y∥ ≤ ∑ λiδ(A) = δ(A).

Soit x, y ∈ conv(A), alors d’après l’inégalité précédente, on a

∥x − y∥ ≤ ∑ λi∥xi − y∥ ≤ ∑ λiδ(A) = δ(A).

On a donc montré que δ(conv(A)) ≤ δ(A).

De manière générale, et ce en toute dimension, le passage à l’enveloppe convexe ne préserve
pas le caractère fermé.

Contre-exemple 16. Dans E = R2, avec A = (0, 0) ∪ R × {1}. Alors conv(A) = (0, 0) ∪ R×]0, 1].

En revanche le caractère ouvert est préservé.

Proposition 17. Soient un evn et A ⊂ E ouvert, alors conv(A) est ouverte.

Démonstration. Soit x ∈ conv(A), on dispose d’une décomposition x = ∑n
i=1 λixi. On peut sup-

poser que λ1 ̸=. On définit alors l’application

f : z ∈ E 7→ λ−1
1

(
z −

n

∑
i=2

λixi

)
.

Cette application est continue et on a f−1(A) est un ouvert. Par ailleurs, f (x) = x1 donc x ∈
f−1(A). Enfin, on a

f−1(A) = {z ∈ E/∃y ∈ A, z = λ1y +
n

∑
i=2

λixi} ⊂ conv(A).

Donc f−1(A) est un voisinage de x dans conv(A).

Pour conclure, montrons deux résultats de stabilité lié à la topologie.

Proposition 18. Soit A ⊂ E un convexe, alors Ā est convexe. De plus si E est un evn, alors Å est convexe.
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Démonstration. •Ā. Soit x, y ∈ Ā et λ ∈ [0, 1], il existe (xn)n, (yn)n dans A qui convergent vers
x et y. On pose zn = λxn + (1 − λ)yn. Par convexité de A, zn ∈ A. De plus, zn converge vers
z = λx + (1 − λ)y. Donc z ∈ Ā qui est ainsi fermé.

•Å. Raisonnons par l’absurde. Supposons qu’il existe x0, y0 ∈ Å et λ0 ∈ [0, 1] tels que z0 =

λ0x0 + (1 − λ0)y0 /∈ Å. Remarquons que λ0 /∈ {0, 1}. Comme y0 ∈ Å alors il existe r > 0 tel
que B(y0, r) ⊂ A. Alors l’application f : z ∈ E 7→ (z − λ0x0)/(1 − λ0) est continue et vérifie
f (z0) = y0. Ainsi, il existe δ > 0 tel que f (B(z0, δ)) ⊂ B(y0, r) ⊂ A. Mais comme z0 /∈ Å alors il
existe z1 ∈ B(z0, δ) ∩ Ac. En notant y1 = f (z1), on a y1 ∈ A et z1 /∈ A. Or z1 = λ0x0 + (1 − λ0)y1.
C’est absurde par convexité de A.

1.2 Convexité dans les espaces de Hilbert

On suppose dans cette partie que E = H unespae de Hilbert, muni du produit scalaire ⟨·, ·⟩.

1.2.1 Théorème de projection

Theorem 19 (Projection sur un convexe fermé). Soit C ⊂ H un convexe fermé non-vide. Alors pour
tout x ∈ H il existe un unique y∗ ∈ C tel que ∥x − y∗∥ = miny∈C ∥x − y∥. Ce y∗ est appelé projeté
orthogonal de x sur C. Par unicité, cela définit un application de projection πC : x ∈ H 7→ y∗ ∈ C. Enfin,
πC(x) est caractérisée par les deux propriétés suivantes :

(i) πC(x) ∈ C

(ii) pour tout y ∈ C, on a ⟨x − πC(x), y − πC(x)⟩ ≤ 0.

La propriété (ii) peut être interprétée géométriquement en disant que, pour tout y ∈ C, l’angle
entre x − πC(x) et y − πC(x) est obtus. En effet, cet angle est par définition

θ = arccos
(

⟨x − πC(x), y − πC(x)⟩
∥x − πC(x)∥∥y − πC(x)∥

)
∈
[π

2
, π
]

.

Démonstration. L’idée de cette démonstration est de résoudre un problème d’optimisation. Cela
donne un avant-goût de de la suite du cours. Tout d’abord, si x ∈ C, on définit πC(x) = x.
Supposons x /∈ C. On définit alors la fonction objectif suivante : f : y ∈ H 7→ ∥x − y∥ ∈ R.
On souhaite minimiser f sur C. Pour commencer, f est continue (et même 1-Lipschitzienne), en
utilisant de la seconde inégalité triangulaire. De plus, f est positive. Soit (yn)n ∈ CN une suite
minimisante, c’est à dire telle que f (yn) → infy∈C f (y) ≥ 0. Une telle suite existe par définition
de l’infimum. Notons δ = infy∈C f (y). On commence par remarquer que δ > 0. En effet, δ = 0 ssi
x ∈ C̄ = C ce qui a été exclu. Pour conclure à l’existence de y∗ il suffit de montrer que la suite (yn)n
converge. Pour ce faire, on va montrer qu’elle est de Cauchy. Le sous-ensemble C étant fermé dans
l’espace complet H, alors il est lui-même complet et cela suffira à montrer la convergence. Pour
montrer que la suite est de Cauchy, on utilise l’identité du parallélogramme 1. Pour tout p, q ∈ N,
on a

∥(x − yp) + (x − yq)∥2 + ∥yp − yq∥2 = 2∥x − yp∥2 + 2∥x − yq∥2.

Or par convexité, (yp + yq)/2 ∈ C et ainsi ∥(x − yp) + (x − yq)∥2 ≥ 4δ2. On a donc

0 ≤ ∥yp − yq∥2 ≤ 2
(
∥x − yp∥2 + ∥x − yq∥ − 2δ2

)
→ 0.

Ce qui montre que la suite (yn)n est de Cauchy et donc converge vers y∗ ∈ C. Par continuité de f ,
on a f (y∗) = δ = miny∈C f (y). Ce qui prouve l’existence de y∗.

Pour montre l’unicité d’un tel y∗, supposons qu’il existe un autre z∗ ∈ C tel que ∥x − z∗∥ = δ.
La suite (zn)n qui alterne entre y∗ etz∗ est une suite minimisante. Elle est donc convergente d’après
ce qui précède. Ainsi, z∗ = y∗.

1. cette identité est équivalente au fait d’être issu d’un produit scalaire
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Montrons à présent que la projection satisfait les points (i) et (ii). Par construction, (i) est clair.
Soit y ∈ C, on a

∥x − πC(x)∥2 ≤ ∥x − y∥2

= ∥(x − πC(x))− (y − πC(x))∥2

= ∥(x − πC(x))∥2 + ∥(y − πC(x))∥2 − 2⟨x − πC(x), y − πC(x)⟩

Ainsi, pour tout y ∈ C, on a ∥(y − πC(x))∥2 ≥ 2⟨x − πC(x), y − πC(x)⟩. Fixons y0 ∈ C. L’inégalité
est vraie pour yλ = λy0 + (1 − λ)πC(x), pour tout λ ∈ [0, 1]. Ainsi,

λ2∥(y0 − πC(x))∥2 ≥ 2λ⟨x − πC(x), y0 − πC(x)⟩.

En simplifiant par λ et faisant tendre vers 0, on montre que πC satisfait (ii).
Pour conclure, montrons que πC(x) est l’unique vecteur satisfaisant les deux conditions. Soit

z ∈ C tel que pour tout y ∈ C on ait ⟨y − z, x − z⟩ ≤ 0. On a alors,

∥y − x∥2 = ∥(y − z)− (x − z)∥2 = ∥y − z∥2 + ∥x − z∥2 − 2⟨y − z, x − z⟩
≥ ∥y − z∥2 + ∥x − z∥2 ≥ ∥x − z∥2

Ceci montre que z vérifie ∥x − z∥ = miny∈C ∥x − y∥ et par unicité de ce minimum, z = πC(x).

Corollaire 20. Soit C ⊂ H un convexe fermé non vide. Alors l’application πC est 1-lipschitzienne.

Démonstration. Soient x, y ∈ H, on a

∥πC(x)− πC(y)∥2 =⟨πC(x)− πC(y), πC(x)− πC(y)⟩
= ⟨πC(x)− πC(y), y − πC(y)⟩︸ ︷︷ ︸

≤0

+⟨πC(x)− πC(y), x − y⟩

+ ⟨πC(x)− πC(y), πC(x)− x⟩︸ ︷︷ ︸
≤0

≤∥πC(x)− πC(y)∥∥x − y∥

D’où le résultat.

1.2.2 Séparation et Hahn-Banach

On va utiliser le théorème de projection pour obtenir des résultats de séparation par de hy-
perplans dans les Hilbert et une preuve simple du théorème de Hahn-Banach. Notons que ce
théorème s’énonce de manière générale dans des espace vectoriel topologique 2 mais se démons-
tration demande alors l’utilisation de l’axiome du choix (Cf [3])

Définition 21. (i) Un hyperplan de H est H(v, α) = {x ∈ H/⟨v, x⟩ = α}, pour v ∈ H et α ∈ R.

(ii) L’hyperplan H(v, α) divise H en deux régions :

H+(v, α) = {x ∈ H/⟨v, x⟩ ≥ α} et H−(v, α) = {x ∈ H/⟨v, x⟩ ≤ α} .

(iii) Soient A, B ⊂ H. On dit queH(v, α) sépare A et B si A ⊂ H±(v, α) et B ⊂ H∓(v, α).

(iv) On dit queH(v, α) sépare strictement A et B si

A ⊂ H±(v, α) \ H(v, α) et B ⊂ H∓(v, α) \ H(v, α).

(v) On dit que H(v, α) est un hyperplan d’appui pour A, s’il existe x ∈ Ā ∩ H(v, α) et A ⊂ H±(v, α).

2. et pas dans des Banach ! ! !
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La définition classique d’un hyperplan, comme noyau d’une forme linaire continue, corres-
pond au cas α = 0 (d’après le théorème de représentation de Riesz). La définition présente permet
d’élargir à des hyperplans affines. Le vecteur v est appelé vecteur normal à l’hyperplan H(v, α)
car pour tout x, y ∈ H(v, α), on a ⟨v, x − y⟩ = 0.

Theorem 22 (Séparation). Soit A ⊊ H un sous-ensemble strict de H, convexe, fermé, non-vide. Alors :

(i) Pour tout x /∈ A, il existe un hyperplan qui sépare strictement {x} et A.

(ii) A admet des hyperplans d’appui.

Démonstration. (i) On pose v = x − πA(x) et δ = ∥v∥ > 0. On a

⟨v, x⟩ =⟨x − πA(x), x − πA(x)⟩+ ⟨x − πA(x), πA(x)⟩
=δ2 + ⟨x − πA(x), πA(x)⟩

>⟨x − πA(x), πA(x)⟩+ 1
2

δ2

Ainsi, en posant, α = ⟨x − πA(x), πA(x)⟩+ 1
2 δ2, on a {x} ⊂ H+(v, α) \ H(v, α). Par ailleurs, pour

tout y ∈ A, on a

⟨v, y⟩ =⟨y − πA(x), x − πA(x)⟩+ ⟨πA(x), x − π(A)(x)⟩

≤α − 1
2

δ2

D’où A ⊂ H−(v, α) \ H(v, α).
(ii). On choisit un x /∈ A arbitraire et on pose v = x − πA(x) et α = ⟨x − πA(x), πA(x)⟩.

D’après les calculs précédents, cela convient.

Theorem 23 (Hahn-Banach géométrique). Si A ⊂ H est un convexe fermé non-vide et B ⊂ H est un
convexe compact non-vide, disjoint de A, alors il existe un hyperplan qui sépare strictement A et B.

Démonstration. On définit f : x ∈ B 7→ ∥x − πA(x)∥. Cette fonction est continue et par compacité
de B, il existe x∗ ∈ B qui réalise son minimum. On pose v = x∗ − πA(x∗), δ = ∥v∥ et α =
⟨x − πA(x), πA(x)⟩. D’après le théorème précédent, H(v, α) sépare strictement {x∗} et A. Il reste
à montrer que B ⊂ H+(v, α) \ H(v, α). On pose y∗ = πA(x∗). y∗ admet une projection sur B et on
a

∥πB(y∗)− y∗∥ =∥πB(y∗)− πA(x∗)∥
= min

z∈B
∥z − πA(x∗)∥ ≤ ∥x∗ − πA(x∗)∥

= min
x∈B

∥x − πA(x)∥ ≤ ∥πB(y∗)− πA(πB(y∗))∥

= min
y∈A

∥πB(y∗)− y∥ ≤ ∥πB(y∗)− y∗∥

On a donc que des égalités et par unicité du minimum dans la projection, on a x∗ = πB(y∗). Ainsi,
on a v = πB(y∗)− y∗ et pour tout x ∈ B

⟨x, v⟩ = −⟨x, y∗ − πB(y∗)⟩ ≥ α +
1
2

δ2.

Application 24 (Enveloppe convexe fermée [2]). L’enveloppe convexe ne préserve pas le caractère
fermé. On définit donc l’enveloppe convexe fermée de A ⊂ H, conv(A) comme étant le plus petit convexe
fermé contenant A :

conv(A) =
⋂

C cvx fermé,A⊂C

C.
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A partir du théorème de Hahn-Banach, on montre que

conv(A) =
⋂

(v,α),A⊂H(v,α)

H(vα).

En particulier, on peut utiliser ce résultat pour déterminer l’enveloppe convexe de On(R).

1.2.3 Sous-espace orthogonal

Le théorème de projection permet aussi de démontrer la décomposition d’un espace de Hibert
en somme orthogonale.

Définition 25. Si F ⊂ H sev, son orthogonal est défini par

F⊥ = {x ∈ H/∀y ∈ H, ⟨x, y⟩ = 0} .

Proposition 26. (i) F⊥ est fermé

(ii) F⊥ = (F)⊥

(iii) F ⊂ (F⊥)⊥

Démonstration. (i) Si (xn)n est une suite de F⊥ qui converge vers x ∈ H alors pour tout y ∈ F, on
a ⟨x, y⟩ = lim⟨xn, y⟩ = 0 par continuité du produit scalaire. Donc x ∈ F⊥ qui est fermé.

(ii) Soit x ∈ F⊥, alors x est limite d’une suite (xn)n de F⊥. Soit y ∈ F, y est limite d’une suite
(yn)n de F. Par continuité, on a ⟨x, y⟩ = lim⟨xp, yq⟩ = 0. Donc F⊥ = F⊥ ⊂ F⊥. De plus, puisque

F ⊂ F alors F⊥ ⊂ F⊥. D’où l’égalité.
(iii) Soit x ∈ F alors pour tout y ∈ F⊥, on a ⟨x, y⟩ = 0. Donc x ∈ (F⊥)⊥. De plus, (F⊥)⊥ est

fermé, donc F ⊂ (F⊥)⊥.

Corollaire 27. Soit F ⊂ H un sev fermé, alors πF est linéaire, continue, surjective. De plus, on a la
décomposition H = F ⊕ F⊥. En particulier, F = (F⊥)⊥.

Démonstration. πF est surjective par construction et continue d’après un résultat précédant. Pour
tout x ∈ H, on a la décomposition x = πF(x) + (x − πF(x)). Il faut donc vérifier que (x −
πF(x)) ∈ F⊥ pour avoir H = F + F⊥. Pour tout z ∈ F, on a ⟨z − πF(x), x − πF(x)⟩ ≤ 0. En
appliquant à λz et en divisant par λ, on obtient

0 ≥⟨z − 1
λ

πF(x), x − πF(x)⟩, ∀λ > 0

0 ≤⟨z − 1
λ

πF(x), x − πF(x)⟩, ∀λ < 0

En faisant tendre |λ| vers +∞, on en déduit que ⟨z, x − πF(x)⟩ = 0. Donc (x − πF(x)) ∈ F⊥.
Supposons qu’il y ait une seconde décomposition x = x1 + x2 avec x1 ∈ F et x2 ∈ F⊥. Alors on a
x1 − πF(x) = (x − πF(x))− x2. Ainsi, x1 − πF(x) ∈ F ∩ F⊥ = {0}. On en déduit l’unicité de la
décomposition. En particulier, cela implique que F = (F⊥)⊥.

La linéarité de πF découle cette unique décomposition. En effet, pour tout x, y ∈ H et α, β ∈ C,
on a

αx + βy = πF(αx) + πF(βy)︸ ︷︷ ︸
∈F

+ αx + βy − (πF(αx) + πF(βy))︸ ︷︷ ︸
∈F⊥

= πF(αx + βy)︸ ︷︷ ︸
∈F

+ αx + βy − πF(αx + βy)︸ ︷︷ ︸
∈F⊥
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Application 28 (Densité). Ce corollaire est souvent utiliser pour montrer qu’une famille orthonormée est
une base hilbertienne (i.e est totale). En effet, pour un sev F quelconque, on a montrer que (F⊥)⊥ = F.
Ainsi F ⊂ H est dense ssi F⊥ = {0}. on retrouvera ce critère dans l’étude des séries de Fourier, des
polynômes orthogonaux, l’espace de Bergmann etc.

Application 29 (Théorème ergodique de Von Neumann, [2], Exo 3.6). Soit T ∈ L(H), ∥T∥ ≤ 1.
Alors pour tout x ∈ H, on a

1
n

n−1

∑
n=0

Tn(x) −→ πker(T−id(x).

Application 30 (Espérance conditionnelle, [2], App 3.23). Soit (Ω,F , P) un espace de probabilité et G
une sous-tribu de F . L’espérance conditionnelle par rapport à G se définit sur L2(F ) comme la projection
sur le sous-espace L2(G).

1.2.4 Semi-cône et lemme de Farkas

La décomposition en sous-espace orthogonaux se généralise à des sous-ensemble F qui ont
une structure plus faible que celle de sev : les semi-cônes.

Définition 31. (i) Un sous ensemble K ⊂ H est un semi-cône si pour tout x ∈ K et tout λ ≥ 0 on a
λx ∈ K.

(ii) Pour un sous-ensemble K ⊂ H, on définit son semi-cône polaire K◦ par

K◦ = {x ∈ H/∀y ∈ K, ⟨x, y⟩ ≤ 0} .

Remarquons que si K est un semi-cône, alors 0 ∈ K. Dans le cas "plat" des sev, on a F◦ = F⊥.

Lemme 32. Si K est un semi-cône convexe fermé alors K◦ = {x ∈ H/πK(x) = 0}.

Démonstration. Soit x ∈ K◦ alors pour tout y ∈ K, on a ⟨x, y⟩ ≤ 0. Or 0 ∈ K et ⟨x − 0, y − 0⟩ ≤ 0.
Donc par caractérisation de la projection, πK(x) = 0. Réciproquement, si πK(x) = 0 alors pour
tout y ∈ K, on a 0 ≥ ⟨x − 0, y − 0⟩. Donc x ∈ K◦.

Le théorème suivant donne une décomposition de H en somme de semi-cônes, similaire à la
décomposition orthogonale 27.

Theorem 33 (Moreau, [2]). Soit K un semi-cône convexe fermé non-vide. Alors pour tout x ∈ H, le
projeté πK(x) admet caractérisation suivante

(i) πK(x) ∈ K
(ii) x − πK(x) ∈ K◦ et ⟨x − πK(x), πK(x)⟩ = 0.

De plus, on a l’équivalence entre les propriétés suivantes
(a) x admet une décomposition x = xK + x◦ avec xK ∈ K, x◦ ∈ K◦ et ⟨xK, x◦⟩ = 0
(b) xk = πK(x) et x◦ = πK◦(x).

Corollaire 34. Soit K un semi-cône connexe non-vide. Alors K = (K◦)◦.

Application 35 (Lemme de Farkas). Soient u1, . . . , un ∈ Rd et v ∈ Rd. Alors on a équivalence entre
(i) {x ∈ Rd/⟨x, ui⟩ ≤ 0∀i} ⊂ {x ∈ Rd/⟨x, v⟩ ≤ 0}

(ii) v ∈ {∑i λiui/λi ≥ 0}.

Démonstration. Soit K = {∑i λiui/λi ≥ 0}. C’est un cône convexe fermé 3 non-vide. On sait alors
que K = (K◦)◦. Ainsi, v ∈ K ssi pour tout x ∈ K◦, ⟨v, x⟩ ≤ 0, c’est à dire, pour tout x tel que pour
tout λi ≥ 0, ⟨x, ∑ λiui⟩ ≤ 0, ⟨x, v⟩ ≤ 0. C’est équivalent à ce que pour tout x tel que ⟨x, ui⟩ ≤ 0
pour tout i, on a ⟨x, v⟩ ≤ 0.

La traduction dans le cadre plat du lemme de Farkas se lit :⋂
u⊥

i ⊂ v⊥ ⇔ v ∈ Vectui i.

3. Évident si les ui sont libres. Montrer que l’on peut s’y ramener sinon
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1.3 Convexité et convergence faible

Définition 36. Une suite (xn)n dans H converge faiblement vers x∗ si pour tout y ∈ H on a ⟨xn, y⟩ →
⟨x∗, y⟩. On note xn ⇀ x∗.

Proposition 37. (i) Si xn → x∗ alors xn ⇀ x∗, i.e si A est faiblement fermé, alors A est fortement
fermé.

(ii) Si xn ⇀ x∗, alors ∥x∗∥ ≤ lim inf ∥xn∥
(iii) Si xn ⇀ x∗, alors xn → x∗ ssi ∥xn∥ → ∥x∗∥
(iv) Si (xn)n est bornée alors elle admet une sous-suite faiblement convergente.

Theorem 38. Soit K ⊂ H convexe non-vide. Alors K est faiblement fermé ssi K fortement fermé.

Démonstration. Soit K fermé et supposons par l’absurde qu’il n’est pas faiblement fermé. On dis-
pose donc d’une suite (xn)n ∈ K tel que xn ⇀ x∗ et x∗ /∈ K. Puisque K est convexe fermé
non-vide, on a δ = ∥x∗ − πK(x∗)∥ > 0. Par caractérisation du projeté, pour tout y ∈ K, on a
⟨y − πK(x∗), x∗ − πK(x∗)⟩ ≤ 0. En particulier, pour y = xn, on a

0 ≤ ⟨xn − πK(x∗), x∗ − πK(x∗)⟩ → ⟨x∗ − πK(x∗), x∗ − πK(x∗)⟩ = δ2 > 0.

C’est absurde.
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Chapitre 2

Fonctions convexes

La seconde face de la convexité concerne les fonctions à valeurs réelles. La notion de convexité
pour une fonction permet d’améliorer significativement les résultats classiques d’optimisation.
Elle sera cruciale dans la section suivante.

2.1 Définition et premières propriétés

Définition 39. Soit K ⊂ E convexe et f : K → R.
(i) f est convexe si pour tout x, y ∈ K et tout λ ∈ [0, 1], on a

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

(ii) f est strictement convexe si pour tout x ̸= y ∈ K et tout λ ∈]0, 1[, on a

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y).

(iii) Si de plus E est un espace de Hilbert, f est α-convexe pour α > 0 si pour tout x, y ∈ K et tout
λ ∈ [0, 1], on a

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y)− α

2
λ(1 − λ)∥x − y∥2.

(iv) f est concave (resp. strictemnt concave, resp. α-concave) si − f est convexe (resp.. . .).

On a clairement l’implication α-convexe ⇒ strictement convexe ⇒ convexe.

Exemple 40. (a) Toute forme linéaire est convexe
(b) x ∈ R 7→ ex est str convexe. x ∈ R 7→ x2 est 2-convexe.

Proposition 41. Soit K ⊂ E convexe et f : K → R.
(i) f est convexe ssi pour tout x, y ∈ K,φ : t ∈ [0, 1] 7→ f (tx + (1 − t)y) est convexe.

(ii) (Jensen) f est convexe ssi pour tout n ≥ 2 et tout combinaison convexe de K ∑n
i=1 λixi, on a

f (∑n
i=1 λixi) ≤ ∑n

i=1 λi f (xi).
(iii) Si K = conv({x1, . . . , xn} et f convexe, alors maxx∈K f (x) ≤ max f (xi).

Remarquons que la propriété (ii) est une version discrète et finie de l’inégalité de Jensen.

Application 42 (Inégalité de convexité). La convexité est un outil très puissant pour obtenir des inéga-
lités. Voici quelques exemples.

(i) (Inégalité arithmético-géométrique) Pour tout x1, . . . , xn ≥ 0, on a(
n

∏
i=1

xi

)1/n

≤ 1
n

n

∑
i=1

xi.
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(ii) (Inégalité de Young) Pour tout x, y ≥ 0 et 1/p + 1/q = 1, on a

xy ≤ 1
p

x +
1
q

y.

(iii) (Inégalité de Hölder) Pour x1, . . . , xn, y1, . . . , yn et 1/p + 1/q = 1, on a

n

∑
i=1

xiyi ≤
(
∑ xp

i

)1/p (
∑ yq

i

)1/q
.

(iv) Pour tout x, y > 1, log
(

x+y
2

)
≥
√

log(x) log(y).

(v) (Inégalité de kantorovitch) Pour tout x ∈ Rd, on a

∥x∥4 ≤ ⟨Ax, x⟩⟨A−1x, x⟩ ≤ 1
4

(
κ(A)1/2 + κ(A)−1/2

)2
∥x∥4.

On dispose des propriétés de stabilité suivantes.

Proposition 43. Soient f , g : K → R convexes, f : R → R croissante et α, β ≥ 0.

(i) α f + βg est convexe.

(ii) h ◦ f est convexe.

Contre-exemple 44. La convexité n’est pas préservée par composition : x 7→ −x est convexe et f et − f
ne sont pas simultanément convexes (à moins d’être affines).

Proposition 45. Soit ( fi)i∈I une famille de fonctions convexes sur K, telle que la fonction g : x ∈ K 7→
supi fi(x) soit bien définie 1. Alors elle est convexe.

2.2 Régularité des fonctions convexes

Commençons par remarquer qu’en dimension infinie la convexité ne garantie aucune régula-
rité. En effet, n’importe quelle forme linéaire est convexe mais certaine ne sont pas continue. On
se placera donc en dimension finie, sur E = Rn. On commence par traiter le cas de la dimension
1.

Définition 46. Soit I ⊂ R et f : I → R. Pour tout x0 ∈ I, on définit la fonction pente

px0 : y ∈ I \ {x0} 7→ f (y)− f (x0)

y − x0
.

Theorem 47. f : I → R est convexe ssi pour tout x0 ∈ I la fonction pente px0 est croissante.

Corollaire 48. Soit f : I → R convexe. Alors f admet en tout point x ∈ I̊ des dérivées à gauche et à
droite satisfaisant f ′g(x) ≤ f ′d(x). En particulier, f est continue sur I̊.

Application 49 (Inégalité de Jensen). Soit Ω,F , P) un espace de probabilité, X une variable aléatoire
réelle et φ : R → R une fonction convexe telles que φ(X)L1. Alors

φ (E[X]) ≤ E[φ(X)].

Si de plus φ est strictement convexe alors il y a égalité ssi X est constante ps.

Démonstration. Soit ℓ ∈ [φ′
g(E[X]), φ′

d(E[X])], alors on φ(X) ≥ φ(E[X]) + ℓ(X − E[X]) p.s. En
passant à l’espérance on obtient le résultat.

On s’intéresse maintenant au cas de la dimension n ≥ 2.

1. majoration uniforme par exemple
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Theorem 50. Soit K ⊂ Rd un ouvert convexe, et f : K → R convexe. Alors f est continue.

Démonstration. Soit x0 ∈ K. puis que K est ouvert, il existe r > 0 tel que le cube C = x0 + [−r, r]d ⊂
K. On note V = {x0 ± ei/1 ≤ i ≤ d} l’ensemble des sommets du cube et α = maxx∈V f (x). On
a C = conv(V) et f convexe donc maxx∈C f (x) ≤ α. Soit y ∈ C distinct de x0 et on définit
y(t) = ty + (1 − t)x0 pour tout t ∈ R. Alors t∗ = r/∥y − x0∥∞ vérifie y(±t∗) ∈ ∂C. On exprime
alors y et x0 comme combinaison convexe de x0 et y(t∗) et y y(−t∗) respectivement. Par convexité,
on a

f (y) ≤ 1
t∗

f (y(t∗)) + (1 − 1
t∗
) f (x0), f (x0) ≤

1
1 + t∗

f (y(−t∗)) + (1 − 1
1 + t∗

) f (x0).

On en déduit que

| f (y)− f (x0)| ≤ f (y) ≤ 1
t∗

(| f (x0) + max | f (y(±t∗))|) ≤ | f (x0)|+ α

r
∥y − x0∥∞.

Ce qui montre la continuité en x0.

La démonstration précédente suggère un résultat plus fort (Cf [6]).

Theorem 51. Soit f : K ⊂ Rd 7→ R convexe. Alors est est lipschitzienne sur tous les compacts de K. En
particulier, f est dérivable presque partout.

On peut même montre que la constante de Lipschitz ne dépend que du diamètre du com-
pact et d’une borne de f sur ce compact : L ≤ 2M/δ. La deuxième partie du théorème est une
conséquence du théorème de Rademacher.

Application 52 (Théorème "à la Dini" convexe). Soit une suite de fonctions fn : K ⊂ Rn → R

convexes qui converge simplement vers f : K → R. Alors f est convexe et la convergence est uniforme sur
tout compact de K.

2.3 Caractérisation de la convexité

On commence par une caractérisation général et plutôt abstraite.

Définition 53. Soit K ⊂ E et f : K → R. l’épigraphe de f est l’ensemble

epi( f ) = {(x, α) ∈ K × R/α ≤ f (x)} .

Proposition 54. f : K → R est convexe ssi epi( f ) est convexe.

Démonstration. ⇒ On suppose f convexe. Soient (x, α), (y, β) ∈ epi( f ) et soit λ ∈ [0, 1]. Par
convexité de f , on a

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y) ≤ λα + (1 − λ)β.

⇐ On suppose epi( f ) convexe. Soit x, y ∈ K et λ ∈ [0, 1]. Alors, (x, f (x) et (y, f (y) ∈ epi( f ) et
par convexité λ(x, f (x)) + (1 − λ)(y, f (y)) aussi. Donc f est convexe.

On va maintenant donner des critères de convexité selon la régularité de la fonction. En di-
mension 1, en affinant le corollaire 48 sur la croissance des pentes, on a la caractérisation suivante.

Theorem 55. Soit f : I ⊂ R → R de classe C1. Alors
(i) f est convexe ssi f ′ est croissante.

(ii) f est strictement convexe ssi f ′ est strictement croissante.
(iii) f est α-convexe ssi pour tout x ≤ y, f ′(x) ≤ f ′(y)− α(y − x).

En dimension supérieure, la notion de "dérivée" croissante n’a pas de sens. Cependant, en
dimension 1, f ′ croissante est équivalent à la propriété : pour tout x, y ∈ I, ( f ′(x)− f ′(y))(x −
y) ≥ 0. Cette formulation a un sens en dimension supérieure.
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Theorem 56. Soit f : K ⊂ Rd → R différentiable. Alors

(i) f est convexe ssi pour tout x, y ∈ K, ⟨d f (x)− d f (y), x − y⟩ ≥ 0.

(ii) f est strictement convexe ssi pour tout x ̸= y ∈ K, ⟨d f (x)− d f (y), x − y⟩ > 0.

(iii) f est α-convexe ssi pour tout x, y ∈ K, ⟨d f (x)− d f (y), x − y⟩ ≥ α∥x − y∥2.

La caractérisation de dimension 1 " f est au-dessus de ses tangentes" se généralise aussi en
dimension supérieure.

Theorem 57. Soit f : K ⊂ Rd → R différentiable. Alors

(i) f est convexe ssi pour tout x, y ∈ K, f (y)− f (x) ≥ ⟨d f (x), y − x⟩.
(ii) f est strictement convexe ssi pour tout x ̸= y ∈ K, f (y)− f (x) > ⟨d f (x), y − x⟩.

(iii) f est α-convexe ssi pour tout x, y ∈ K, f (y)− f (x) ≥ ⟨d f (x), y − x⟩+ α
2∥x − y∥2.

Démonstration. (i) ⇒ On suppose f convexe. Soit x, y ∈ K et λ ∈ [0, 1]. On pose z = λx + (1 −
λ)y = x + (1 − λ)(y − x). Par convexité, on a

f (z) ≤ λ f (x) + (1 − λ) f (y) = f (x) + (1 − λ)( f (y)− f (x)).

Par ailleurs, comme f est C1, on a

f (x + (1 − λ)(y − x))− f (x)
1 − λ

→ ⟨d f (x), y − x⟩.

D’où le résultat.
(i) ⇐ On applique l’inégalité entre x et z et entre y et z :{

f (x)− f (z) ≥ ⟨d f (z), x − z⟩
f (y)− f (z) ≥ ⟨d f (z), y − z⟩

En combinant, on obtient λ f (x) + (1 − λ) f (y)− f (z) ≥ 0.
(iii) et (ii) ⇐ Même démonstration. En revanche, pour (ii) ⇒, il faut faire attention à le pas

passer à la limite pour conserver l’inégalité stricte. On Suppose f strictement convexe. En utilisant
le point (i) entre x et z, on a

f (y)− f (x) >
1

1 − λ
( f (z)− f (x)) ≥ ⟨d f (x),

z − x
1 − λ

⟩ = ⟨d f (x), y − x⟩.

En supposant une régularité C2, on obtient un caractérisation d’ordre 2 sur la hessienne. On
note S+

d (R) l’ensemble des matrices réelle symétriques positives et S++
n (R) celui des matrice

symétriques définies positive.

Proposition 58. Soit f : K ⊂ Rd → R deux-fois différentiable. Alors

(i) f est convexe ssi pour tout x ∈ K, Hess( f )(x) ∈ S+
d (R).

(ii) Si Hess( f )(x) ∈ S++
d (R) pour tout x ∈ K, alors f est strictement convexe.

(iii) f est α-convexe ssi pour tout x ∈ K, Hess( f )(x) ≥ α id i.e pour tout h ∈ Rd

⟨Hess( f )(x)h, h⟩ ≥ α∥h∥2.

Contre-exemple 59. La fonction x ∈ R 7→ x4 montre que le point (ii) n’est pas une équivalence.

Démonstration. On va détailler seulement le (i). Les autres se démontre de manière similaire. ⇒
On écrit la formule de Taylor-Young

f (y)− f (x)− ⟨d f (x), y − x⟩ = 1
2
⟨Hess( f )(x)(y − x), y − x⟩+ o

(
∥y − x∥2

)
.
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D’après la caractérisation d’ordre 1 de la convexité, le membre de gauche est positif. En particulier,
pour tout h ∈ Rd, pour tout λ > 0, en appliquant à y = x + λh/∥h∥, on a

⟨Hess( f )(x)h, h⟩ = lim
λ→0

⟨Hess( f )(x)h, h⟩+ o(1) ≥ 0.

⇐ On applique la formule de Taylor avec reste exacte : pour tout x, y ∈ K, il existe z ∈ [x, y]
tel que

f (y)− f (x)− ⟨d f (x), y − x⟩ = 1
2
⟨Hess( f )(z)(y − x), y − x⟩︸ ︷︷ ︸

≥0

.

D’après la caractérisation d’ordre 1, f est convexe.

Exemple 60 (⋆ "La" fonctionnelle quadratique ⋆). Soit A ∈ Sd(R) et b ∈ Rd. On définit la fonction-
nelle quadratique

f : x ∈ Rd 7→ 1
2
⟨Ax, x⟩ − ⟨b, x⟩.

Alors f est convexe si et seulement si A ∈ S+
d (R) et f est α-convexe si et seulement si le spectre de A est

inclus dans [α,+∞[.

Les caractérisations 57 et 58 restent vraies dans un espace vectoriel normé de dimension quel-
conque (Cf [5]).
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Chapitre 3

Optimisation

Le but de cette partie est d’étudier des problèmes de la forme : trouver x∗ ∈ K tel que

f (x∗) = inf
x∈K

f (x),

où K ⊂ E est un sous-ensemble d’un evn E et f : K → R.

3.1 Définition

Définition 61. On dit que x∗ ∈ K est un minimum (resp. maximum) global de f sur K si pour tout
x ∈ K, on a f (x∗) ≤ f (x) (resp. f (x∗) ≥ f (x)).

(i) Maximiser f est équivalent à minimiser − f

(ii) Les extrema peuvent ne pas exister. x ∈ R 7→ ex.

(iii) Un extremum peut ne pas être unique. x ∈ R 7→ (x2 − 1)2.

Définition 62. On dit que x∗ est un minimum local de f sur K si c’est un minimum global sur un
voisinage de lui-même dans K i.e il existe r > 0 tel que pour tout x ∈ K ∩ B(x∗, r), f (x∗) ≤ f (x).

3.2 Résultats généraux d’existence et unicité

On commence par quelques résultats de base.

Proposition 63. Si K ⊂ E est compact non-vide et : K → R est continue alors f admet un minimum et
un maximum global sur K.

La démonstration repose sur la même stratégie que le Théorème de projection : prendre une
suite minimisante et obtenir sa convergence par un argument idoine (structure hilbertienne pour
le théorème de projection et compacité ici).

Démonstration. Soit (xn)n une suite minimisante. Par compacité, elle admet au moins une valeur
d’adhérence x∗ ∈ K. Par continuité de f , on a

f (x∗) = lim
k

f (xnk ) = inf
x∈K

f (x).

En dimension finie, la caractérisation des compactes permet d’obtenir l’existence de minimum
sous des hypothèses moins contraignantes.

Corollaire 64. On suppose E = Rd, K ⊂ E fermé non-vide et f : K → R continue. S’il existe x̄ ∈ K tel
que le sous-niveau {x ∈ K/ f (x) ≤ f (x̄)} est borné, alors f admet un minimum global sur K.
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Démonstration. Par continuité, le sous-niveau, noté Kx̄, est fermé. Par hypothèse, il est borné donc
compact. D’après la proposition précédent, f admet un minimum global sur Kx̄, x∗. De plus, si
x ∈ K \ Kx̄, alors on a f (x) ≥ f (x̄) ≥ f (x∗). Donc x∗ est un minimum global sur K.

Pour montre l’existence d’un maximum, il suffit d’exhiber un sur-niveau {x ∈ K/ f (x) ≥
f (x̄)} borné.

Application 65 (Pavé de volume maximal). On veut montrer qu’il existe un pavé de R3 de surface
S > 0 fixé, de volume maximal. Cela revient à maximiser la fonction f : x ∈ (R+)3 7→ x1x2x3 sur
l’ensemble

K = {x ∈ (R+)
3/2(x1x2 + x1x3 + x2x3) = S}.

Fixons x̄ ∈ K tel que f (x̄) > 0 (il en existe). Soit x ∈ K tel que f (x) ≥ f (x̄), en particulier, xi > 0 pour
tout i. De plus pour tout i ̸= j, xixj ≤ S/2 donc f (x̄) ≤ f (x) ≤ S2/(4xi). Donc xi ≤ S2/(4 f (x̄)) := R.
Ainsi, le sur-niveau {x ∈ K/ f (x) ≥ f (x̄)} est inclus dans [0, R]3. Donc f admet un maximum global
sur K.

Il existe un critère simple garantissant l’existence de sous-niveau borné : la coercivité.

Définition 66. Soit K ⊂ E, f : K → R est coercive si pour tout M > 0, il existe R > 0 tel que
x ∈ K ∩ B(0, R)c ⇒ f (x) > M.

Autrement dit, f explose.

Corollaire 67. Soit E = Rd, K ⊂ E fermé non-vide et f : K → R continue coercive. Alors f admet un
minimum global sur K.

Démonstration. Soit x̄ ∈ K. En prenant M = f (x̄), il existe R > 0 tel que le sous-niveau associé à x̄
soit inclus dans B(0, R). On peut alors conclure avec la proposition précédente.

3.3 Optimisation et convexité

La convexité permet d’obtenir des résultats d’unicité et d’existence, y compris en dimension
infinie.

Proposition 68 (Passage du local au global). Soit E un evn, K ⊂ E convexe et f : K → R convexe. Si
x∗ est un minimum local de f sur K alors, c’est un minimum global.

Démonstration. Par définition, il existe r > 0 tel que pour tout z ∈ K ∩ B(x∗, r) f (x∗) ≤ f (z).
Soit y ∈ K alors pour tout λ ∈ [0, 1], zλ = λy + (1 − λ)x∗ ∈ K et pour λ suffisamment petit,
zλ ∈ B(x∗, r). Par convexité, on a

f (x∗) ≤ f (zλ) ≤ λ f (y) + (1 − λ) f (x∗).

Ce qui implique f (x∗) ≤ f (y) pour tout y ∈ K.

Proposition 69. Soit E un evn, K ⊂ E convexe et f : K → R strictement convexe. Alors f admet au plus
un minimum.

Démonstration. Si x∗ ̸= y∗ sont deux minima globaux sur K alors par stricte convexité, on a

f
(

x∗ + y∗

2

)
<

1
2

f (x∗) +
1
2

f (y∗) = min
x∈K

f (x).

Ce qui est absurde

Contre-exemple 70. Ce résultat ne dit pas que la stricte convexité, seule, implique l’existence d’un mini-
mum (x ∈ R 7→ ex).

En dimension fini, l’α-convexité assure l’existence d’un minimum.
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Proposition 71. Soit E = Rd, K ⊂ E convexe fermé non-vide et f : K → R différentiable α-convexe.
Alors f admet un unique minimum global sur K.

Démonstration. Soit x̄ ∈ K quelconque. Alors pour tout x ∈ K, on a

f (x) ≥ f (x̄) + ⟨d f (x̄), x − xx̄⟩+ α

2
∥x − x̄∥2

≥ f (x̄)− ∥d f (x̄)∥∥x − x̄∥++
α

2
∥x − x̄∥2

−→+ ∞

Donc f est coercive. f admet donc un minimum, qui est unique par stricte convexité.

En dimension infinie, une manière (classique) d’obtenir l’existence de minimiseur (entre autre)
est de remplacer la convergence forte par de la convergence faible, c’est à dire, ajouter des com-
pactes. Dans ce cas, on peut aussi relaxer l’hypothèse de continuité.

Définition 72. Soit E un evn et f : E → R. f est semi-continue inférieurement (sci) si pour tout x ∈ E
et ε > 0 il existe un voisinage Bx de x tel que pour tout y ∈ Bx, f (y) ≥ f (x)− ε.

On a la caractérisation suivante de la sci.

Proposition 73 ([3]). f sci ⇔ epi( f ) fermé ⇔ pour tout xn → x, f (x) ≤ lim infn f (xn).

Proposition 74. Soit E un espace de Hilbert et K ⊂ E convexe fermé non-vide. Soit f : K → R convexe
sci coercive. Alors f admet un minimum global sur K.

Démonstration. En utilisant le coercivité, on peut se ramener à chercher un minimum sur KR =
K ∩ B(0, R). Soit (xn)n une suite minimisante dans KR. Cette suite est bornée donc on peut en
extraire une sous-suite faiblement convergente xnk ⇀ x∗. Par ailleurs, KR est fermé (fortment) et
convexe, il est donc faiblement fermé. Ainsi x∗ ∈ KR. Enfin, f est sci et convexe, donc epi( f ) est
faiblement fermé. Ainsi, on a

f (x∗) ≤ lim inf f (xnk ) = inf
x∈KR

f (x).

Donc x∗ est un minimiseur de f sur KR et donc sur K.

Il existe de nombreuses variantes de ce théorème, avec un jeu d’hypothèse changeant, sou-
vent plus restrictif (notamment en développement). Il est bon de savoir lesquelles peuvent être
affaiblies et comment.

Corollaire 75 (Stampacchia). Soit E un espace de Hilbert, K ⊂ E convexe fermé non-vide, a(·, ·) une
forme bilinéaire continue coercive 1 et φ un forme linéaire continue. Alors la fonctionnelle f : x ∈ K 7→
1
2 a(x, x)− φ(x) admet un unique minimum sur K.

Démonstration. La fonctionnelle f est continue, donc sci et coercive (au sens de la définition par
hypothèse 66). Enfin, pour tout x ̸= y ∈ K et λ ∈]0, 1[, on a

f (λx + (1 − λ)y) =
λ2

2
a(x, x) +

(1 − λ)2

2
a(y, y) + λ(1 − λ)a(x, y)− λφ(x)− (1 − λ)φ(y)

=λ f (x) + (1 − λ) f (y)− λ(1 − λ)

2
a(x − y, x − y))

>λ f (x) + (1 − λ) f (y)

Donc f est strictement convexe. On conclut à l’existence par la proposition précédent et à l’unicité
par stricte convexité.

1. au sens des formes bilinéaire, i.e a(x, x) ≥ α∥x∥2 pour α > 0
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Application 76 (Problème avec obstacle ([7] Exo. 6 p.324)). Soit f ∈ L2(Ω) et χ ∈ C0(Ω). On pose
K = {u ∈ H1

0(Ω)/u ≥ χ pp}, sous-ensemble convexe de H1
0(Ω) et la fonctionnelle J(v) = 1

2∥v∥2
H1

0
+

⟨ f , v⟩. Alors J admet un unique minimum u ∈ K. De plus, si ce minimum est continu alors il vérifie
u ∈ K
− ∆u + f ≥ 0 sur Ω
− ∆u + f = 0 sur {u > χ}

Réciproquement, sous des hypothèses supplémentaires de régularité, une solution de ce système est un
minimum de J.

3.4 Optimisation sans-contrainte - caractérisation

Dans cette section, on étudie les caractérisation d’un minimum local lorsque K est un ouvert
(voire E tout entier). Ces caractérisations se déclinent selon la régularité de la fonction objectif f .

Définition 77. Soit Ω ⊂ E un ouvert et f : Ω → R différentiable sur Ω. x∗ ∈ Ω est un point critique
de f si d f (x∗) = 0.

L’équation d f (x) = 0 est appelé équation d’Euler.

Proposition 78. Soit Ω ⊂ E un ouvert et f : Ω → R différentiable sur Ω. Si x∗ ∈ Ω est un extremum
local de f sur Ω alors c’est un point critique de f .

Contre-exemple 79. Cette condition n’ai pas suffisante. x ∈ R 7→ x3 admet un point critique en 0 mais
pas d’extremum.

En revanche, en dimension finie, avec de la convexité, on obtient une CNS.

Proposition 80. Soit Ω ⊂ Rd un ouvert convexe et f : Ω → R convexe et différentiable sur Ω. Alors
tout point critique de f est un minimum global.

Démonstration. Soit x∗ un point critique. D’après la caractérisation de la convexité 57, on a pour
tout x ∈ Ω

f (x)− f (x∗) ≥ ⟨d f (x∗), x − x∗⟩ = 0.

Donc x∗ est un minimum global.

Application 81. On considère la fonctionnelle quadratique f (x) = 1
2 ⟨Ax, x⟩− ⟨b, x⟩ avec A ∈ S++

d (R).
On a vu que f admet un unique minimum global x∗ ∈ Rd. Ce minimum vérifie Ax∗ = b. En pratique,
pour résoudre numériquement un système linéaire, on cherchera à minimiser f .

Application 82 (Théorème de Rolle). Soit f : Rd → R différentiable On suppose que f est constante
sur Sd−1. Alors il existe x∗ ∈ B(0, 1) tel que d f (x∗) = 0.

Cette condition d’ordre 1 ne permet pas de distinguer les minima des maxima. Pour cela, il
faut faire appel à une information d’ordre supérieur, i.e pousser le DL à l’ordre 2.

Proposition 83. Soit Ω ⊂ E un ouvert et f : Ω → R différentiable sur Ω et deux fois différentiable en
x∗ ∈ Ω. Si x∗ est un minimum local de f alors d f (x∗) = 0 et d2 f (x∗) ∈ S+

d (R)

Pour un maximum, la hesienne est négative. Cette condition est seulement nécessaire comme
le montre le contre-exemple x 7→ x3.

Application 84 (Principe du maximum). Si f ∈ C2(B(0, 1)) est harmonique sur B(0, 1) alors pour
tout x ∈ B(0.1)

min
∥y∥=1

f (y) ≤ f (x) ≤ max
∥y∥=1

f (y).

En dimension finie, il existe une condition d’ordre 2 suffisante.
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Proposition 85. Soit Ω ⊂ E un ouvert et f : Ω → R différentiable sur Ω et deux fois différentiable en
x∗ ∈ Ω. Si d f (x∗) = 0 et d2 f (x∗) ∈ S++

d (R) alors x∗ est un minimum local de f .

Contre-exemple 86 ([1]). L’application

f : x ∈ ℓ2 7→
+∞

∑
n=1

x2
n

n
− x3

n

est de classe C∞ et vérifie d f (0) = 0 et Hess( f )(0)(h, h) > 0 pour tout f ∈ ℓ2 \ {0}. Cependant, 0 n’est
pas un minimum local de f .

Dans le cas Hilbert, si Hess( f )(x∗) est positive, inversible d’inverse compact alors la proposi-
tion précédente reste vraie.

3.5 Optimisation sous-contrainte

Dans cette section, on étudie des problème d’optimisation sur un sous-ensemble K ⊂ Ω fermé.
Dans ce cas, l’égalité de Euler et les caractérisation précédente ne permettent plus de traiter les
x ∈ ∂K.

Définition 87. Soit x∗ ∈ K. Un vecteur v ∈ E est une direction admissible en x∗ s’il existe une suite
εk → 0+ et vk → v tels que x∗ + εkvk ∈ K. On note K(x∗) l’ensemble des direction admissible en x∗ ∈ K.

Exemple 88. (i) Si K ⊂ E est ouvert alors K(x∗) = E pour tout x∗ ∈ K.

(ii) Si K ⊂ E est convexe. K(x∗) = {λ(y − x∗)/λ > 0, y ∈ K} est un semi-cône fermé.

Dans le cadre de l’optimisation sous contrainte, il existe une version affaiblie du critère d’ordre
1.

Theorem 89 (Inéquation d’Euler). Si f : K ⊂ Ω → R est différentiable en x∗ et x∗ est un minimum
local de f sur K alors

⟨d f (x∗), h⟩ ≥ 0, ∀h ∈ K(x∗).

Ce critère est assez peu utilisable en soit. Cependant, il peut être décliner, selon la forme de la
contrainte K, en des critères spécifiques plus maniables : le théorème des extrema liés ou théorème
de Karush-Kuhn-Tucker.

3.5.1 Contraintes de type égalité

Dans le cas où K est une sous-variété de Rd, on a une caractérisation plus précise de l’ensemble
des directions admissibles.

Définition 90. Soit p ≥ 1 et g : Ω ⊂ Rd → Rp de classe C1 sur Ω. Si K = g−1(0) alors, le problème
d’optimisation minK f est un problème de minimisation sous contraintes de type égalité. De plus, on dit que
les contraintes sont qualifiées en x ∈ K si la famille {∇g1(x), . . . ,∇gp(x)} est libre.

On peut remarquer que si g est un submersion (dans ce cas K est une sous-variété) alors les
contraintes sont qualifiées en tout point de K. Par ailleurs, si Ω = Rd alors K est fermé (on peut
donc utiliser les résultats d’existence précédent...).

Le lemme suivant décrit l’ensemble des directions admissibles pour des contraintes de type
égalité. C’est l’argument clef du théorème des extrema liés et ne peut pas être trivialisé.

Lemme 91. Si les contraintes sont qualifiées en x∗ ∈ K alors on a

K(x∗) = Vect{∇g1(x∗), . . . ,∇gp(x∗)}⊥.
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Démonstration. • L’inclusion direct est triviale (et ne nécessite pas l’hypothèse de qualification).
En effet, soit h ∈ K(x∗), on dispose de suite hn et εn par définition. Puisque x∗ et x∗ + εnhn sont
dans K, alors on a gi(x∗ + εnhn)− gi(x∗) = 0. En passant à la limite, on a ⟨∇gi(x∗), h⟩ = 0.

• L’inclusion réciproque est plus élaborée. Soit h ∈ Rn tels que pour tout i, ⟨∇gi(x∗), h⟩ = 0. La
contrainte étant qualifiée en x∗, la matrice Jg(x∗) est de rang plein. On pose Jg(x∗) = (J1∥J2) avec
J1 ∈ Mp,n−p(R) et J2 ∈ Mp(R). Quitte à permuter les coordonnées, on peut supposer que J2 est
inversible et on note alors x∗ = (x∗1 , x∗2) ∈ Rn−p × Rp. D’après le théorème des fonctions impli-
cites, il existe un voisinage U ⊂ Rn−p de x∗1 , un voisinage V ⊂ Rp de x∗2 et un C1-difféomorphisme
φ : U → V tel que φ(x∗1) = x∗2 et pour tout (x1, x2) ∈ U × V

g(x1, x2) = 0) ⇔ x2 = φ(x1).

On a de plus Jφ(x∗1) = −J−1
2 J1.

A partir d’un certain rang, on a x1 + h1/k ∈ U donc g(x1 + h1/k, φ(x1 + h1/k)) = 0. Or d’après
la formule de Taylor-Young, on a

φ(x1 + h1/k) = φ(x∗1) +
1
k

Jφ(x∗1)h1 +
1
k

η(1/k)

= x∗2 −
1
k

J−1
2 J1h1 +

1
k

η(1/k)

où η(t) → 0 quand t → 0. Par hypothèse, on a Jg(x∗)h = 0, ce qui se traduit par J1h1 + J2h2 = 0.
On a donc

φ(x1 + h1/k) = x∗2 +
1
k
(h2 + η(1/k)) .

On a donc montré que

(x∗1 +
h1

k
, φ(x∗1 +

h1

k
)) = (x∗1 , x∗2) +

1
k
(h1, h2 + η(1/k)) ∈ K

Ainsi, en posant εk = 1/k > 0 et hk = (h1, h2 + η(1/k)) ∈ Rn on a montré que h ∈ K(x∗).

Du lemme précédent et de l’inégalité d’Euler, découle le théorème des extrema liés.

Theorem 92 (extrema liés). Si f admet un extremum local en x∗ ∈ K et si les contraintes sont qualifiées
en x∗ alors il existe (λ1, . . . , λp) ∈ Rp tels que

∇ f (x∗) +
p

∑
i=1

λi∇gi(x∗) = 0. (3.1)

Démonstration. D’après l’inégalité d’Euler, pour tout h ∈ K(x∗), on a ⟨∇ f (x∗), h⟩ ≥ 0. En particu-
lier, comme K(x∗) est un espace vectoriel, ⟨∇ f (x∗), h⟩ = 0. Cela signifie que ∇ f (x∗) ∈ K(x∗)⊥ =
Vect{∇g1(x∗), . . . ,∇gp(x∗)}.

Les coefficient λi sont appelé multiplicateur de Lagrange. L’équation (3.1) est appelée équa-
tion d’Euler-Lagrange. Elle peut être traduite comme l’annulation du gradient d’une fonction
auxiliaire, le lagrangien, dépendant et de la fonction objectif et des contrainte

L : (x, λ) ∈ Ω × Rp 7→ f (x) +
p

∑
i=1

λigi(x).

On est ramené à rechercher les points critiques de L, sans contraintes. La Hessienne de L selon
la coordonnée x permet aussi d’avoir une information sur la nature de l’extremum. Pour finir, ce
théorème est adaptable dans un espace de Banach.

Application 93. (i) Inégalité d’Hadamard. Pour v1, . . . , vd ∈ Rd, on a

|det(vi, . . . , vd)| ≤ ∏
i
|vi|.
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(ii) Théorème du min-max de Courant-Fischer. Pour tout A ∈ Sd(R)

min
∥x∥=1

⟨Ax, x⟩ = λ1, max
∥x∥=1

⟨Ax, x⟩ = λd.

(iii) Inégalité de Minkowski. On montre que les solutions de

max
∥x∥p=α,∥y∥p=β

∥x + y∥p
p

sont atteintes sur des vecteurs x∗, y∗ colinéaires.

3.5.2 Contraintes de type inégalités

Le travail sur les semi-cônes et leurs cônes polaires associés va permettre de généraliser le
théorème des extrema liés au cas des contraintes de type inégalité. On suppose désormais que le
domaine admissible a la forme suivante

K = g−1(]− ∞, 0]p) = {x ∈ Ω/g1(x) ≤ 0, . . . gp(x) ≤ 0}.

Définition 94. L’ensemble des contraintes saturées en x∗ ∈ K est I(x∗) = {i ∈ J1, pK/gi(x) = 0}.
Les contraintes sont qualifiées en x∗ s’il existe une direction entrante v ∈ Rd en x∗, telle que pour tout
i ∈ I(x∗), ⟨∇gi(x∗), v⟩ < 0.

En particulier, si la famille {∇gi(x∗), . . . ,∇gp(x∗)} est libre alors les contraintes sont qualifiées
en x∗. Cependant, la vrai condition équivalente, c’est la positive liberté.

Contrairement au cas des contraintes de type égalité la caractérisation des directions admis-
sibles n’utilise pas de théorème complexe mais découle de la définition de contraintes qualifiées.

Lemme 95. Si les contraintes sont qualifiées en x∗ ∈ K alors

K(x∗) = {h ∈ Rd/⟨∇gi(x∗), h⟩ ≤ 0 ∀i ∈ I(x∗)}.

L’ingrédient pointu (qui remplace le théorème des fonctions implicites) est le lemme de Farkas.
On a le résultat suivant.

Theorem 96 (Karush-Kuhn-Tucker). Si x∗ ∈ K est un minimum local de f sur K et si les contraintes
sont qualifiées en x∗, alors il existe des multiplicateurs de Lagrange λ1, . . . , λp ≥ 0 tels que∇ f (x∗) +

p

∑
i=1

λi∇gi(x∗) = 0.

λigi(x∗) = 0, ∀i

Démonstration. D’après l’inégalité d’Euler, on a ∀h ∈ K(x∗), ⟨∇ f (x∗), h⟩ ≥ 0. Or d’après le lemme
précédent, on a

{h ∈ Rd/⟨∇gi(x∗), h⟩ ≤ 0 ∀i ∈ I(x∗)} ⊂ {h ∈ Rd/⟨−∇ f (x∗), h⟩ ≤ 0}.

Ainsi, le lemme de Farkas conclu que −∇ f (x∗) est une combinaison linéaire à coefficients positifs
des ∇gi(x∗) pour i ∈ I(x∗).
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Chapitre 4

Méthodes numériques pour
l’optimisation

On considère le problème d’optimisation (en dimension finie) minK f , avec f : Ω ⊂ Rd → R,
Ω ouvert et K ⊂ Ω. On suppose que se problème admet au moins une solution x∗ et on cherche
des valeurs approches de x∗. Une manière concrète de le faire est de procéder itérativement : on
construit un suite (xk)k ∈ KN telle que xk → x∗. Plus précisément, on cherche xk+1 comme une
correction de xk de la forme

xk+1 = xk − ρkvk,

où vk ∈ Rd est la k-ième direction de descente et ρk > 0 le pas dans la direction vk. Un premier
problème consiste à trouver des suites vk et ρk tel que xk → x∗. Un second problème concret est
de se fixer une condition d’arrêt pour cesser les calcul dès que xk est suffisamment proche de x∗.
n’ayant pas accès à x∗, on a en pratique recours à l’un des deux critère suivants :

— on s’arrête dès que ∥xk+1 − xk∥ < ε : l’incrément entre deux itération n’est plus significatif ;
— ou dès que ∥∇ f (xk)∥ < ε : xk est alors presque un point critique.

Cependant, aucun de ces critère ne garantit que xk est proche de la cible x∗.

4.1 Méthode de relaxation

Une première méthode, naïve, consiste à explorer successivement toutes les directions : vk =
ejk où jk = 1 + (k mod d). A chaque étape, on va ensuite chercher à minimiser f le long de
cette direction. On définit ainsi

ρk = argmint∈R f (xk − tvk),

sous réserve que ce minimum existe. Remarquons que, étant défini comme un argmin, ρk satisfait

⟨∇ f (xk − ρkvk), vk⟩ = 0. (4.1)

Par construction, la méthode de relaxation est une méthode de descente, c’est à dire que f
est décroissante le long de la suite (xk)k. On peut alors espérer que cette suite soit bien une suite
minimisante. C’est le cas sous de bonnes hypothèses.

Theorem 97. Supposons que f est de classe C1 et α-convexe. Alors elle admet un unique minimum x∗ et
pour toute condition initiale x0 ∈ Rd, la méthode de relaxation converge vers ce minimum.

Application 98 (Méthode de Gauss-Seidel). Dans le cas de la fonctionnelle f (x) = ⟨Ax, x⟩ − ⟨b, x⟩,
les hypothèse du théorème sont satisfaites si et seulement si A ∈ S++

d (R). Dans ce cas particulier, le pas
ρk est explicite

ρk =
⟨Axk, vk⟩ − ⟨b, vk⟩

⟨Avk, vk⟩
.
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Autrement dit, si vk = i0, alors x(i)k+1 = x(i)k pour tout i ̸= i0 et x(i0)k+1 vérifie

∑
j

ai0 jx
(j)
k+1 = bi0 .

C’est la méthode de Gauss-Seidel ! Le vitesse de convergence de cette méthode est géométrique de raison
ρ((L + D)−1U) avec A = L + D + U la décomposition en partie triangulaire supérieure, inférieure et
diagonale t ρ le rayon spectral.

4.2 Méthodes de gradient

Un des inconvénient de la méthode précédente est de devoir à chaque étape, résoudre un
problème d’optimisation (unidimensionnel, certes). De manière général, on ne pourra obtenir
qu’une approximation du pas ρk. De plus, le cette de recherche de ρk peut être couteuse. L’idée
des méthodes de gradient consiste à choisir une direction de descente plus fine : la direction de
plus forte pente. D’après la formule de Taylor-Young, on a

f (xk+1) = f (xk)− ρk⟨∇ f (xk), vk⟩+ o(rhok).

On cherche alors une direction vk de sorte que ⟨∇ f (xk), vk⟩ soit strictement positive et le plus
grand possible. D’après l’inégalité de Cauchy-Schwarz, l’ meilleur choix est vk = ∇ f (xk).

4.2.1 Méthode de gradient à pas fixe

La méthode de gradient à pas fixe est la méthode naïve. Elle consiste à itérer avec la direction
optimale avec un pas ρ > 0 indépendant de k :

xk+1 = xk − ρ∇ f (xk).

Theorem 99. Supposons que f est de classe C2 et α-convexe. Alors il existe ρ∗ > 0 tel que pour tout
0 < ρ < ρ∗ et pour toute condition initiale x0 ∈ Rd, la méthode de gradient à pas fixe converge vers
l’unique minimum global de f .

Dans ce cas la convergence est géométrique de raison dépendant de ρ, ce qui incite à choisir ρ
le plus grand possible. Le problème c’est que l’on ne connaît pas ρ∗. De plus, cette méthode n’est
pas une méthode de descente.

4.2.2 Méthode de gradient à pas optimal

Afin de palier à ce dernier problème, la méthode de gradient à pas optimale garde la direction
optimal vk = ∇ f (xk) tout en recherchant le pas de descente optimal

ρk = argmint∈R f (xk − tvk).

En particulier, la relation (4.1) se réécrit : ⟨vk+1, vk⟩ = 0 : deux direction de descentes successive
sont orthogonales.

Theorem 100. Supposons que f est de classe C1 et α-convexe. Alors pour toute condition initiale x0 ∈ Rd,
la méthode de gradient à pas optimal converge vers l’unique minimum de f .

On peut affaiblir l’hypothèse de forte convexité, qui sert essentiellement à garantir l’existence
d’un unique minimum global. Si f admet un minimum local x∗ et qu’elle est α-convexe sur une
boule B(x∗, r) (par exemple si d f (x∗) = 0 et d2 f (x∗) ∈ S++

d (R)) alors les méthodes précédentes
convergeront vers x∗ pour toute condition initiale dans B(x∗, r).

Pour la fonctionnelle quadratique, le pas est toujours explicite et vaut

ρk =
|vk|2

⟨Avk, vk⟩
.

On peut même calculer la vitesse de convergence de manière explicite.
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Theorem 101. Pour tout x0 ∈ Rd et k ≥ 1

∥xk − x∗∥ ≤
√

κ(A)

(
κ(A)− 1
κ(A) + 1

)k
∥x0 − x∗∥,

où κ(A) désigne le conditionnement de A.

La démonstration de ce théorème repose sur une inégalité de convexité.

Lemme 102 (Inégalité de Kantorovitch). Pour tout x ∈ Rd, on a

∥x∥4 ≤ ⟨Ax, x⟩⟨A−1x, x⟩ ≤ 1
4

(
κ(A)1/2 + κ(A)−1/2

)2
∥x∥4.

Remarquons qu’une estimation grossière, sans utiliser la convexité, donnerait

κ(A)−1∥x∥4 ≤ ⟨Ax, x⟩⟨A−1x, x⟩ ≤ κ(A)∥x∥4.

Ce résultat suggère que lorsque la matrice est mal conditionnée, l’algorithme ne converge pas
rapidement. On peut s’en convaincre en considérant la fonction f (x, y) = x2 + 100y2, associé
à une matrice de conditionnement 100. Dans ce cas, les lignes de niveau sont très aplaties et la
direction du gradient peut être quasi-orthogonal à la direction x∗ − xk. L’algorithme avance alors
par très petit pas dans des directions peu avantageuses.

4.2.3 Méthode du gradient à pas conjugué

Le choix du gradient comme direction de descente n’est un choix optimal que localement. Le
cas de la fonction f précédente le montre clairement. Une manière de d’améliorer la performance
de l’algorithme consiste à utiliser une direction optimal plus global, en gardant en mémoire les
directions utilisées précédemment. La descente de gradient à pas conjuguée procède de cette ma-
nière. À l’étape k, on choisit simultanément la direction et le pas wk = ρkvk de sorte que

f (xk+1) = min
w∈Fk

f (xk + w), où Fk = Vect{∇ f (x0), . . . ,∇ f (xk)}.

L’inégalité de Euler et le fait que Fk soit un s.e.v, impliquent que ⟨∇ f (xk+1), w⟩ = 0 pour tout
w ∈ Fk. En particulier, la famille (∇ f (xk)) est une famille orthogonale. Cela signifie qu’à l’étape
k, on optimise sur un espace de dimension k + 1 et que xd−1 = x∗. Cette méthode est exacte. En
revanche chaque itération demande de résoudre un problème d’optimisation plus complexe.

Dans le cas particulier de la fonctionnelle quadratique f (x) = ⟨Ax, x⟩ − ⟨b, x⟩, pour tout i < k,
on a

⟨Awk, wi⟩ = ⟨∇ f (xk + 1)−∇ f (xk), wi⟩ = 0.

Ainsi, la famille (wk) est orthogonal pour le produit scalaire associé ) A. La résolution se fait donc
explicitement :

— On construit vk en utilisant la méthode de Gram-Schmidt, on détermine une direction vk
dans Fk, orthogonal aux w0, . . . , wk−1

vk = ∇ f (xk)− ∑
⟨A∇ f (xk), wi⟩

⟨Avi, vi⟩
vi.

— On détermine le pas optimal en minimisant t 7→ f (xk − tvk)

ρk =
⟨∇ f (xk), vk⟩
⟨Avk, vk⟩

.

Cette méthode a une vitesse de convergence meilleure que la descente à pas optimal :

∥xk − x∗∥ ≤
√

κ(A)

(√
κ(A)− 1√
κ(A) + 1

)k

∥x0 − x∗∥,

mais toujours sensible au conditionnement.
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4.3 Méthodes newtoniennes

Les méthodes précédente tendent à faire décroitre la fonction objectif entre deux itérations.
Une démarche différente consiste à rechercher un point critique de la fonction objectif en utilisant
une méthode de recherche de zéro, appliqué à la différentielle de la fonction objectif.

Theorem 103 (Méthode de Newton). Soit g : Rd → Rd, de classe C2, x∗ ∈ Rd tel que g(x∗) = 0 et
dg(x∗) ∈ GLd(R). Pour x0 ∈ Rd, on définit la suite récurrente

xk+1 = xk − dg(xk)
−1g(xk).

Alors, il existe r > 0, tel que pour tout x0 ∈ B(x∗, r), la suite converge vers x∗, à vitesse quadratique.

Application 104. Dans le cadre de la minimisation de f : Rd → R, α-convexe, de classe C3, en appliquant
la méthode précédente à g = ∇ f , on obtient une suite qui converge vers l’unique minimum.

La convergence quadratique signifie que le nombre de chiffres significatifs exactes double à
chaque itération. C’est beaucoup plus rapide que les méthode de gradient mais cela demande
plus de régularité. En revanche, il faut à chaque étape inverser une matrice de taille d, ou plus
intelligemment, résoudre le système dg(xk)(xk+1 − xk) = −g(xk).

Un autre inconvénient de cette méthode est qu’il faut avoir accès à la différentielle de g. Une
manière de palier à ce problème est d’utiliser une méthode de type méthode de la sécante. Cette
méthode de dimension 1 s’écrit

xk+1 = xk −
xk − xk−1

f (xk)− f (xk−1)
f (xk).

Elle peut être généralisée en dimension supérieure. Il faut alors déterminer une suite de ma-
trice Bk telle que Bk(xk − xk−1) = f (xk)− f (xk−1), système sous-déterminé. La méthode de Broy-
den consiste à chercher une telle suite vérifiant Bkv = Bk−1v pour tout v ⊥ (xk − xk−1. Il existe
alors une expression explicite de B−1

k en fonction de B−1
k−1. Cette méthode converge à vitesse super-

linéaire (mais pas à vitesse quadratique).
Dans certains cas, on peut aussi avoir un candidat naturel pour approximer dg−1. C’est le cas

de la méthode quasi-newtonienne suivante.

Application 105 ([4]). Soit A ∈ S+
d (R). On cherche à approcher A−1 en minimisant la fonction

f : X ∈ Md(R) 7→ 1
2

Tr(AXXt)− Tr(X).

Le problème, pour appliquer la méthode de Newton, c’est que dg(X) = A et ainsi, inverser dg c’est déjà
résoudre le problème. En revanche, si l’on a une suite (Xk)k qui converge vers A−1 alors elle converge vers
dg−1. Cela suggère la méthode quasi-newtonienne suivante :

Xk+1 = Xk − Xk(AXk − id).

On peut alors montrer qu’elle converge pour la condition initiale X0 = rAt, avec r (explicitement) suffi-
samment petit.

4.4 Algorithmes sous contraintes

Les méthodes de résolution algorithmique des problème de minimisation sans contraintes ne
se généralise pas nécessairement bien aux problèmes sous contraintes. Dans ces cas, deux straté-
gies permettent une généralisation : la projection et la pénalisation.
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4.4.1 Méthode de relaxation sur un pavé

La méthode naïve de relaxation se généralise naturellement sur les pavés. On suppose ici que
K = ∏[ai, bi], non nécessairement borné. On peut alors définir la suite récurrente xk+1 = xk − ρkvk
de la manière suivante : vk = eik avec ik = k + 1[d] et

ρk = argmint∈Ik
f (xk − tvk), Ik = [x(ik)k − bik , x(ik)k − aik ].

Theorem 106. Si K est un pavé et f est de classe C1 et fortement convexe, alors la méthode de relaxation
converge pour toute condition initiale.

Contre-exemple 107. Si K n’est pas un pavé, la convergence n’est pas garantie. Par exemple, pour K =
{x + y ≥ 2} ⊂ R2, f (x, y) = x2 + y2 et (x0, y0) = (2, 2) alors la suite stationne dès la première itération
sur (0, 2) qui n’est pas le minimum de f , en l’occurrence (1, 1).

4.4.2 Méthode de projection

On suppose que K est convexe fermé non vide et f convexe sur K. Alors x∗ est un minimum
de f , si et seulement si on a ⟨∇ f (x∗), y − x∗⟩ ≥ 0 pour tout y ∈ K. Par caractérisation de la
projection, x∗ est un minimum si et seulement si x∗ = πK(x∗ − ρ∇ f (x∗). On est ainsi ramené à
rechercher un point fixe. On définit alors une méthode de type itéré de Picard :

x0 ∈ K, xk+1 = πK (xk − ρ∇ f (xk)) .

Cette méthode généralise la méthode de gradient à pas fixe.

Theorem 108. On suppose K convexe fermé non vide, f : K → R fortement convexe de gradient locale-
ment lipschitzien. Alors il existe ρ∗ > 0 tel que pour tout 0 < ρ < ρ∗, la méthode converge vers l’unique
minimum.

En pratique, K est un pavé et la projection se calcul facilement.

4.4.3 Méthode de pénalisation

On cherche un méthode applicable lorsque K n’est pas un pavé. L’idée est de transformé le
problème de minimisation sous contrainte en un problème sans contrainte en modifiant la fonc-
tion objectif. Pour cela, on va perturber la fonction par la distance à K.

Proposition 109. Soit K ⊂ Rd non vide, f : Rd → R L-lipschitzienne. Pour R > 0, on pose fR : x ∈
Rd 7→ f (x) + Rd(x, K).

(i) Si R > L et si x∗ est un minimum global de f sur K alors x∗ est un minimum global de fR.

(ii) Si R > L et K fermé, alors tout minimum de fR est dans K.

Theorem 110. Soit K convexe fermé non vide et f : Rd → R fortement convexe. Soit φ : Rd → R+,
convexe, telle que K = φ−1(0). Alors pour tout k ≥ 1 fk = k + kφ admet un unique minimum xk ∈ Rd

et xk → x∗ = argminK f .

Application 111 (Programmation convexe). Soit f : Rd → R fortement convexe et K = {gi ≤ 0}
avec gi des contrainte convexes. La fonction φ(x) = ∑ max(gi(x), 0) convient.
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