Complément d’agreg : Convexité et Optimisation

Baptiste Huguet



Table des matiéres

Convexité

1.1 Généralité . . . . .. ..

1.2 Convexité dans les espacesde Hilbert . . . .. ... ... . ... ... ... .. ..
121 Théoreme de projection . .. .. .. ... ... .. ... ... ...
122 Séparation et Hahn-Banach . . . .. ... ... ... ... ...........
1.2.3 Sous-espace orthogonal . . . ... ... . ... ... ... .. .. .. .. ...
124 Semi-coneetlemmedeFarkas . .. ... ... .. .. .. .. .. ... ...

1.3 Convexité et convergence faible . . . . . . ... ... ... ... oL

Fonctions convexes

2.1 Définition et premieres propriétés. . . . . . . ... .. L L L oL
2.2 Régularité des fonctions convexes . . . ... ... ...
2.3 Caractérisationdelaconvexité . ... .. ... ... .. ... ... L.
Optimisation
3.1 Définition . .. ... .
3.2 Résultats généraux d’existenceetunicité . . . . .. .. ... .. L o o0
3.3 Optimisationetconvexité . . .. ... ... ... ... ... ... 0 0.
3.4 Optimisation sans-contrainte - caractérisation . . . . . .. ... ... ... ... ...
3.5 Optimisation sous-contrainte . . . .. .. ... ... ... ... ... ... ...,
3.5.1 Contraintes de typeégalité . . ... ... ... ... ... ... ... .. ..
3.5.2 Contraintes de typeinégalités . . . . . . ... ... ... ... ... ... ...
Méthodes numériques pour I'optimisation
41 Méthodederelaxation . .. ... ... ... ... .. .. .. ...
42 Meéthodesdegradient . ... ... ... ... ... ... ... ... ...
421 Méthodedegradientapasfixe . . ... ... ... ... .. .. .. .. ..
422 Meéthode de gradienta pasoptimal . .. ... ... ... ... .. ... ..
423 Meéthode du gradienta pasconjugué. . . ... .................
4.3 Méthodesnewtoniennes . . . . . ... ... ... .. ... L
4.4 Algorithmessous contraintes . . . ... ........ .. ... ... ......
441 Méthode derelaxationsurunpavé. . . .. ... ... .............
442 Meéthodedeprojection . . . . ... .. ... ..o
443 Meéthodedepénalisation. . . . . ... ... ... ... ... .. ...

OO XN UT U NN



Chapitre 1

Convexité

1.1 Généralité

Soit E un espace vectoriel sur R ou C.
Définition 1. Soit x,y € E. La droite passant par x et y est {Ax + (1 — A)y/A € R} et le segment entre
xetyest[x,y] ={Ax+(1—-A)y/0 <A <1}
Définition 2. Un sous-ensemble C C E est convexe si pour tout x,u € C, [x,y] C C.

Exemple 3. Si E est un evn alors les boules (ouvertes et fermées) sont convexes. Dans E = R cela inclus
aussi les pavés.

Contre-exemple 4. Dans un espace métrique, les boules ne sont pas nécessairement convexes. Par exemple
dans le Fréchet C (R, R) muni de

v o An(f,8)
= dn(f,8) = sup |f(x) —g(x)|
a(f,8) ; 1+dn(fg) n(f.8 leéPnf 8
on définit f(x) = (1 — |x|)+ et g(x) = 100f(x —2). Ona d(0,f) = 1/2,d(0,g) = 50/101 mais
h=(f+g)/2¢ B(0,1/2).
La notion de convexité est stable par les opérations suivantes
Proposition 5. (i) Soit I un ensemble et (C;);c; une famille de sous-ensembles convexes de E, alors
N;c1C; est convexe.
(ii) (Somme de Minkowski) Si Cq et Cy convexes de E et o, p € R, alors aCy + BCy C E est convexe.
(iii) Soit C; C E et Cy C F convexes, alors C; x Co C E X F est convexe.
Définition 6. Un vecteur y € E est une combinaison convexe des vecteurs xq,...x, € E sil existe
A, Ap €10, 1] tel que Yy A; = lety =Y Ajx;.
Proposition 7. Soit C C E. C est convexe ssi C est stable par combinaison convexe.

Démonstration. <= Immédiat (le segment [x, y] est I’ensemble des combinaisons convexe de x et
y.

= on procede par récurrence sur la taille # > 2 des combinaisons convexes. On suppose que
C est convexe. Le cas n = 2 (initialisation) correspond a la définition de la convexité. Il est donc
vérifié. On suppose que le cas n est vérifié. Soient x1,...x,41 € C, Ay,...Apyq € [0,1] tel que
YA =1ety =Y A;x;. On peut supposer que A, 11 ¢ {0,1}. On a alors

n
¥y =M1 Xnp1 + (1= Ayy1) Z.“ixi/
avec yt; = Aj/(1 — Apy1). En particulier, y; > Oet Y py; = 1donc p; € [0,1] etz = Y px; €

C par hypothese de récurrence. D'ott u € C par définition de la convexité. Ce qui acheve la
récurrence. O



Définition 8. Soit A C E. l'enveloppe convexe de A est le plus petit ensemble convexe conv(A) C E
contenant A, i.e
conv(A)= () C.
ACC,Ccox

Proposition 9. Soit A C E, alors conv(A) est I'ensemble des combinaisons convexes de points de A.

Démonstration. Notons C 1’ensemble des combinaison convexe de A.

C C conv(A). conv(A) est convexe et contient A. D’apres la Proposition 7, conv(A) contient
les combinaisons convexes d’éléments de conv(A), donc en particulier de A.

conv(A) C C.1Ilsuffit de montrer que C est convexe. En effet, A C C et conv(A) estle plus petit
convexe contenant A. Soient x,y € C, il existe xy,...,x, etyy,...,yp € A ainsi que A;, p; € [0,1]
telque A, =Y u; =1etx =Y Ajxj, y = Y uy;. pour tout v € [0,1], ona

n+p

v+ (1-v)y =) vz,
i=1

avecz; = x;, nu; = vA;jpourl <i<metz; =y; ,,v;=1—v)pj_p,pourn+1<i<n+p.On
abienz; € A, nu; > 0et) v; = 1. Ce qui montre que C est convexe. O

Application 10 (Théoreme de GauB-Lucas). Soit P € C[X] non constant. Alors les racines de P sont
dans I'enveloppe convexes des racines de P.

Démonstration. P(X) = T14_ (X — z;)™. Considérons sa dérivée logarithmique Q = P'/P =

E?Zl m; /(X — z;). Soit z une racine de P’ qui ne soit pas une racine de P. On a alors

— mi mi o
=L Thpopt W

Z—Z

Ainsi z = Y aqz; avec a; = ml-/(|z—zi|22mj/|z—zj|2) >0et) a; =1. O

Dans le cas ot E est de dimension finie (E = R%), on peut borner la taille des combinaisons
convexes nécessaires.

Theorem 11 (Carathéodory). Si E = R, d>1et A C E,alors conv(A) est 'ensemble des combinai-
sons convexes d'au plus d + 1 points de A.

Contre-exemple 12. Attention! Le théoréeme NE DIT PAS qu’il suffit de d 4 1 points pour engendrer
conv(A), seulement que pour tout élément de conv(A) il existe d + 1 points dont il est une combinaison.
Par exemple, trois points n’engendreront jamais conv({(+1,£1)}) dans R?.

Démonstration. Notons C;,1 1’ensemble des combinaisons convexes d’au plus d + 1 éléments. On
a de maniere immédiate C;, 1 C conv(A). Soit x € conv(A). D'apres la proposition précédente,
x =Y Aix;. Sin < d+2alors x € Cy41, sinon, on montre que x est une combinaison convexe
d’au plus n — 1 élément de A. En effet, la famille {x, — x1,...,x, —x1} C RY est liée. On dispose
doncdeay,...,a; € R, non tous nuls, tels que

a;(x; —x1) = 0.

M-

=2

On pose alors &y = — Y/ , a; de sorte que }' ; «; = 0. On en déduit qu'il existe au moins un «;
strictement positif. On définit alors

§= m,in{ﬁ/oci > 0}.
1 o

En particulier, pour tout i, on a 4; = A; — pa; > 0 et au moins 1'un de ses coefficient est nul. De
plusona) p; =Y A —pu) a; =letx =Y p;x;. Ainsi, x est combinaison convexe d’au plus n — 1
point. On termine par récurrence. O



Une conséquence de ce théoreme est la préservation de la compacité en dimension finie.
Corollaire 13. Si E = R% et A C E compact, alors conv(A) est compact.

Démonstration. Notons A = {(A;) € [0,1]%F1/ ¥;A; = 1}. C’est un fermé borné de R**!, donc
compact. On considere alors I'application

0 ]Rd-‘rl % (]Rd)d+l N IRd
’ (Al,...,/\d+1,X1,...,xd+1> — Zi/\l-xl- )

Cette application est continue et vérifie p(A x A1) = conv(A). Donc conv(A) est compact. [

En dimension oo, I’'enveloppe convexe d’un compact n’est pas nécessairement compact, ni
méme fermée.

Contre-exemple 14. Dans E = (2, on pose u, = e,/n oit ey(k) = S, On pose A = {0} U
{ug,uy,...}. A est compact mais la suite x, = Y| ; %ui € conv(A) converge vers x* ¢ conv(A).

En revanche, le caractere borné est systématiquement préservé.
Proposition 15. Soit E un evn et A C E borné. Alors conv(A) est bornée et de méme diametre que A.

Démonstration. Par inclusion A C conv(A), on a §(A) < §(conv(A)). Par ailleurs, A C B(0,R)
qui est convexe, donc conv(A) C B(0, R). Ainsi, conv(A) est bornée.
Soit x € conv(A) ety € A,onax =) ;A;x;avec x; € A. On a alors

lx =yl <Y Aillxi =yl <Y Aid(A) = 5(A).
Soit x,y € conv(A), alors d’apres I'inégalité précédente, on a
lx =yl <Y Aillxi =yl <Y Ai6(A) = 6(A).
On a donc montré que é(conv(A)) < 5(A). O

De maniere générale, et ce en toute dimension, le passage a I'enveloppe convexe ne préserve
pas le caractere fermé.

Contre-exemple 16. Dans E = R?, avec A = (0,0) UR x {1}. Alors conv(A) = (0,0) URx]0,1].
En revanche le caractere ouvert est préservé.
Proposition 17. Soient un evn et A C E ouvert, alors conv(A) est ouverte.

Démonstration. Soit x € conv(A), on dispose d'une décomposition x = Y ; A;x;. On peut sup-
poser que A; 7. On définit alors I'application

n
fiz€Em ALl (z—ZAixl).
i=2

Cette application est continue et on a f~!(A) est un ouvert. Par ailleurs, f(x) = x; donc x €
f~Y(A). Enfin,on a

n
YA ={z€E/ye Az= My + Y Aixj} C conv(A).
i=2
Donc f~!(A) est un voisinage de x dans conv(A). O
Pour conclure, montrons deux résultats de stabilité lié a la topologie.

Proposition 18. Soit A C E un convexe, alors A est convexe. De plus si E est un evn, alors A est convexe.



Démonstration. eA. Soit x,y € A et A € [0,1], il existe (x,)n, (yn)n dans A qui convergent vers
x et y. On pose z, = Ax, + (1 — A)y,. Par convexité de A, z, € A. De plus, z, converge vers
z=Ax+ (1—A)y. Doncz € A qui est ainsi fermé.

e A. Raisonnons par I’absurde. Supposons qu’il existe xo, g € A et Ag € [0,1] tels que zg =
Aoxo + (1 — Ag)yo ¢ A. Remarquons que Ay ¢ {0,1}. Comme yy € A alors il existe r > 0 tel
que B(yo,r) C A. Alors l'application f : z € E — (z — Agxp)/ (1 — Ag) est continue et vérifie
f(z0) = yo. Ainsi, il existe § > 0 tel que f(B(zo,6)) C B(yo,7) C A. Mais comme z ¢ A alors il
existe z; € B(zp,d) N A°. Ennotanty; = f(z1),onay; € Aetz; ¢ A.Orz; = Agxg + (1 — Ag)ys.
C’est absurde par convexité de A. O

1.2 Convexité dans les espaces de Hilbert

On suppose dans cette partie que E = H unespae de Hilbert, muni du produit scalaire (-, -).

1.2.1 Théoréme de projection

Theorem 19 (Projection sur un convexe fermé). Soit C C H un convexe fermé non-vide. Alors pour
tout x € H il existe un unique y* € C tel que ||x —y*|| = min,cc [|[x — y||. Ce y* est appelé projeté
orthogonal de x sur C. Par unicité, cela définit un application de projection tc : x € H — y* € C. Enfin,
7ic(x) est caractérisée par les deux propriétés suivantes :

(i) mc(x) e C

(ii) pour touty € C,ona (x — mc(x),y — mc(x)) <O0.

La propriété (ii) peut étre interprétée géométriquement en disant que, pour tout y € C, I'angle
entre x — 7t¢(x) et y — e (x) est obtus. En effet, cet angle est par définition

0 = arccos ( (x = (%), y — T[C(x»”) € {g, 71} .

[l = 7ec () [[lly = 7te(x)

Démonstration. L’idée de cette démonstration est de résoudre un probléme d’optimisation. Cela
donne un avant-gott de de la suite du cours. Tout d’abord, si x € C, on définit c(x) = x.
Supposons x ¢ C. On définit alors la fonction objectif suivante : f : y € H — |x —y| € R.
On souhaite minimiser f sur C. Pour commencer, f est continue (et méme 1-Lipschitzienne), en
utilisant de la seconde inégalité triangulaire. De plus, f est positive. Soit (y,), € CN une suite
minimisante, c’est a dire telle que f(y») — infycc f(y) > 0. Une telle suite existe par définition
de I'infimum. Notons § = inf,cc f(y). On commence par remarquer que ¢ > 0. En effet, § = 0 ssi
x € C = C ce qui a été exclu. Pour conclure a I'existence de y* il suffit de montrer que la suite (v, )
converge. Pour ce faire, on va montrer qu’elle est de Cauchy. Le sous-ensemble C étant fermé dans
I'espace complet H, alors il est lui-méme complet et cela suffira a montrer la convergence. Pour
montrer que la suite est de Cauchy, on utilise I'identité du parallélogramme!. Pour tout p,q € N,
ona

1(x = yp) + (x = y) 12 + llyp — yall® = 2l — yp|I* + 20lx — 7%
Or par convexité, (yp, +y,)/2 € Cetainsi || (x —y,) + (x — y4)||* > 46°. On a donc

0 < flyp — ygll? <2 (I = ypl + llx = yg| — 26%) > o.

Ce qui montre que la suite (y, ), est de Cauchy et donc converge vers y* € C. Par continuité de f,
ona f(y*) = ¢ = min,cc f(y). Ce qui prouve l'existence de y*.

Pour montre 1'unicité d'un tel y*, supposons qu'il existe un autre z* € C tel que ||x — z*|| = 4.
La suite (z,,), qui alterne entre y* etz* est une suite minimisante. Elle est donc convergente d’apres
ce qui précede. Ainsi, z* = y*.

1. cette identité est équivalente au fait d’étre issu d’un produit scalaire



Montrons a présent que la projection satisfait les points (i) et (ii). Par construction, (i) est clair.
Soity € C,ona
lx = e ()12 < [lx — y|I?
= [I(x = (%)) = (¥ — 7 (%))
= [I(x = e (P + 1y = e (II? = 2(x = 7 (x),y = e (x))

I?

Ainsi, pour touty € C,ona ||(y — rc(x))||> > 2(x — e (x),y — 7 (x)). Fixons yo € C. L'inégalité
est vraie pour y, = Ayp + (1 — A)me(x), pour tout A € [0, 1]. Ainsi,

Al(yo = 7rc(2)[1* = 2A(x — 7tc (x), yo — 7 (x)).

En simplifiant par A et faisant tendre vers 0, on montre que ¢ satisfait (if).
Pour conclure, montrons que 7¢(x) est l'unique vecteur satisfaisant les deux conditions. Soit
z € C tel que pour tout y € C on ait (y —z,x —z) < 0. On a alors,

ly—xl2=li(y—=2) — (x =27 = ly— 2P + [ x — 2l — 20y —z,x —2)
> [ly =zl + [|x — z[|* > [|x —2||?
Ceci montre que z vérifie [|x — z|| = min e [|x — y|| et par unicité de ce minimum, z = 7¢c(x). O
Corollaire 20. Soit C C H un convexe fermé non vide. Alors 'application ric est 1-lipschitzienne.
Démonstration. Soient x,y € H,on a
I7tc (x) = e W)IIP = (e (x) — me(y), e (x) — mc(y))
= (mc(x) = e (), y — e (y)) +(me(x) = me(y), x —y)

<0
+ (7tc(x) — e (y), e (x) — x)

<0

<|lmc(x) = e W)llx =yl

D’oti le résultat. O

1.2.2 Séparation et Hahn-Banach

On va utiliser le théoreme de projection pour obtenir des résultats de séparation par de hy-
perplans dans les Hilbert et une preuve simple du théoreme de Hahn-Banach. Notons que ce
théoréme s’énonce de maniére générale dans des espace vectoriel topologique? mais se démons-
tration demande alors 1'utilisation de 1’axiome du choix (Cf [3])

Définition 21. (i) Un hyperplan de H est H(v, ) = {x € H/(v,x) = a}, pourv € Het x € R.
(ii) L'hyperplan H (v, «) divise H en deux régions :

Hi(v,a) ={x e H/(v,x) >a} e H_(v,a)={x€ H/(v,x) <a}.

(iii) Soient A,B C H. On dit queH (v, «) sépare A et Bsi A C Hi(v,a) et B C He(v, ).
(iv) On dit queH (v, ) sépare strictement A et B si

A C Hi(v,a)\ H(v,a) et BC Hx(v,a)\ H(v,a).

(v) On dit que H(v, &) est un hyperplan d’appui pour A, il existe x € AN H(v,a) et A C Hy (v, ).

2. et pas dans des Banach!!!



La définition classique d'un hyperplan, comme noyau d’une forme linaire continue, corres-
pond au cas &« = 0 (d’apres le théoréme de représentation de Riesz). La définition présente permet
d’élargir a des hyperplans affines. Le vecteur v est appelé vecteur normal & I'hyperplan H(v, «)
car pour tout x,y € H(v,a),ona (v,x —y) = 0.

Theorem 22 (Séparation). Soit A C H un sous-ensemble strict de H, convexe, fermé, non-vide. Alors :
(i) Pour tout x ¢ A, il existe un hyperplan qui sépare strictement {x} et A.

(ii) A admet des hyperplans d’appui.
Démonstration. (i) On posev = x — m4(x) etd = ||v]| > 0.Ona
(v,x) =(x = ma(x),x = A (x)) + (x — A (x), TA(X))
=0%+ (x — 7ma(x), (%))
> (x = ma(x), MA (1)) + 27

Ainsi, en posant, & = (x — 714 (x), wa(x)) + 6% ona {x} C Hi(v,a) \ H(v,«). Par ailleurs, pour
touty € A,ona

(v, y) =(y — ma(x), x = A (x)) + (7a(x), x — 7(A)(x))
<a — 152
- 2

D'ou A C H_(v,a) \ H(v,«).
(ii). On choisit un x ¢ A arbitraire et on pose v = x — m4(x) et & = (x — w4(x), TA(%)).
D’apres les calculs précédents, cela convient. O

Theorem 23 (Hahn-Banach géométrique). Si A C H est un convexe fermé non-vide et B C H est un
convexe compact non-vide, disjoint de A, alors il existe un hyperplan qui sépare strictement A et B.

Démonstration. On définit f : x € B +— ||x — 714 (x)||. Cette fonction est continue et par compacité
de B, il existe x* € B qui réalise son minimum. On pose v = x* — w4(x*), § = |[v]| et a =
(x —ma(x), ma(x)). D’apres le théoréme précédent, H(v, ) sépare strictement {x*} et A. Il reste
amontrer que B C H, (v,a) \ H(v,a). On pose y* = 74 (x*). y* admet une projection sur B et on
a

I8 (y™) =yl =llms(y") — ma(x?)]|
= min |z — 7a(x7) || < [l = wa (x|
= min [lx — 4 (x)|| < (|75 (y") — 7alep(y?)) |

= min [|7rp(y*) =yl < |[75(y") =yl
yeA

On a donc que des égalités et par unicité du minimum dans la projection, on a x* = 7g(y*). Ainsi,
onav = mg(y*) — y* et pour tout x € B

1
(x,0) = —(x,y" = mp(y")) = a+ 507

O

Application 24 (Enveloppe convexe fermée [2]). L’enveloppe convexe ne préserve pas le caracteére
fermé. On définit donc I'enveloppe convexe fermée de A C H, conv (A) comme étant le plus petit convexe
fermé contenant A :

conv(A) = N C.

C cox fermé, ACC



A partir du théoréme de Hahn-Banach, on montre que

conv(A) = N H(va).
(v,x),ACH (v,)

En particulier, on peut utiliser ce résultat pour déterminer I'enveloppe convexe de O, (R).

1.2.3 Sous-espace orthogonal

Le théoréme de projection permet aussi de démontrer la décomposition d"un espace de Hibert
en somme orthogonale.

Définition 25. Si F C H sev, son orthogonal est défini par
Ft={xe€H/Vy€H,I(xy) =0}.

Proposition 26. (i) F est fermé
(i) F- = (F)*
(iii) F C (F4)*
Démonstration. (i) Si (x,), est une suite de F qui converge vers x € H alors pour tout y € F, on
a (x,y) = lim(x,,y) = 0 par continuité du produit scalaire. Donc x € F- qui est fermé.

(ii) Soit x € F1, alors x est limite d"une suite (x,,), de F*. Soit y € F, y est limite d’une suite
(yn)n de F. Par continuité, on a (x,y) = lim(x,,y,) = 0. Donc F* = FL C F". De plus, puisque
Fc Falors F- C F. D'ou I'égalité.

(iii) Soit x € F alors pour touty € F*, ona (x,y) = 0. Donc x € (F)*. De plus, (F*)! est
fermé, donc F C (F4)*. O

Corollaire 27. Soit F C H un sev fermé, alors rtg est linéaire, continue, surjective. De plus, on a la
décomposition H = F @ F*. En particulier, F = (F1)=.

Démonstration. mr est surjective par construction et continue d’apres un résultat précédant. Pour
tout x € H, on a la décomposition x = mp(x) + (x — mp(x)). Il faut donc vérifier que (x —
ne(x)) € F* pour avoir H = F + FL. Pour tout z € F, on a (z — 7tp(x),x — 7tp(x)) < 0. En
appliquant a Az et en divisant par A, on obtient

—

0>(z— —mp(x),x — mp(x)),VA >0

> = >

0 <(z— —mp(x),x — p(x)),VA <0

En faisant tendre |A| vers +co, on en déduit que (z,x — 7tp(x)) = 0. Donc (x — 7tp(x)) € F*.
Supposons qu'il y ait une seconde décomposition x = x; + x, avec x; € F et x, € F*. Alors on a
x; — p(x) = (x — mp(x)) — xo. Ainsi, x; — tp(x) € FNFL = {0}. On en déduit l'unicité de la
décomposition. En particulier, cela implique que F = (F*)*.

La linéarité de 7rr découle cette unique décomposition. En effet, pour tout x,y € Heta, 8 € C,
ona

ax + By = rp(ax) + mp(By) +ax + By — (7r(ax) + e (By))
€eF cFLl
= rtp(ax + By) + ax + By — 7tp(ax + By)

eF €F+




Application 28 (Densité). Ce corollaire est souvent utiliser pour montrer qu’une famille orthonormée est
une base hilbertienne (i.e est totale). En effet, pour un sev F quelconque, on a montrer que (F+)+ = F.
Ainsi F C H est dense ssi F- = {0}. on retrouvera ce critere dans I'étude des séries de Fourier, des
polyndémes orthogonaux, I’espace de Bergmann etc.

Application 29 (Théoreme ergodique de Von Neumann, [2], Exo 3.6). Soit T € L(H), ||T|| < 1.
Alors pour tout x € H,ona

S|

n—1
2 Tn(x) — nker(Tfid(x)'
n=0

Application 30 (Espérance conditionnelle, [2], App 3.23). Soit (Q), F,IP) un espace de probabilité et G
une sous-tribu de F. L'espérance conditionnelle par rapport i G se définit sur 1L?(F) comme la projection
sur le sous-espace IL2(G).

1.2.4 Semi-cone et lemme de Farkas

La décomposition en sous-espace orthogonaux se généralise a des sous-ensemble F qui ont
une structure plus faible que celle de sev : les semi-cones.

Définition 31. (i) Un sous ensemble K C H est un semi-cone si pour tout x € Ket tout A > Qona
Ax € K.
(ii) Pour un sous-ensemble K C H, on définit son semi-cone polaire K° par

K°={xe H/Vy €K, (x,y) <0}.
Remarquons que si K est un semi-cone, alors 0 € K. Dans le cas "plat" des sev, on a F® = F*.
Lemme 32. Si K est un semi-cone convexe fermé alors K° = {x € H/mg(x) = 0}.

Démonstration. Soit x € K° alors pour touty € K, ona (x,y) <0.0r0 € Ket (x—0,y —0) < 0.
Donc par caractérisation de la projection, mg(x) = 0. Réciproquement, si 7t (x) = 0 alors pour
touty € K,ona0 > (x — 0,y — 0). Donc x € K°. O

Le théoreme suivant donne une décomposition de H en somme de semi-cones, similaire a la
décomposition orthogonale 27.

Theorem 33 (Moreau, [2]). Soit K un semi-cone convexe fermé non-vide. Alors pour tout x € H, le
projeté mg (x) admet caractérisation suivante
(i) mx(x) € K
(ii) x — g (x) € K° et (x — g (x), mg(x)) = 0.
De plus, on a I'équivalence entre les propriétés suivantes
(a) x admet une décomposition x = xg + xo avec xg € K, xo € K et (xg,x) =0
(b) xp = i (x) et xo = 7ge (x).
Corollaire 34. Soit K un semi-cone connexe non-vide. Alors K = (K°)°.

Application 35 (Lemme de Farkas). Soient u1,...,u, € R% et v € R?. Alors on a équivalence entre
(i) {x € R/ (x,u;) <0OVi} C {x € R/(x,0) <0}
(i) v € {¥; Aju;/A; > 0},
Démonstration. Soit K = {}_; A;ju;/A; > 0}. C’est un cdne convexe fermé3 non-vide. On sait alors
que K = (K°)°. Ainsi, v € K ssi pour tout x € K°, (v,x) < 0, c’est a dire, pour tout x tel que pour
tout A; > 0, (x, Y Aju;) <0, (x,0) < 0.C’est équivalent a ce que pour tout x tel que (x,u;) <0
pour tout i, on a (x,v) <O0. O

La traduction dans le cadre plat du lemme de Farkas se lit :

ﬂuil C vt & v € Vectu;.

3. Evident si les u; sont libres. Montrer que I'on peut s’y ramener sinon



1.3 Convexité et convergence faible

Définition 36. Une suite (x,), dans H converge faiblement vers x* si pour tout y € Hon a (x,,y) —
(x*,y). On note x,, — x*.

Proposition 37. (i) Si x, — x* alors x, — x*, i.e si A est faiblement fermé, alors A est fortement
fermé.
(i) Sixy — x*, alors || x*|| < liminf ||x,]|
(iii) Sixp, — x*, alors x, — x* ssi || x| — [|x*]]
(iv) Si (x4)n est bornée alors elle admet une sous-suite faiblement convergente.
Theorem 38. Soit K C H convexe non-vide. Alors K est faiblement fermé ssi K fortement fermé.

Démonstration. Soit K fermé et supposons par ’absurde qu’il n’est pas faiblement fermé. On dis-
pose donc d’une suite (x,), € K tel que x, — x* et x* ¢ K. Puisque K est convexe fermé
non-vide, on a § = ||x* — ;g (x*)|| > 0. Par caractérisation du projeté, pour tout y € K, on a
(y — g (x*), x* — i (x*)) < 0. En particulier, pour y = x,,, on a

0 < (xp — me(x*), 6% — e (x*)) — (x* — ;e (x*), x* — g (x*)) = 6% > 0.

C’est absurde. O
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Chapitre 2

Fonctions convexes

La seconde face de la convexité concerne les fonctions a valeurs réelles. La notion de convexité
pour une fonction permet d’améliorer significativement les résultats classiques d’optimisation.
Elle sera cruciale dans la section suivante.

2.1 Définition et premiéres propriétés
Définition 39. Soit K C E convexeet f : K — R.
(i) f est convexe si pour tout x,y € Ket tout A € [0,1], ona
fAx+ (1 =A)y) <Af(x) + (1 =2A)f(y)-
(ii) f est strictement convexe si pour tout x # y € Ket tout A €]0,1[, on a

fAx+ (1 =A)y) <Af(x) + (1 =A)f(y).

(iii) Si de plus E est un espace de Hilbert, f est a-convexe pour & > 0 si pour tout x,y € K et tout
A€0,1],0ona

fAx+ (A =A)y) <Af(x)+ A -A)f(y) - g?\(l = Mllx = yll*.

(iv) f est concave (resp. strictemnt concave, resp. a-concave) si — f est convexe (resp.. . .).
On a clairement 'implication a-convexe = strictement convexe = convexe.

Exemple 40. (a) Toute forme linéaire est convexe
(b) x € R+ e est str convexe. x € R > x? est 2-convexe.
Proposition 41. Soit K C E convexeet f : K — R.
(i) f est convexe ssi pour tout x,y € K, : t € [0,1] — f(tx+ (1 —t)y) est convexe.
(ii) (Jensen) f est convexe ssi pour tout n > 2 et tout combinaison convexe de K Y ; Aix;, on a

FOO g Aix) < Yiq Aif (%)

(iii) Si K = conv({xy,...,x,} et f convexe, alors maxycg f(x) < max f(x;).
Remarquons que la propriété (ii) est une version discrete et finie de 1'inégalité de Jensen.

Application 42 (Inégalité de convexité). La convexité est un outil trés puissant pour obtenir des inéga-
lités. Voici quelques exemples.

(i) (Inégalité arithmético-géométrique) Pour tout xq,...,x, > 0,0na
n 1/7’1 1 n
[Tw] =5 L
i=1 i=1
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(ii) (Inégalité de Young) Pour tout x,y > O0et1/p+1/g=1,0na
xy < 1x + 1y
A
(iii) (Inégalité de Holder) Pour x1,...,Xn,Y1,...,ynet1/p+1/g=1,0na

o= ()" (2)

1/q

(iv) Pour tout x,y > 1, log (Zﬂ) > /log(x)log(y).

(v) (Inégalité de kantorovitch) Pour tout x € R4, ona

Il < (Ax, 1) (A "%, 2) < § (k(A)72 - 5(A)V2) [

I

On dispose des propriétés de stabilité suivantes.

Proposition 43. Soient f,g : K — R convexes, f : R — R croissante et a, p > 0.
(i) af + Bg est convexe.

(ii) ho f est convexe.

Contre-exemple 44. La convexité n’est pas préservée par composition : x — —x est convexe et f et —f
ne sont pas simultanément convexes (a moins d’étre affines).

Proposition 45. Soit (f;);ic; une famille de fonctions convexes sur K, telle que la fonction g : x € K —
sup; f;(x) soit bien définie'. Alors elle est convexe.

2.2 Régularité des fonctions convexes

Commencgons par remarquer qu’en dimension infinie la convexité ne garantie aucune régula-
rité. En effet, n'importe quelle forme linéaire est convexe mais certaine ne sont pas continue. On
se placera donc en dimension finie, sur E = R"”. On commence par traiter le cas de la dimension
1.

Définition 46. Soit [ C Ret f : I — R. Pour tout xy € I, on définit la fonction pente

Pxozyel\{xo}ﬁfw_

Theorem 47. f : I — R est convexe ssi pour tout xo € I la fonction pente py, est croissante.

Corollaire 48. Soit f : I — R convexe. Alors f admet en tout point x € I des dérivées a gauche et a
droite satisfaisant fo(x) < fj(x). En particulier, f est continue sur I.

Application 49 (Inégalité de Jensen). Soit ), F,P) un espace de probabilité, X une variable aléatoire
réelle et @ : R — R une fonction convexe telles que (X)IL'. Alors

¢ (E[X]) < E[p(X)].
Si de plus ¢ est strictement convexe alors il y a égalité ssi X est constante ps.

Démonstration. Soit £ € [¢L(E[X]), ¢} (E[X])], alors on ¢(X) > ¢(E[X]) + ¢(X — E[X]) p.s. En
passant a I’espérance on obtient le résultat. O

On s’intéresse maintenant au cas de la dimension n > 2.

1. majoration uniforme par exemple
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Theorem 50. Soit K C RY un ouvert convexe, et f : K — R convexe. Alors f est continue.

Démonstration. Soit xg € K. puis que K est ouvert, il existe r > 0 tel que le cube C = xo + [, 7] C
K.Onnote V = {xgte;/1 < i < d} l'ensemble des sommets du cube et « = maxycy f(x). On
a C = conv(V) et f convexe donc maxycc f(x) < wa. Soit y € C distinct de xg et on définit
y(t) = ty + (1 — t)xo pour tout t € R. Alors t* = /||y — x¢||e Vérifie y(£t*) € dC. On exprime
alors y et x) comme combinaison convexe de xg et y(*) et y y(—t*) respectivement. Par convexité,
ona

F) < fOE) + (= )f ), flxo) < s f(—4) + (1= 1) f (30)
On en déduit que
F) ~ Flx0)] < F) < & (1F(x0) +max |fy(ze))) < LTSy
Ce qui montre la continuité en x. O

La démonstration précédente suggere un résultat plus fort (Cf [6]).

Theorem 51. Soit f : K C R? i R convexe. Alors est est lipschitzienne sur tous les compacts de K. En
particulier, f est dérivable presque partout.

On peut méme montre que la constante de Lipschitz ne dépend que du diametre du com-
pact et d'une borne de f sur ce compact: L < 2M/¢. La deuxieme partie du théoreme est une
conséquence du théoréeme de Rademacher.

Application 52 (Théoreme "a la Dini" convexe). Soit une suite de fonctions f, : K C R" - R
convexes qui converge simplement vers f : K — IR. Alors f est convexe et la convergence est uniforme sur
tout compact de K.

2.3 Caractérisation de la convexité

On commence par une caractérisation général et plutot abstraite.

Définition 53. Soit K C Eet f : K — R. I'épigraphe de f est I'ensemble
epi(f) = {(x,0) e KxR/a < f(x)}.

Proposition 54. f : K — R est convexe ssi epi(f) est convexe.

Démonstration. = On suppose f convexe. Soient (x,«),(y,B) € epi(f) et soit A € [0,1]. Par
convexité de f, on a

fAx+ (1 =A)y) <Af(x) + (A =A)f(y) < Aa+ (1 -A)B.

< On suppose epi(f) convexe. Soit x,y € Ket A € [0,1]. Alors, (x, f(x) et (y, f(y) € epi(f) et
par convexité A(x, f(x)) + (1 —A)(y, f(y)) aussi. Donc f est convexe. O

On va maintenant donner des critéres de convexité selon la régularité de la fonction. En di-
mension 1, en affinant le corollaire 48 sur la croissance des pentes, on a la caractérisation suivante.
Theorem 55. Soit f : I C R — R de classe C1. Alors

(i) f est convexe ssi f' est croissante.
(ii) f est strictement convexe ssi f' est strictement croissante.
(iii) f est a-convexe ssi pour tout x <y, f'(x) < f'(y) — a(y — x).
En dimension supérieure, la notion de "dérivée" croissante n’a pas de sens. Cependant, en

dimension 1, f’ croissante est équivalent a la propriété : pour tout x,y € I, (f'(x) — f'(y))(x —
y) > 0. Cette formulation a un sens en dimension supérieure.

13



Theorem 56. Soit f : K C R? — R différentiable. Alors

(i) f est convexe ssi pour tout x,y € K, (df (x) —df(y),x —y) > 0.

(ii) f est strictement convexe ssi pour tout x #y € K, (df (x) —df(y),x —y) > 0.
(iii) f est a-convexe ssi pour tout x,y € K, (df (x) —df(y),x —y) > a|x —y|>

La caractérisation de dimension 1 "f est au-dessus de ses tangentes" se généralise aussi en
dimension supérieure.

Theorem 57. Soit f : K C R? — R différentiable. Alors

(i) f est convexe ssi pour tout x,y € K, f(y) — f(x) > (df(x),y —x).

(ii) f est strictement convexe ssi pour tout x #y € K, f(y) — f(x) > (df (x),y — x).
(iii) f est a-convexe ssi pour tout x,y € K, f(y) — f(x) > (df (x),y — x) + §[|x — ||~

Démonstration. (i) = On suppose f convexe. Soit x,y € Ket A € [0,1]. On pose z = Ax + (1 —
Ay =x+ (1 —A)(y — x). Par convexité, on a

f(@) SAf(x)+ (1 =A)f(y) = f(x) + (1= A)(f(y) — f(x)).
Par ailleurs, comme f est C 1 ona

f(x+ (1 7);)(_y): x)) *f(X) — (df(x),yfx>.

D’ot1 le résultat.
(i) <= On applique I'inégalité entre x et z etentre y et z :

{f(x) —f(2)

En combinant, on obtient Af(x) + (1 — A) f(y) — f(z) > 0.

(iii) et (if) <= Méme démonstration. En revanche, pour (ii) =, il faut faire attention a le pas
passer a la limite pour conserver I'inégalité stricte. On Suppose f strictement convexe. En utilisant
le point (i) entre x et z, on a

F) — Fx) > 15 (F2) = () > (@f (), 2

> (df(x),y —x).

O

En supposant une régularité C2, on obtient un caractérisation d’ordre 2 sur la hessienne. On
note S} (R) I'ensemble des matrices réelle symétriques positives et S, *(R) celui des matrice
symétriques définies positive.

Proposition 58. Soit f : K C RY — R deux-fois différentiable. Alors
(i) f est convexe ssi pour tout x € K, Hess(f)(x) € S (R).
(ii) SiHess(f)(x) € S (R) pour tout x € K, alors f est strictement convexe.

(iii) f est a-convexe ssi pour tout x € K, Hess(f)(x) > aid i.e pour tout h € R
(Hess(f)(x)h, ) > a[h]]%.

Contre-exemple 59. La fonction x € R — x* montre que le point (ii) n'est pas une équivalence.

Démonstration. On va détailler seulement le (7). Les autres se démontre de maniére similaire. =
On écrit la formule de Taylor-Young

f) = f(x) = (df (x),y = x) = 5 (Hess(£)(x)(y = x),y = x) +o (ly = x|?).

N\H
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D’apres la caractérisation d’ordre 1 de la convexité, le membre de gauche est positif. En particulier,
pour tout i € RY, pour tout A > 0, en appliquanta y = x + Ah/|/k||, on a

(Hess(f)(x)h, h) = }\%(Hess(f)(x)h,h) +0(1) > 0.

< On applique la formule de Taylor avec reste exacte : pour tout x,y € K, il existe z € [x, y]
tel que

(Hess(f)(2)(y —x),y —x) .

>0

N =

fy) = f(x) = {df(x),y —x) =

D’apres la caractérisation d’ordre 1, f est convexe. O

Exemple 60 (x "La" fonctionnelle quadratique %). Soit A € Sy(R) et b € R?. On définit la fonction-
nelle quadratique

fixeR %(Ax,x> — (b, x).

Alors f est convexe si et seulement si A € S} (R) et f est a-convexe si et seulement si le spectre de A est
inclus dans [a, +o0].

Les caractérisations 57 et 58 restent vraies dans un espace vectoriel normé de dimension quel-
conque (Cf [5]).
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Chapitre 3
Optimisation

Le but de cette partie est d’étudier des problemes de la forme : trouver x* € K tel que

f(x*) = inf f(x),

xeK

ol K C E est un sous-ensemble d'unevn Eet f : K — R.

3.1 Définition
Définition 61. On dit que x* € K est un minimum (resp. maximum) global de f sur K si pour tout
x €K, ona f(x*) < f(x) (resp. f(x*) > f(x)).

(i) Maximiser f est équivalent a minimiser — f

(if) Les extrema peuvent ne pas exister. x € R — e*.

iii) Un extremum peut ne pas étre unique. x € R — (x2 —1)2.
p P q

Définition 62. On dit que x* est un minimum local de f sur K si c’est un minimum global sur un
voisinage de lui-méme dans K i.e il existe r > 0 tel que pour tout x € KN B(x*,r), f(x*) < f(x).

3.2 Résultats généraux d’existence et unicité

On commence par quelques résultats de base.

Proposition 63. Si K C E est compact non-vide et : K — IR est continue alors f admet un minimum et
un maximum global sur K.

La démonstration repose sur la méme stratégie que le Théoréme de projection : prendre une
suite minimisante et obtenir sa convergence par un argument idoine (structure hilbertienne pour
le théoreme de projection et compacité ici).

Démonstration. Soit (x,), une suite minimisante. Par compacité, elle admet au moins une valeur
d’adhérence x* € K. Par continuité de f, on a

f(x*) =1m f(xn) = inf f(x).
O

En dimension finie, la caractérisation des compactes permet d’obtenir 1’existence de minimum
sous des hypothéses moins contraignantes.

Corollaire 64. On suppose E = R, K C E fermé non-vide et f : K — R continue. S'il existe X € K tel
que le sous-niveau {x € K/ f(x) < f(%)} est borné, alors f admet un minimum global sur K.
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Démonstration. Par continuité, le sous-niveau, noté Ky, est fermé. Par hypothese, il est borné donc
compact. D’apres la proposition précédent, f admet un minimum global sur Ky, x*. De plus, si
x € K\ Kg, alorsona f(x) > f(x) > f(x*). Donc x* est un minimum global sur K. O

Pour montre l’existence d’un maximum, il suffit d’exhiber un sur-niveau {x € K/f(x) >

f(%)} borné.

Application 65 (Pavé de volume maximal). On veut montrer qu'il existe un pavé de R® de surface
S > 0 fixé, de volume maximal. Cela revient a maximiser la fonction f : x € (Ry)® w x1xox3 sur
I'ensemble

K= {x € (Ry)3/2(x1x2 + x1x3 + x2x3) = S}.

Fixons % € K tel que f(x) > 0 (il en existe). Soit x € K tel que f(x) > f(%), en particulier, x; > 0 pour
tout i. De plus pour tout i # j, x;x; < S/2donc f(x) < f(x) < S?/(4x;). Donc x; < S?/ (4f (%)) := R.
Ainsi, le sur-niveau {x € K/f(x) > f(%)} est inclus dans [0, R]3. Donc f admet un maximum global
sur K.

Il existe un critere simple garantissant 1’existence de sous-niveau borné : la coercivité.

Définition 66. Soit K C E, f : K — R est coercive si pour tout M > 0, il existe R > 0 tel que
x € KNB(O,R) = f(x) > M.

Autrement dit, f explose.

Corollaire 67. Soit E = RY, K C E fermé non-vide et f : K — R continue coercive. Alors f admet un
minimum global sur K.

Démonstration. Soit X € K. En prenant M = f(%), il existe R > 0 tel que le sous-niveau associé a &
soit inclus dans B(0, R). On peut alors conclure avec la proposition précédente. O

3.3 Optimisation et convexité

La convexité permet d’obtenir des résultats d"unicité et d’existence, y compris en dimension
infinie.

Proposition 68 (Passage du local au global). Soit E un evn, K C E convexe et f : K — R convexe. Si
x* est un minimum local de f sur K alors, c’est un minimum global.

Démonstration. Par définition, il existe r > 0 tel que pour tout z € KN B(x*,r) f(x*) < f(z).
Soit y € K alors pour tout A € [0,1], zy = Ay + (1 — A)x* € K et pour A suffisamment petit,
z) € B(x*,r). Par convexité, on a

f(x) < f(z2) S Af(y) + (1= A)f(x).
Ce qui implique f(x*) < f(y) pour touty € K. O

Proposition 69. Soit E un evn, K C E convexeet f : K — R strictement convexe. Alors f admet au plus
un minimum.

Démonstration. Si x* # y* sont deux minima globaux sur K alors par stricte convexité, on a

F(EFE) < 760 + 300 = min (),

xeK
Ce qui est absurde O

Contre-exemple 70. Ce résultat ne dit pas que la stricte convexité, seule, implique l'existence d'un mini-
mum (x € R > e¥).

En dimension fini, I’'a-convexité assure 1’existence d’un minimum.
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Proposition 71. Soit E = R, K C E convexe fermé non-vide et f : K — R différentiable a-convexe.
Alors f admet un unique minimum global sur K.

Démonstration. Soit ¥ € K quelconque. Alors pour tout x € K, on a

f(x) 2f(2) + (df (%), x = x%) + 5 |1x — 7]
> (%) = llAf (2) |llx = #l| ++3 llx — %

— + 0

Donc f est coercive. f admet donc un minimum, qui est unique par stricte convexité. O

En dimension infinie, une maniere (classique) d’obtenir 'existence de minimiseur (entre autre)
est de remplacer la convergence forte par de la convergence faible, c’est a dire, ajouter des com-
pactes. Dans ce cas, on peut aussi relaxer I'hypothese de continuité.

Définition 72. Soit E un evnet f : E — R. f est semi-continue inférieurement (sci) si pour tout x € E
et e > 0 il existe un voisinage By de x tel que pour tout y € By, f(y) > f(x) —e.

On a la caractérisation suivante de la sci.
Proposition 73 ([3]). f sci < epi(f) fermé < pour tout x, — x, f(x) < liminf, f(x,).

Proposition 74. Soit E un espace de Hilbert et K C E convexe fermé non-vide. Soit f : K — R convexe
sci coercive. Alors f admet un minimum global sur K.

Démonstration. En utilisant le coercivité, on peut se ramener a chercher un minimum sur Kg =
KN B(0,R). Soit (x,), une suite minimisante dans Kg. Cette suite est bornée donc on peut en
extraire une sous-suite faiblement convergente x,, — x*. Par ailleurs, Kr est fermé (fortment) et
convexe, il est donc faiblement fermé. Ainsi x* € Kg. Enfin, f est sci et convexe, donc epi( f) est
faiblement fermé. Ainsi, on a

£(x*) < liminf f(x) = inf f(2)

Donc x* est un minimiseur de f sur K et donc sur K. O

Il existe de nombreuses variantes de ce théoréme, avec un jeu d’hypothése changeant, sou-
vent plus restrictif (notamment en développement). Il est bon de savoir lesquelles peuvent étre
affaiblies et comment.

Corollaire 75 (Stampacchia). Soit E un espace de Hilbert, K C E convexe fermé non-vide, a(-,-) une
forme bilinéaire continue coercive' et ¢ un forme linéaire continue. Alors la fonctionnelle f : x € K —
Ta(x,x) — @(x) admet un unique minimum sur K.

Démonstration. La fonctionnelle f est continue, donc sci et coercive (au sens de la définition par
hypothese 66). Enfin, pour tout x # y € Ket A €]0,1], ona

A? (1-7)2
fAx+ (1 =A)y) =Fa(x,x) + —5——aly,y) + M1 = V)a(x,y) = Ap(x) — (1= A)g(y)

“Af)+ -0~ Moty xy))

>Af(x) + (1= A)f(y)

Donc f est strictement convexe. On conclut a 1’existence par la proposition précédent et & 1'unicité
par stricte convexité. O

1. au sens des formes bilinéaire, i.e a(x, x) > «||x||? poura > 0
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Application 76 (Probleme avec obstacle ([7] Exo. 6 p.324)). Soit f € IL2(Q) et x € C°(Q). On pose
K = {u € H{(Q)/u > x pp}, sous-ensemble convexe de H}(Q) et la fonctionnelle ] (v) = %HUH%ﬂ +
0

(f,v). Alors ] admet un unique minimum u € K. De plus, si ce minimum est continu alors il vérifie

uek
—Au+f>0 sur Q
—Au+f=0 sur {u>yx}

Réciproquement, sous des hypothéses supplémentaires de régularité, une solution de ce systeme est un
minimum de |.

3.4 Optimisation sans-contrainte - caractérisation

Dans cette section, on étudie les caractérisation d’un minimum local lorsque K est un ouvert
(voire E tout entier). Ces caractérisations se déclinent selon la régularité de la fonction objectif f.

Définition 77. Soit O C E un ouvert et f : 3 — R différentiable sur Q). x* € Q) est un point critique
de fsidf(x*) =0.

L'équation df (x) = 0 est appelé équation d’Euler.

Proposition 78. Soit (O C E un ouvert et f : O — R différentiable sur Q). Si x* € () est un extremum
local de f sur Q) alors c’est un point critique de f.

Contre-exemple 79. Cette condition n'ai pas suffisante. x € R — x> admet un point critique en 0 mais
pas d’extremum.

En revanche, en dimension finie, avec de la convexité, on obtient une CNS.

Proposition 80. Soit O C R? un ouvert convexe et f : QO — R convexe et différentiable sur Q. Alors
tout point critique de f est un minimum global.

Démonstration. Soit x* un point critique. D’apres la caractérisation de la convexité 57, on a pour
toutx € O

fx) = f(x") = (df(x7), x —x7) = 0.
Donc x* est un minimum global. O

Application 81. On considere la fonctionnelle quadratique f(x) = 3(Ax,x) — (b, x) avec A € STT(R).

On a vu que f admet un unique minimum global x* € R?. Ce minimum vérifie Ax* = b. En pratique,
pour résoudre numériquement un systéme linéaire, on cherchera a minimiser f.

Application 82 (Théoréme de Rolle). Soit f : RY — R différentiable On suppose que f est constante
sur %=1, Alors il existe x* € B(0,1) tel que df (x*) = 0.

Cette condition d’ordre 1 ne permet pas de distinguer les minima des maxima. Pour cela, il
faut faire appel a une information d’ordre supérieur, i.e pousser le DL a I'ordre 2.

Proposition 83. Soit O C E un ouvert et f : (O — R différentiable sur ) et deux fois différentiable en
x* € Q. Si xx est un minimum local de f alors df (x*) = 0 et d*f(x*) € S (R)

Pour un maximum, la hesienne est négative. Cette condition est seulement nécessaire comme

le montre le contre-exemple x — x°.

Application 84 (Principe du maximum). Si f € C%(B(0,1)) est harmonique sur B(0,1) alors pour

tout x € B(0.1)
min f(y) < f(x) < max f(y).
lyll=1 llyl=1

En dimension finie, il existe une condition d’ordre 2 suffisante.
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Proposition 85. Soit O C E un ouvert et f : Q) — R différentiable sur Q) et deux fois différentiable en
x* € O.Sidf(x*) =0etd*f(x*) € S§T(R) alors x* est un minimum local de .

Contre-exemple 86 ([1]). L'application
oo 42
fixelf Y t—x
n=1
est de classe C* et vérifie df (0) = 0 et Hess(f)(0)(h,h) > 0 pour tout f € ¢%\ {0}. Cependant, O n’est
pas un minimum local de f.

Dans le cas Hilbert, si Hess(f)(x*) est positive, inversible d’inverse compact alors la proposi-
tion précédente reste vraie.

3.5 Optimisation sous-contrainte

Dans cette section, on étudie des probléeme d’optimisation sur un sous-ensemble K C () fermé.
Dans ce cas, 1'égalité de Euler et les caractérisation précédente ne permettent plus de traiter les
x € oK.

Définition 87. Soit x* € K. Un vecteur v € E est une direction admissible en x* s’il existe une suite
ex — 0T et v — v tels que x* + e,v € K. On note K(x*) I'ensemble des direction admissible en x* € K.

Exemple 88. (i) Si K C E est ouvert alors K(x*) = E pour tout x* € K.

(i) Si K C E est convexe. K(x*) = {A(y — x*)/A > 0,y € K} est un semi-cone fermé.

Dans le cadre de I'optimisation sous contrainte, il existe une version affaiblie du critere d’ordre
1.

Theorem 89 (Inéquation d’Euler). Si f : K C (O — R est différentiable en x* et x* est un minimum
local de f sur K alors
(df(x*),h) > 0,Yh € K(x*).

Ce critere est assez peu utilisable en soit. Cependant, il peut étre décliner, selon la forme de la
contrainte K, en des critéres spécifiques plus maniables : le théoreme des extrema liés ou théoreme
de Karush-Kuhn-Tucker.

3.5.1 Contraintes de type égalité

Dans le cas oti K est une sous-variété de R?, on a une caractérisation plus précise de I’ensemble
des directions admissibles.

Définition 90. Soit p > let g: Q C R? — RP de classe C' sur Q. Si K = ¢g~1(0) alors, le probleme
d’optimisation ,ing f est un probleme de minimisation sous contraintes de type égalité. De plus, on dit que
les contraintes sont qualifiées en x € K si la famille {Vg1(x), ..., Vgp(x)} est libre.

On peut remarquer que si g est un submersion (dans ce cas K est une sous-variété) alors les
contraintes sont qualifiées en tout point de K. Par ailleurs, si Q = R? alors K est fermé (on peut
donc utiliser les résultats d’existence précédent...).

Le lemme suivant décrit I’ensemble des directions admissibles pour des contraintes de type
égalité. C’est I'argument clef du théoréme des extrema liés et ne peut pas étre trivialisé.

Lemme 91. Si les contraintes sont qualifiées en x* € K alors on a

K(x*) = Vect{Vg1(x*),..., Vgp(x*)}*.
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Démonstration. e L'inclusion direct est triviale (et ne nécessite pas 1’hypothese de qualification).
En effet, soit h € K(x*), on dispose de suite 1, et ¢, par définition. Puisque x* et x* + ¢,h, sont
dans K, alors on a g;(x* + €,h,) — gi(x*) = 0. En passant a la limite, on a (Vg;(x*), h) = 0.

e L'inclusion réciproque est plus élaborée. Soit h € R" tels que pour tout i, (Vg;(x*),h) = 0.La
contrainte étant qualifiée en x*, la matrice J¢(x*) est de rang plein. On pose Jo(x*) = (J1]|]J2) avec
J1 € Mpu—p(R) et [ € Mp(R). Quitte a permuter les coordonnées, on peut supposer que J, est
inversible et on note alors x* = (x},x5) € R"77 x RP. D’apres le théoréme des fonctions impli-
cites, il existe un voisinage U C R"~7 de x}, un voisinage V C R de x} et un C!-difféomorphisme
¢ : U — Vtel que ¢(x]) = x5 et pour tout (x1,x2) € U XV

<(x1,x2) =0) & x3 = @(x7).

Onadeplus Jy(x]) = —]{1]1.
A partir d'un certain rang, ona x1 + hy /k € U donc g(x1 +hy/k, ¢(x1 +h1/k)) = 0. Or d’apres
la formule de Taylor-Young, on a

P+ 1 /K) = p(xf) + LIp(ed ) + 2 (1/K)

" _ 1
=X - ﬂz Yaht + E’?(l/k)

ou7(t) — 0 quand t — 0. Par hypothese, on a ]g(x*)h = 0, ce qui se traduit par J1h; + Johy = 0.
On a donc

o(x1 +hi/k) = x5+ — (hz +n(1/k)).

k

On a donc montré que

hy hy

T g+ 51) = (x7,25) + ¢ (i + (1K) € K

Ainsi, en posant ¢y = 1/k > 0 et hy = (hy,hy +1n(1/k)) € R" on a montré que h € K(x*). O

(x1 +

Du lemme précédent et de 'inégalité d’Euler, découle le théoreme des extrema liés.

Theorem 92 (extrema liés). Si f admet un extremum local en x* € K et si les contraintes sont qualifiées
en x* alors il existe (Aq, . .. ,/\p) € RRP tels que

p
Vi(x*)+) AiVgi(x*) =0. G.1)
i=1

Démonstration. D’apres l'inégalité d’Euler, pour tout h € K(x*), ona (Vf(x*),h) > 0.En part1cu—
lier, comme K(x*) est un espace vectoriel, (V f(x*),h) = 0. Cela signifie que V f(x*) € K(x*)*

Vect{Vgi(x*),..., Vgp(x*)}. O

Les coefficient A; sont appelé multiplicateur de Lagrange. L'équation (3.1) est appelée équa-
tion d’Euler-Lagrange. Elle peut étre traduite comme l'annulation du gradient d’une fonction
auxiliaire, le lagrangien, dépendant et de la fonction objectif et des contrainte

L:(x,A) e QxR — f(x —i—Z/\lgl
i=1

On est ramené a rechercher les points critiques de £, sans contraintes. La Hessienne de £ selon
la coordonnée x permet aussi d’avoir une information sur la nature de 'extremum. Pour finir, ce
théoreme est adaptable dans un espace de Banach.

Application 93. (i) Inégalité d’'Hadamard. Pour vy, ...,v5 € R, ona

|det(v;, ..., vy |<1_[|vl|
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(ii) Théoreme du min-max de Courant-Fischer. Pour tout A € S;(R)

min (Ax,x) = A, max (Ax,x) = Ay.
[lx[[=1 [lx[|=1

(ii) Inégalité de Minkowski. On montre que les solutions de

max || x +y||§
llxllp=allyllp=p

sont atteintes sur des vecteurs x*,y* colinéaires.

3.5.2 Contraintes de type inégalités

Le travail sur les semi-cones et leurs cones polaires associés va permettre de généraliser le
théoréme des extrema liés au cas des contraintes de type inégalité. On suppose désormais que le
domaine admissible a la forme suivante

K=g1(]-00,0") = {x€Q/g1(x) <0,...gp(x) <0}.

Définition 94. L'ensemble des contraintes saturées en x* € Kest Z(x*) = {i € [1,p]/gi(x) = 0}.
Les contraintes sont qualifiées en x* il existe une direction entrante v € RY en x*, telle que pour tout
ieZ(x*) (Vgi(x*),v) <O0.

En particulier, sila famille {Vg;(x*),..., Vgp(x*)} estlibre alors les contraintes sont qualifiées
en x*. Cependant, la vrai condition équivalente, c’est la positive liberté.

Contrairement au cas des contraintes de type égalité la caractérisation des directions admis-
sibles n’utilise pas de théoreme complexe mais découle de la définition de contraintes qualifiées.

Lemme 95. Si les contraintes sont qualifiées en x* € K alors
K(x*) = {h € R/ (Vg;(x*),h) <0 Vie I(x*)}.

L'ingrédient pointu (qui remplace le théoréme des fonctions implicites) est le lemme de Farkas.
On a le résultat suivant.

Theorem 96 (Karush-Kuhn-Tucker). Si x* € K est un minimum local de f sur K et si les contraintes
sont qualifiées en x*, alors il existe des multiplicateurs de Lagrange Ay, ..., Ay, > 0 tels que

p

V(") + Y A Vgi(x*) =0.
i=1

/\,'gi(x*) = O,Vi

Démonstration. D’apres l'inégalité d’Euler, ona Vh € K(x*), (Vf(x*),h) > 0. Or d’apres le lemme
précédent, on a

{he R/ (Vgi(x*),h) <0 VieZ(x*)}c {heR/(=Vf(x*),h)<0}.

Ainsi, le lemme de Farkas conclu que —V f(x*) est une combinaison linéaire a coefficients positifs
des Vg;(x*) pouri € Z(x*). O
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Chapitre 4

Méthodes numériques pour
I"'optimisation

On considere le probleme d’optimisation (en dimension finie) ming f, avec f : Q C RY — R,
Q ouvert et K C Q). On suppose que se probleme admet au moins une solution x* et on cherche
des valeurs approches de x*. Une maniere concréete de le faire est de procéder itérativement : on
construit un suite (x); € KN telle que x; — x*. Plus précisément, on cherche x;,; comme une
correction de x; de la forme
Xk+1 = Xk — PkVk,s

ot vy € RY est la k-iéme direction de descente et o > 0 le pas dans la direction v. Un premier
probleéme consiste a trouver des suites vy et py tel que xx — x*. Un second probléme concret est
de se fixer une condition d’arrét pour cesser les calcul des que x est suffisamment proche de x*.
n’ayant pas accés a x*, on a en pratique recours a I'un des deux critére suivants :
— ons’arréte dés que ||xx 1 — xi|| < €:1'incrément entre deux itération n’est plus significatif;
— oudes que || Vf(xx)|| < €: xi est alors presque un point critique.
Cependant, aucun de ces critere ne garantit que xj est proche de la cible x*.

4.1 Meéthode de relaxation

Une premiere méthode, naive, consiste a explorer successivement toutes les directions : vy =
ej, ol jr = 1+ (k mod d). A chaque étape, on va ensuite chercher a minimiser f le long de
cette direction. On définit ainsi

px = argmin, g f(xx — tog),

sous réserve que ce minimum existe. Remarquons que, étant défini comme un argmin, gy satisfait

(Vf(xk — pxvx), vx) = 0. (4.1)

Par construction, la méthode de relaxation est une méthode de descente, c’est & dire que f
est décroissante le long de la suite (xi ). On peut alors espérer que cette suite soit bien une suite
minimisante. C’est le cas sous de bonnes hypotheses.

Theorem 97. Supposons que f est de classe C! et a-convexe. Alors elle admet un unique minimum x* et
pour toute condition initiale xo € RY, la méthode de relaxation converge vers ce minimunm.

Application 98 (Méthode de Gauss-Seidel). Dans le cas de la fonctionnelle f(x) = (Ax,x) — (b, x),
les hypothese du théoréme sont satisfaites si et seulement si A € S (IR). Dans ce cas particulier, le pas
Ok est explicite

o = (Axy, o) — (b, vg)
<Avk/ Uk)
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Autrement dit, si v, = iy, alors x1(<21 = x,((i) pour tout i # iy et x]((lf;)l vérifie

()
Za,ojka = bj,.
)

C’est la méthode de Gauss-Seidel! Le vitesse de convergence de cette méthode est géométrique de raison
p((L+ D)~'U) avec A = L+ D + U la décomposition en partie triangulaire supérieure, inférieure et
diagonale t p le rayon spectral.

4.2 Méthodes de gradient

Un des inconvénient de la méthode précédente est de devoir a chaque étape, résoudre un
probleme d’optimisation (unidimensionnel, certes). De maniére général, on ne pourra obtenir
qu’une approximation du pas pi. De plus, le cette de recherche de py peut étre couteuse. L'idée
des méthodes de gradient consiste a choisir une direction de descente plus fine : la direction de
plus forte pente. D’apres la formule de Taylor-Young, on a

f(xks1) = f(xx) — pr(V f(xx), vx) + o(rhoy).

On cherche alors une direction v, de sorte que (V f(x), vy) soit strictement positive et le plus
grand possible. D'apres 'inégalité de Cauchy-Schwarz, I’ meilleur choix est v = V f(x).

421 Méthode de gradient a pas fixe

La méthode de gradient a pas fixe est la méthode naive. Elle consiste a itérer avec la direction
optimale avec un pas p > 0 indépendant de k :

X1 = Xk — pV f (xk).

Theorem 99. Supposons que f est de classe C* et a-convexe. Alors il existe p* > 0 tel que pour tout
0 < p < p* et pour toute condition initiale xg € R?, la méthode de gradient & pas fixe converge vers
l'unique minimum global de f.

Dans ce cas la convergence est géométrique de raison dépendant de p, ce qui incite & choisir p
le plus grand possible. Le probléme c’est que 1’on ne connait pas p*. De plus, cette méthode n’est
pas une méthode de descente.

4.2.2 Méthode de gradient a pas optimal

Afin de palier a ce dernier probleme, la méthode de gradient a pas optimale garde la direction
optimal v, = V f(xx) tout en recherchant le pas de descente optimal

px = argmin, g f(xx — tog).
En particulier, la relation (4.1) se réécrit : (vx,1,v;) = 0 : deux direction de descentes successive

sont orthogonales.

Theorem 100. Supposons que f est de classe C' et a-convexe. Alors pour toute condition initiale xg € RY,
la méthode de gradient a pas optimal converge vers I'unique minimum de f.

On peut affaiblir 'hypothese de forte convexité, qui sert essentiellement a garantir I'existence
d’un unique minimum global. Si f admet un minimum local x* et qu’elle est a-convexe sur une
boule B(x*,7) (par exemple si df (x*) = 0 et d2f(x*) € S (R)) alors les méthodes précédentes
convergeront vers x* pour toute condition initiale dans B(x*,r).

Pour la fonctionnelle quadratique, le pas est toujours explicite et vaut

o — o2
<Avk/ Z]k>

On peut méme calculer la vitesse de convergence de maniére explicite.
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Theorem 101. Pour tout xg € R% et k > 1

el < x(8) (21 g e

ot k(A) désigne le conditionnement de A.
La démonstration de ce théoréme repose sur une inégalité de convexité.

Lemme 102 (Inégalité de Kantorovitch). Pour tout x € RY, ona

1 2
Jl* < (Ax, x) (A%, 2) < 5 (k(A)2 4 x(A)72) 2
Remarquons qu’une estimation grossiere, sans utiliser la convexité, donnerait
K(A)Hlx[* < (Ax, x) (A7, x) < x(A)[x]|*.

Ce résultat suggere que lorsque la matrice est mal conditionnée, I’algorithme ne converge pas
rapidement. On peut s’en convaincre en considérant la fonction f(x,y) = x? + 100y?, associé
a une matrice de conditionnement 100. Dans ce cas, les lignes de niveau sont trés aplaties et la
direction du gradient peut étre quasi-orthogonal a la direction x* — x. L'algorithme avance alors
par trés petit pas dans des directions peu avantageuses.

4.2.3 Méthode du gradient a pas conjugué

Le choix du gradient comme direction de descente n’est un choix optimal que localement. Le
cas de la fonction f précédente le montre clairement. Une maniére de d’améliorer la performance
de l'algorithme consiste a utiliser une direction optimal plus global, en gardant en mémoire les
directions utilisées précédemment. La descente de gradient a pas conjuguée procede de cette ma-
niere. A 1’étape k, on choisit simultanément la direction et le pas wy = pzvy de sorte que

i) = min f(x +w), ot Fe = Vect{Vf(xo),..., Vf(xe)},

L'inégalité de Euler et le fait que Fy soit un s.e.v, impliquent que (Vf(xy41), w) = 0 pour tout
w € Fy. En particulier, la famille (Vf(xy)) est une famille orthogonale. Cela signifie qu’a I'étape
k, on optimise sur un espace de dimension k + 1 et que x;_1 = x*. Cette méthode est exacte. En
revanche chaque itération demande de résoudre un probleme d’optimisation plus complexe.
Dans le cas particulier de la fonctionnelle quadratique f(x) = (Ax, x) — (b, x), pour tout i < k,
ona
(Awg,wi) = (Vf(xp +1) = Vf(xg), wi) =0.

Ainsi, la famille (wy ) est orthogonal pour le produit scalaire associé ) A. La résolution se fait donc
explicitement :
— On construit v, en utilisant la méthode de Gram-Schmidt, on détermine une direction v,
dans F, orthogonal aux wy, ..., wy_1

o = Vf(n) - TSR,

— On détermine le pas optimal en minimisant t — f (x; — tv)

o — (Vf(xk), vk)
FT (Ao

Cette méthode a une vitesse de convergence meilleure que la descente a pas optimal :

k
=31 < /x(4) (%) o — [,

mais toujours sensible au conditionnement.
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4.3 Meéthodes newtoniennes

Les méthodes précédente tendent a faire décroitre la fonction objectif entre deux itérations.
Une démarche différente consiste a rechercher un point critique de la fonction objectif en utilisant
une méthode de recherche de zéro, appliqué a la différentielle de la fonction objectif.

Theorem 103 (Méthode de Newton). Soit g : RY — R, de classe C?, x* € R tel que g(x*) = O et
dg(x*) € GL4(R). Pour xo € RY, on définit la suite récurrente

-1
Xpy1 = X —dg(xr) g (xx)-
Alors, il existe r > 0, tel que pour tout xo € B(x*,r), la suite converge vers x*, a vitesse quadratique.

Application 104. Dans le cadre de la minimisation de f R? — R, a-convexe, de classe C3, en appliquant
la méthode précédente a ¢ = V f, on obtient une suite qui converge vers l'unique minimum.

La convergence quadratique signifie que le nombre de chiffres significatifs exactes double a
chaque itération. C’est beaucoup plus rapide que les méthode de gradient mais cela demande
plus de régularité. En revanche, il faut a chaque étape inverser une matrice de taille 4, ou plus
intelligemment, résoudre le systeme dg(xg) (xx11 — ) = —g(x%)-

Un autre inconvénient de cette méthode est qu’il faut avoir acces a la différentielle de g. Une
maniére de palier a ce probléme est d’utiliser une méthode de type méthode de la sécante. Cette
méthode de dimension 1 s’écrit

Xk — Xk—1

Xk+1 = Xk — mf(xk)-

Elle peut étre généralisée en dimension supérieure. Il faut alors déterminer une suite de ma-
trice By telle que By (xx — xx_1) = f(xx) — f(xx_1), systéme sous-déterminé. La méthode de Broy-
den consiste a chercher une telle suite vérifiant Byv = By_1v pour tout v L (xx — x;_1. Il existe
alors une expression explicite de B, !en fonction de B ,:_11 Cette méthode converge a vitesse super-
linéaire (mais pas a vitesse quadratique).

Dans certains cas, on peut aussi avoir un candidat naturel pour approximer dg—!. C’est le cas
de la méthode quasi-newtonienne suivante.

Application 105 ([4]). Soit A € S;’ (R). On cherche a approcher A~ en minimisant la fonction
f:XeMy(R)— %Tr(AXXt) - Tr(X).

Le probleme, pour appliquer la méthode de Newton, c’est que dg(X) = A et ainsi, inverser dg c’est déja
résoudre le probleme. En revanche, si l'on a une suite (Xy); qui converge vers A~ alors elle converge vers
dg~1. Cela suggere la méthode quasi-newtonienne suivante :

X1 = X — Xp(AXg —id).

On peut alors montrer qu’elle converge pour la condition initiale Xo = rA", avec r (explicitement) suffi-
samment petit.

4.4 Algorithmes sous contraintes
Les méthodes de résolution algorithmique des probleme de minimisation sans contraintes ne

se généralise pas nécessairement bien aux problemes sous contraintes. Dans ces cas, deux straté-
gies permettent une généralisation : la projection et la pénalisation.
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4.4.1 Méthode de relaxation sur un pavé

La méthode naive de relaxation se généralise naturellement sur les pavés. On suppose ici que
K = TT[a;, b;], non nécessairement borné. On peut alors définir la suite récurrente x; 1 = Xy — PxVk
de la maniére suivante : vy = e¢; avec i, = k + 1[d] et

pr = argmin, . f(xe —toy), I = [Xl(jk) — bik,x,ﬁik) —a;].

Theorem 106. Si K est un pavé et f est de classe C! et fortement convexe, alors la méthode de relaxation
converge pour toute condition initiale.

Contre-exemple 107. Si K n'est pas un pavé, la convergence n’est pas garantie. Par exemple, pour K =
{x+y>2} CR? f(x,y) = x> +y*et (x0,y0) = (2,2) alors la suite stationne deés la premiere itération
sur (0,2) qui n'est pas le minimum de f, en I'occurrence (1,1).

4.4.2 Méthode de projection

On suppose que K est convexe fermé non vide et f convexe sur K. Alors x* est un minimum
de f, si et seulement si on a (Vf(x*),y — x*) > 0 pour tout y € K. Par caractérisation de la
projection, x* est un minimum si et seulement si x* = g (x* — pV f(x*). On est ainsi ramené a
rechercher un point fixe. On définit alors une méthode de type itéré de Picard :

X0 € K, xpy1 = 7k (e — pVf(xi)) -
Cette méthode généralise la méthode de gradient a pas fixe.

Theorem 108. On suppose K convexe fermé non vide, f : K — R fortement convexe de gradient locale-
ment lipschitzien. Alors il existe p* > 0 tel que pour tout 0 < p < p*, la méthode converge vers I'unique
minimum.

En pratique, K est un pavé et la projection se calcul facilement.

4.4.3 Méthode de pénalisation

On cherche un méthode applicable lorsque K n’est pas un pavé. L'idée est de transformé le
probleme de minimisation sous contrainte en un probleme sans contrainte en modifiant la fonc-
tion objectif. Pour cela, on va perturber la fonction par la distance a K.

Proposition 109. Soit K C R non vide, f : RY — R L-lipschitzienne. Pour R > 0, on pose f : x €
R? + f(x) + Rd(x, K).

(i) SiR > L et si x* est un minimum global de f sur K alors x* est un minimum global de fR.

(ii) Si R > L et K fermé, alors tout minimum de fg est dans K.
Theorem 110. Soit K convexe fermé non vide et f : RY — R fortement convexe. Soit ¢ : R* — R,

convexe, telle que K = ¢~ 1(0). Alors pour tout k > 1 f = k + ko admet un unique minimum x; € RY
et xp — x* = argming f.

Application 111 (Programmation convexe). Soit f : R? — R fortement convexe et K = {g; < 0}
avec g; des contrainte convexes. La fonction ¢(x) = Y max(g;(x),0) convient.
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