2. Tribus et Mesures

Tribus.

Exercice 1. Soit $E = \{a, b, c\}$ un ensemble à 3 éléments. Donner $\mathcal{P}(E)$ et l'ensemble des tribus de E.

Exercice 2. Pour E un ensemble, donner des conditions pour que les classes suivantes soient des tribus :

$$\{\emptyset, E\}$$
, $\mathcal{P}(E)$, $\{\emptyset, \{x\}, E\}$, $\{\emptyset, \{x\}, \{x\}^c, E\}$ pour $x \in E$, les parties finies de E , les parties finies ou cofinies de E .

Exercice 3 (Tribu image réciproque et tribu image). Soient E, F deux ensembles et $f: E \to F$ une application. Soient \mathcal{A} et \mathcal{B} tribus sur E et F respectivement.

- (i) Montrer que $f^{-1}(\mathcal{B}) = \{f^{-1}(B), B \in \mathcal{B}\}$ est une tribu sur E.
- (ii) Justifier que f(A) n'est en général pas une tribu sur F.
- (iii) Montrer que $\{B, f^{-1}(B) \in A\}$ est une tribu sur F.

Mesures.

Exercice 4. Soient (E, A) un espace mesurable et $a \in E$. Montrer que la masse de Dirac en a, δ_a , définit bien une mesure.

Exercice 5. Soit μ une mesure sur (E, \mathcal{A}) espace mesurable. Soit $(A_n)_{n \in \mathbb{N}}$ une suite de \mathcal{A} . Montrer que :

- (i) si $(A_n)_{n\in\mathbb{N}}$ est une suite croissante, alors $\lim_{n\to\infty}\mu(A_n)=\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)$.
- (ii) si $(A_n)_{n\in\mathbb{N}}$ est une suite décroissante telle que $\exists n_0 \in \mathbb{N}, \ \mu(A_{n_0}) < +\infty, \ \text{alors} \lim_{n \to \infty} \mu(A_n) = \mu\left(\bigcap_{n \in \mathbb{N}} A_n\right).$

Exercice 6. Soit (E, \mathcal{A}) un espace mesurable. Soit $\mu : \mathcal{A} \to \overline{\mathbb{R}}_+$ une application vérifiant :

- (i) $\mu(\emptyset) = 0$.
- (ii) si $A, B \in \mathcal{A}$ tels que $A \cap B = \emptyset$, alors $\mu(A \sqcup B) = \mu(A) + \mu(B)$,
- (iii) pour toute suite $(A_n)_{n\in\mathbb{N}}$, croissante pour l'inclusion, $\lim_{n\to\infty}\mu(A_n)=\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)$.

Montrer que μ est une mesure sur (E, A).

Exercice 7. Soit E un ensemble. Soit (A_n) une suite de sous-ensembles de E.

(i) Interpréter les ensembles suivants :

$$\liminf_{n \to \infty} A_n = \bigcup_{n \ge 0} \bigcap_{k \ge n} A_k \text{ et } \limsup_{n \to \infty} A_n = \bigcap_{n \ge 0} \bigcup_{k \ge n} A_k.$$

(ii) Soit (E, \mathcal{A}, μ) un espace mesuré. Soit $(A_n)_{n \in \mathbb{N}} \in \mathcal{A}^{\mathbb{N}}$. Montrer que :

$$\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n) \ \text{ et } \ \mu\left(\bigcup_{n\in\mathbb{N}}A_n\right)<+\infty \implies \mu\left(\limsup_{n\to\infty}A_n\right)\geq \limsup_{n\to\infty}\mu(A_n).$$

(iii) Montrer le premier lemme de Borel-Cantelli :

$$\sum_{n=0}^{+\infty} \mu(A_n) < +\infty \implies \mu\left(\limsup_{n \to \infty} A_n\right) = 0.$$

(iv) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels. Que dire de l'ensemble des points $x\in\mathbb{R}$ tels que $\sum_{n=0}^{+\infty}\frac{3^{-n}}{|x_n-x|}<+\infty$.

Exercice 8. Soit μ une mesure finie sur (E, \mathcal{A}) espace mesurable. Soit (A_n) une suite d'éléments de \mathcal{A} telle que $\mu(A_n) = \mu(E)$ pour tout n. Montrer que $\mu(\bigcap A_n) = \mu(E)$. Est-ce encore vrai si l'on ne suppose plus la mesure finie?

Exercice 9 (Mesure régulière). Soit (X, d) un espace métrique. Soit μ une mesure finie sur la tribu borélienne $\mathcal{B}(X)$. Montrer que tout borélien A de X vérifie la propriété de régularité suivante :

$$\mu(A) = \inf\{\mu(\Omega), A \subset \Omega, \Omega \text{ ouvert}\} = \sup\{\mu(F), F \subset A, F \text{ ferm\'e}\}.$$

On dit que la mesure μ est régulière. (Ainsi, toute mesure finie sur un espace métrique est régulière.)

Exercice 10 (Suite de mesures). Soient (E, A) un espace mesurable et (μ_n) une suite de mesures sur (E, A).

- (i) On suppose que : $\forall A \in \mathcal{A}, \ \forall n \in \mathbb{N}, \ \mu_n(A) \leq \mu_{n+1}(A)$. Montrer que $\mu = \lim_{n \to \infty} \mu_n$ définit une mesure sur (E, \mathcal{A}) .
- (ii) Trouver une suite de mesures décroissante dont la limite n'est plus une mesure.