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Twisted intertwining and Poincaré inequality

@ M Riemannian manifold (smooth, complete);
e V: M — R a potential (smooth);

o u(dx) = e”V¥dx a probability measure (up to renormalisation).




Twisted intertwining and Poincaré inequality

Framework

@ M Riemannian manifold (smooth, complete);
e V: M — R a potential (smooth);

o u(dx) = e”V¥dx a probability measure (up to renormalisation).

v
Goals

@ Obtain functional inequalities;

o Understand the underlying stochastic processes.

A\

Poincaré : 1
Var, () < f/ df|? du.
u(f) 0 ]Rn| = dp



Twisted intertwining and Poincaré inequality

Our tool : intertwining of semi-groups :
P semi-group on functions, Q semi-group on 1-forms
P and Q are intertwined by the differential d if for all f € C®(M),

dPf = Qdf.



Twisted intertwining and Poincaré inequality

Our tool : intertwining of semi-groups :
P semi-group on functions, Q semi-group on 1-forms
P and Q are intertwined by the differential d if for all f € C®(M),

dPf = Qdf.

Assumptions : ergodicity i.e P.f — u(f) as.

Cov,(f,g) = /0+°° /M (dP(f), dg) dy dt.

@ When is this true?

@ How can we extend it?




Twisted intertwining and Poincaré inequality Intertwining - The three levels

Ground floor - Generators

Generator on C®(M) :

02 oV o

L is symmetric with respect to y :

[ Lergdn = [(df.dg) du = [ () dp.
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Twisted intertwining and Poincaré inequality Intertwining - The three levels

Ground floor - Generators

Generator on C®(M) :

02 oV o

L is symmetric with respect to y :

[ Lergdn = [(df.dg) du = [ () dp.

Intertwining
dLf = LW df.

LW differential operator on 1-forms. Symmetric, non-positive.

LW =1/-M,

o L/ symmetric non-positive
@ "matrix" potential M = Ric+V?V.



Twisted intertwining and Poincaré inequality Intertwining - The three levels

Basement - Stochastic processes

X* . diffusion with generator L,
starting from x

FX) 2 ) + /Ot LF(Xs)ds.

Example : L = A for Brownian
motion
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Twisted intertwining and Poincaré inequality Intertwining - The three levels

Basement - Stochastic processes

X* . diffusion with generator L,

starting from x W . deformed parallel translation

Diffusion on TM, above X*
(m) t
f(Xe) = f(X)+/O Lf(Xs)ds. DW, = — M W,dt.

Example : L = A for Brownian
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Twisted intertwining and Poincaré inequality

Intertwining - The three levels

Basement - Stochastic processes

X* . diffusion with generator L,
starting from x

FX) 2 ) + /Ot LF(Xs)ds.

Example : L = A for Brownian
motion

W : deformed parallel translation
Diffusion on TM, above X*

DWt - _M Wtdt

Generator (on 1-forms) : LW,
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Twisted intertwining and Poincaré inequality Intertwining - The three levels

Basement - Stochastic processes

X* . diffusion with generator L, _
starting from x W . deformed parallel translation

Diffusion on TM, above X*

m) ¢
FX0) @ £ +/0 LF(Xs)ds. DW, — —MW,dt.

Example : L = A for Brownian Generator (on 1-forms) : LW,
motion

Intertwining

W is the spacial derivative of an appropriate flow X :

Wt = VXt

6/35



Twisted intertwining and Poincaré inequality Intertwining - The three levels

Upper floor - Semi-groups

L generates a C°-semi-group

P.f(x) = E[f( X)Ltz ].

Intertwining?

More assumptions are needed... even for the definition of the
CO-semi-group associated to L' (bounded forms are NOT bounded).




Twisted intertwining and Poincaré inequality Intertwining - The three levels

Upper floor - Semi-groups

L generates a C°-semi-group

P.f(x) = E[f( X)Ltz ].

Intertwining?

More assumptions are needed... even for the definition of the
CO-semi-group associated to L' (bounded forms are NOT bounded).

LW generates a [2-semi-groups Q.

Intertwining?

More assumptions are still needed...




Twisted intertwining and Poincaré inequality Bakry-Emery criterion

An assumption on the potential M :

Definition (Bakry-Emery criterion)

We assume that M = Ric +V?2V is uniformly bounded from below :

p = inf {smallest eigenvalue of M} > —o0.
xeM




Twisted intertwining and Poincaré inequality Bakry-Emery criterion

An assumption on the potential M :

Definition (Bakry-Emery criterion)
We assume that M = Ric +V?2V is uniformly bounded from below :

p = inf {smallest eigenvalue of M} > —o0.
xeM

Proposition
Under (BE), for all x € M, for all v € T, M, for all t > 0, we have :

| A\

IWe(v)| < e Pflv|a.s

.

— C%semi-group Q; for continuous bounded 1-forms « :
Q:(a) = E [(a, We)Teer],
— Commutation formula :

dP.(f) = Q¢(df).



Twisted intertwining and Poincaré inequality Bakry-Emery criterion

If p > 0, then for all f, g € CX(M), we have:

1
Covy(f.g) < 5|Idf||m||dg||1-




Twisted intertwining and Poincaré inequality Twisting

In R", V(x) = |x|*/4. M =2x.xt + |x|?id > 0. But not > kid > 0!

problem
The intertwining by d does not lead to Poincaré inequality.
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Twisted intertwining and Poincaré inequality Twisting

In R", V(x) = |x|*/4. M =2x.xt + |x|?id > 0. But not > kid > 0!

problem
The intertwining by d does not lead to Poincaré inequality.

Replace d by (B*)~'d, with B: x € M — B, € GL(TM), smooth.

Metric : (-,-)g = (B~1., B71.).

Cov,(f.g) = /Om /M (B*)"1dP,(f), (B*)"'dg) s du dt

10/35



Twisted intertwining and Poincaré inequality Twisting

Twisted levels

Twisted deformed parallel translation above X* :
WE = B(X;)W:B71(x).

Twisted generator :
LW'B — (B*)—ILWB*

Intertwinings?
(B*)~ldLf = LW:B(B*)Ldf.

LW'B essentially self-adjoint : L2-semi-group Q&.

With boundedness condition (on Mg but not only) : C%-semi-group but no
intertwining proved.

11/35



Twisted intertwining and Poincaré inequality Twisting

Decomposition of the twisted generator

Recall ;LW = L/ — M.

o L/ symmetric non-positive
e M potential

LW'B — L// +2(B*)71VB*V+ (B*)flL//(B*) o (B*)flMB*

Ll —Ms
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Twisted intertwining and Poincaré inequality Twisting

Decomposition of the twisted generator

Recall ;LW = L/ — M.

o L/ symmetric non-positive
e M potential

LW'B — L// +2(B*)71VB*V+ (B*)flL//(B*) o (B*)flMB*

Ll —Ms

Mg is the drift of W5

"differential operator" + "potential"

heuristic

Objections ?
No linked known process. No real comprehension of where it comes from. |




Twisted intertwining and Poincaré inequality Twisting

Proposition

For all 1-forms &, B, we have :
| ((~thn.p), du= [ (Va,VB)adp— [ (8"Va,B(5'B))dy

where B = ((VB*)(B*)™1)" — (VB*)(B*)L.

| A

Corollary

If B=0, then —L{é is symmetric non-negative.

B(x) = b(x)idT.pm. Then Mg = (B*)"LMB* — b~1L(b)id.

13 /35



Twisted intertwining and Poincaré inequality Symmetric case

Intertwining

B=0: L{é symmetric, non-positive and Mg symmetric.

ps = inf {smallest eigenvalue of B*Mg(B*)"'}.
XeE
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Twisted intertwining and Poincaré inequality Symmetric case

Intertwining

B=0: L{é symmetric, non-positive and Mg symmetric.

ps = inf {smallest eigenvalue of B*Mg(B*)"'}.
XeE

Theorem (H., 2019)

If B=0 and —co < pg, then for all f € CZ(M),
(B)'Pe(F) = QF ((B°)d).

(Sketch of the proof)

9.F = LWEF
F(-,0) =G € (B, p)

— Uniqueness of strong solutions

14 /35



Twisted intertwining and Poincaré inequality Symmetric case

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)
Assume that B = 0 and that pg > 0, then for every f € CZ(M), we have :

Var, (f) < /M (df, ((B*Mg(B*)™1) " df) dy.
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Twisted intertwining and Poincaré inequality Symmetric case

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)
Assume that B = 0 and that pg > 0, then for every f € CZ(M), we have :

Var, (f) < /M (df, ((B*/\/IB(B*)*)’1 df ) du.

Corollary (Poincaré inequality)

Assuming that B = 0 and that pg is positive, for all f € CZ(M), we have

1
Va1 <7/ df 2 d,
arﬂ()_pB M| |“du

15/35



Twisted intertwining and Poincaré inequality General case

The condition B = 0 is not stable under perturbations....
But the results seems stable under perturbations.
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But the results seems stable under perturbations.
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Twisted intertwining and Poincaré inequality General case

The condition B = 0 is not stable under perturbations....
But the results seems stable under perturbations.

: - / ' i / ' )
L7hw, d B du + B*Vu«, B(B*n)) d
/M<B >B H M| | H M< ( )> H

1 2
—_ [ |B*Va— BB d / B*a, NgB*a) d
/M‘ « 5 x W+ M( a, NgB*w) du
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Twisted intertwining and Poincaré inequality General case

The condition B = 0 is not stable under perturbations....
But the results seems stable under perturbations.

: - / ' i / ' )
L7hw, du = B du + B*Vu«, B(B*n)) d
/M<B >B H M| | H M< ( )> H

1 2
—_ [ |B*Va— BB d / B*a, NgB*a) d
/M‘ « 5 x W+ M( a, NgB*w) du

Ng(x) = %Bt(x) .B(x) € End(T*M).

~ . . * *\—1\)\3
0B leglf/, {smallest eigenvalue of (B*Mg(B*)™"))" — NB}.

16 /35



Twisted intertwining and Poincaré inequality General case

Theorem (H., 2019)

Assume that (B*Mg(B*)~1))® — (1 +¢)Ng is bounded from below for
some ¢ > 0. Then the semi-groups P and Q® are intertwined by (B*)~d,
i.e for every f € CX®(M) and t > 0 we have :

(B°)LdP.f = QF (((B*)"df).
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Twisted intertwining and Poincaré inequality General case

Theorem (H., 2019)

Assume that (B*Mg(B*)~1))® — (1 +¢)Ng is bounded from below for
some ¢ > 0. Then the semi-groups P and Q® are intertwined by (B*)~d,
i.e for every f € CX®(M) and t > 0 we have :

(B°)LdP.f = QF (((B*)"df).

Theorem (Poincaré inequality - H., 2019)

Assume that for some e > 0, (B*Mg(B*)~1))® — (1 +¢)Ng is bounded
from below and that pg is positive. Then for all f € CX®(M), we have :

1
Vere f<~—/ df 12 du.
() < = [ ot o

17/35



Twisted intertwining and Poincaré inequality Application - Cauchy measures

In R?, 02(x) =1+ |x]%. p>1
Measure :
dug = Z(c®) Pdx

Generator :
Lﬁ = (72(X)AE — 2([3 — 1)X.VE



Twisted intertwining and Poincaré inequality Application - Cauchy measures

In R?, 02(x) =1+ |x]%. p>1
Measure :
dug = Z(c®) Pdx

Generator :
Lﬁ = (72(X)AE — 2([3 — 1)X.VE
Metric change :
ds? — dx? + dx3
72(x)
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Twisted intertwining and Poincaré inequality Application - Cauchy measures

InR?, 02(x) =1+ |x|2. B>1
Measure :
dug = Z(c®) Pdx

Generator :
Lﬁ = (72(X)AE — 2([3 — 1)X.VE

Metric change :
ds? — dx? + dx3
72(x)

Appropriate polar coordinates :
(x1, %) = (sinh(r)cos(f),sinh(r)sin(8)), ds*> = dr?+ th(r)>d6?

dup = Z cosh™2(F=1) dvol .

Potential :
V(r) =2(B—1)In(cosh(r)).

18 /35
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Twisted intertwining and Poincaré inequality Application - Cauchy measures

Bakry-Emery?

2
M=t
o
Loss of strict convexity at oo.
Twist :
B=¢eVid.

pe(r) =2p—4e(p—1) + [4e(1—¢)(B—1)* — (2B —4e(p—1))] tanh?(r).

20 /35



Twisted intertwining and Poincaré inequality Application - Cauchy measures

The spectral gap of the operator Lg is bounded from below by :

(B—1)2 if 1<B<1++2
Al(Lﬁ)Z{z (B—12—1 if 1+v2<p

Bobkov-Ledoux (2009) A1 (Lg) >

5 B> 2.

(,/1+ﬁ 1+\/ﬁ71)
Nguyen (2013) A1 (Lg) =2(B—1), B > 3.

Bonnefont-Joulin-Ma (2016)

MLg)= (B-12 if 1<p<if
B <M(lg)< 2(B—1) if 3HBE<p

21/35



Brenier-Schrédinger problem

© Brenier-Schrédinger problem
@ A fluid evolution problem
@ Kinetic properties
@ Existence of solutions



Brenier-Schrédinger problem A fluid evolution problem

Euler equations - Newton principle :

dv+Vywv+Vp=0, (t,x)e€[0,1]xM
div(v) =0, (t,.x) € [0,1] x M
(v,v) =0

v(0,-) = w, xeM
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Brenier-Schrédinger problem A fluid evolution problem

Euler equations - Newton principle :

dv+Vywv+Vp=0, (t,x)e€[0,1]xM
div(v) =0, (t,.x) € [0,1] x M
(v,v) =0

v(0,-) = w, xeM

4

Arnold minimisation problem - least action principle ('66) :

/[0 1M |atqt(x)|2 dtdx — min; [gqr € Gyo, VO < t < 1],q0 =id, g1 = h,
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Brenier-Schrédinger problem A fluid evolution problem

Euler equations - Newton principle :

dev+Vyw+Vp=0, (t,x)el0,1]xM
div(v) =0, (t,.x) € [0,1] x M
(v,v) =0
v(0,-) = w, xeM

4

Arnold minimisation problem - least action principle ('66) :

/[0 e 10:q¢(x) |2 dtdx — min; [q: € Gyol, YO < t < 1], g0 = id, q1 = h,
1]

4

Brenier's relaxation ('89):
1
Eq [/ | X¢|? dt} — min; @ € P(Q), [Q: =vol,V0 <t <1], Q1 =TT,
0

23 /35



Brenier-Schrédinger problem A fluid evolution problem

Navier-Stokes Equations :

drv+Vyv—alv+Vp=0, (tx)e€[0,1]xM
div(v) =0, (t,x) €[0,1] x M
(v,v) =0, (t,x) €[0,1] x oM
v(0,-) = v, xeM
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Brenier-Schrédinger problem A fluid evolution problem

Navier-Stokes Equations :

drv+Vyv—alv+Vp=0, (tx)e€[0,1]xM
div(v) =0, (t,.x) €[0,1] x M
(v,v) =0, (t,x) €[0,1] x oM
v(0,-) = v, xeM

viscosity term [J (Hodge - De Rahm Laplacian) : suggests Brownian
processes.
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Brenier-Schrédinger problem A fluid evolution problem

Navier-Stokes Equations :

drv+Vyv—alv+Vp=0, (tx)e€[0,1]xM
div(v) =0, (t,.x) €[0,1] x M
(v,v) =0, (t,x) €[0,1] x oM
v(0,-) = v, xeM

viscosity term [J (Hodge - De Rahm Laplacian) : suggests Brownian
processes.

Notion of velocity? Stochastic velocities :

N T
v,= lim —Ep [XtXt+h/\Tt|X[0't]] (forward)
h—0+ h

P
Vo= lim —IEP [xt Wt?tyx[tl]} (backward)

24 /35



Brenier-Schrédinger problem A fluid evolution problem

Link : stochastic kinetic energy = entropy.
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Brenier-Schrédinger problem A fluid evolution problem

Link : stochastic kinetic energy = entropy.

framework
@ M compact manifold with boundary

@ R law of the reflected Brownian motion

Definition (Brenier-Schrédinger problem)

H(Q|R) — min, Q € P(Q), [Q¢ = ur, Vt € T], Qu1 = 1. (BS)

v

@ Link between solutions of both problems.

@ Existence of solutions.

25/35



Brenier-Schrédinger problem Kinetic properties

Definition (Regular solution)

P =exp (ﬂ(Xo.Xl) + ) 0:(X) + /Tpt(Xt) dt> R,

seS

such that well-defined quantities and sufficient regularity.
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P =exp (ﬂ(Xo.Xl) + ) 0:(X) + /Tpt(Xt) dt> R,

seS

such that well-defined quantities and sufficient regularity.

Question : Does a velocity satisfies Navier-Stokes equations.
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Brenier-Schrédinger problem Kinetic properties

Definition (Regular solution)

P =exp (ﬂ(Xo.Xl) + ) 0:(X) + /Tpt(Xt) dt> R,

seS

such that well-defined quantities and sufficient regularity.

Question : Does a velocity satisfies Navier-Stokes equations.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) for
M=R"or M=T".

Contributions : Manifold framework. Boundary behaviour

26 /35



Brenier-Schrédinger problem Kinetic properties

Theorem (Garcia Zelada, H., 2020)

For Py almost all y € M, the backward stochastic velocity V' satisfies :

f (at + V;y) V= SD v —17(t)Vap, 0<t<1l,t¢S,zeM,
T/yt — T/yt*:9t<-)v te S, ze M,
(V.v(z)) =0, zeam,
T/yoz —Vﬂ(.,y), ze M.
(1)

Furthermore, there exist a scalar potential ¢¥ satisfying a second order
Hamilton-Jacobi equation, such that

Vi (X) = —aVgXi(X,), P-as. (2))

27 /35



Brenier-Schrédinger problem Kinetic properties

@ As in IR", the forward velocity does not suit.
@ Impermeability condition satisfied.
@ Incompressibility is not reached.
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Brenier-Schrédinger problem Kinetic properties

@ As in IR", the forward velocity does not suit.
@ Impermeability condition satisfied.
@ Incompressibility is not reached.

[

Vi (Z) = IE:P |:X(‘)/_\t |X1_- = Z:| and Vt (Z) = ]EP |:/_V)<1t ‘Xt = Z:| .

Theorem (Garcia Zelada, H., 2020)

Assuming that T = [0, 1], the current velocity v£, satisfies the continuity
equation

at]/lt aF diV(;utva,) = 0.

But does not satisfy Navier-Stokes equation.
28 /35



Brenier-Schrédinger problem Existence of solutions

H(Q|R) — min, Q € P(Q), [Q: =vol, Vt € [0,1]], Q1 = . (BS)
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Brenier-Schrédinger problem Existence of solutions

H(Q|R) — min, Q € P(Q), [Q: =vol, Vt € [0,1]], Q1 = . (BS)

Method : (Baradat, Léonard, 2020) If there exists a path measure Q such
that H(Q|R) < o0, Qt = ut, Vt € T and Qo1 = 7, then there exists a
unique solution.
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Brenier-Schrédinger problem Existence of solutions

H(Q|R) — min, Q € P(Q), [Q: =vol, Vt € [0,1]], Q1 = . (BS)

Method : (Baradat, Léonard, 2020) If there exists a path measure Q such
that H(Q|R) < o0, Qt = ut, Vt € T and Qo1 = 7, then there exists a
unique solution.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) M = T"
with the necessary and sufficient condition H(7t|Rp1) < .

29 /35



Brenier-Schrédinger problem Existence of solutions

Symmetric spaces

(M, g) compact Riemaniann manifold. G group of isometries. G ~ M
transitive.
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Brenier-Schrédinger problem Existence of solutions

Symmetric spaces

(M, g) compact Riemaniann manifold. G group of isometries. G ~ M
transitive.

Examples : 57, T".

Theorem (Garcia Zelada, H., 2020)

The Brenier-Schrédinger problem admits a unique solution if and only if
H(7T|R01) < 0.

30/35



Brenier-Schrédinger problem Existence of solutions

Quotient spaces

N = M/ G with M Riemanian manifold and G reflection group.
q : M — N quotient transport :

@ volume measure
@ Brownian motion to reflected Brownian motion

@ Path measures satisfying marginals and entropy conditions

Theorem (Garcia Zelada, H., 2020)

Let 7t be a probability measure on M X M with both marginals equal to
voly and such that H(7t|Rp1) < oo. If BSp » admits a solution, then
BSp,(gxq).n @dmits a solution. In particular, if Hy,» admits a solution for
every such 7, then Hy » admits a solution for every probability measure 7t
on N x N with both marginals equal to voly and such that

H(ﬁ'|:f\>01) < 00,

31/35



Brenier-Schrédinger problem Existence of solutions

Example - Hyper-rectangle

An n-dimensional rectangular box can be seen as quotient of a torus T".

o=

[

— Existence and uniqueness of solution if and only if finite entropy.

32/35



Brenier-Schrédinger problem Existence of solutions

Example - Equilateral triangle

An equilateral triangle can be seen as quotient space of the torus T?.

— Existence and uniqueness of solution if and only if finite entropy.

33/35



Brenier-Schrédinger problem Existence of solutions

Gaussian problem

H(P|R) — min; [P, = N'(0,1/4id), YO < t <1],Py =7 (BS,)

Theorem (Garcia Zelada, H., 2020)

The Brenier-Schrédinger problem (BS,,) admits a unique solution if and
only if H(7'C|R01) < 0.

34 /35



Brenier-Schrédinger problem Existence of solutions

Merci de votre attention.

35/35



	Twisted intertwining and Poincaré inequality
	Intertwining - The three levels
	Bakry-Émery criterion
	Twisting
	Symmetric case
	General case
	Application - Cauchy measures

	Brenier-Schrödinger problem
	A fluid evolution problem
	Kinetic properties
	Existence of solutions


