Stochastic calculus on manifold and application to functional inequalities

Baptiste Huguet
PhD defense
17 Décembre 2020

Mathématiques de B orde a u x
(1) Twisted intertwining and Poincaré inequality

- Intertwining - The three levels
- Bakry-Émery criterion
- Twisting
- Symmetric case
- General case
- Application - Cauchy measures

Framework

- M Riemannian manifold (smooth, complete);
- $V: M \rightarrow \mathbb{R}$ a potential (smooth);
- $\mu(d x)=e^{-V(x)} d x$ a probability measure (up to renormalisation).

Framework

- M Riemannian manifold (smooth, complete);
- $V: M \rightarrow \mathbb{R}$ a potential (smooth);
- $\mu(d x)=e^{-V(x)} d x$ a probability measure (up to renormalisation).

Goals

- Obtain functional inequalities;
- Understand the underlying stochastic processes.

Poincaré :

$$
\operatorname{Var}_{\mu}(f) \leq \frac{1}{\rho} \int_{\mathbb{R}^{n}}|d f|^{2} d \mu
$$

Our tool: intertwining of semi-groups :
\mathbf{P} semi-group on functions, \mathbf{Q} semi-group on 1-forms
\mathbf{P} and \mathbf{Q} are intertwined by the differential d if for all $f \in \mathcal{C}_{c}^{\infty}(M)$,

$$
d \mathbf{P} f=\mathbf{Q} d f
$$

Our tool: intertwining of semi-groups :
\mathbf{P} semi-group on functions, \mathbf{Q} semi-group on 1-forms
\mathbf{P} and \mathbf{Q} are intertwined by the differential d if for all $f \in \mathcal{C}_{c}^{\infty}(M)$,

$$
d \mathbf{P} f=\mathbf{Q} d f
$$

Assumptions: ergodicity i.e $\mathbf{P}_{t} f \rightarrow \mu(f)$ a.s.

$$
\operatorname{Cov}_{\mu}(f, g)=\int_{0}^{+\infty} \int_{M}\left\langle d \mathbf{P}_{t}(f), d g\right\rangle d \mu d t
$$

Questions

- When is this true?
- How can we extend it?

Ground floor - Generators

Generator on $\mathcal{C}^{\infty}(M)$:

$$
L=\Delta-\nabla V=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{i} \frac{\partial V}{\partial x_{i}} \frac{\partial}{\partial x_{i}} .
$$

L is symmetric with respect to μ :

$$
\int L(f) g d \mu=-\int\langle d f, d g\rangle d \mu=\int f L(g) d \mu .
$$

Ground floor - Generators

Generator on $\mathcal{C}^{\infty}(M)$:

$$
L=\Delta-\nabla V=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{i} \frac{\partial V}{\partial x_{i}} \frac{\partial}{\partial x_{i}} .
$$

L is symmetric with respect to μ :

$$
\int L(f) g d \mu=-\int\langle d f, d g\rangle d \mu=\int f L(g) d \mu
$$

Intertwining

$$
d L f=L^{W} d f .
$$

Ground floor - Generators

Generator on $\mathcal{C}^{\infty}(M)$:

$$
L=\Delta-\nabla V=\sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}}-\sum_{i} \frac{\partial V}{\partial x_{i}} \frac{\partial}{\partial x_{i}}
$$

L is symmetric with respect to μ :

$$
\int L(f) g d \mu=-\int\langle d f, d g\rangle d \mu=\int f L(g) d \mu
$$

Intertwining

$$
d L f=L^{W} d f .
$$

L^{W} differential operator on 1-forms. Symmetric, non-positive.

$$
L^{W}=L^{\prime \prime}-\mathcal{M}
$$

- L// symmetric non-positive
- "matrix" potential $\mathcal{M}=\operatorname{Ric}+\nabla^{2} V$.

Basement - Stochastic processes

X^{\times}: diffusion with generator L, starting from x

$$
f\left(X_{t}\right) \stackrel{(m)}{=} f(x)+\int_{0}^{t} L f\left(X_{s}\right) d s
$$

Example : $L=\Delta$ for Brownian motion

Basement - Stochastic processes

X^{x} : diffusion with generator L, starting from x

W : deformed parallel translation Diffusion on $T M$, above X^{\times}

$$
f\left(X_{t}\right) \stackrel{(m)}{=} f(x)+\int_{0}^{t} L f\left(X_{s}\right) d s
$$

$$
D W_{t}=-\mathcal{M} W_{t} d t
$$

Example : $L=\Delta$ for Brownian motion

Basement - Stochastic processes

X^{\times}: diffusion with generator L, starting from x

W : deformed parallel translation Diffusion on $T M$, above X^{\times}

$$
D W_{t}=-\mathcal{M} W_{t} d t
$$

Example : $L=\Delta$ for Brownian motion

Basement - Stochastic processes

X^{\times}: diffusion with generator L, starting from x

W : deformed parallel translation Diffusion on $T M$, above X^{\times}

$$
f\left(X_{t}\right) \stackrel{(m)}{=} f(x)+\int_{0}^{t} L f\left(X_{s}\right) d s
$$

Example : $L=\Delta$ for Brownian motion

Generator (on 1-forms) : L^{W}.

Intertwining

W is the spacial derivative of an appropriate flow X :

$$
W_{t}=\nabla X_{t}
$$

Upper floor - Semi-groups

L generates a \mathcal{C}^{0}-semi-group

$$
\mathbf{P}_{t} f(x)=\mathbb{E}\left[f\left(X_{t}^{x}\right) \mathbb{1}_{t<\tau_{x}}\right] .
$$

Intertwining?

More assumptions are needed... even for the definition of the \mathcal{C}^{0}-semi-group associated to L^{W} (bounded forms are NOT bounded).

Upper floor - Semi-groups

L generates a \mathcal{C}^{0}-semi-group

$$
\mathbf{P}_{t} f(x)=\mathbb{E}\left[f\left(X_{t}^{x}\right) \mathbb{1}_{t<\tau_{x}}\right] .
$$

Intertwining?

More assumptions are needed... even for the definition of the \mathcal{C}^{0}-semi-group associated to L^{W} (bounded forms are NOT bounded).
L^{W} generates a L^{2}-semi-groups \mathbf{Q}.

Intertwining?

More assumptions are still needed...

An assumption on the potential \mathcal{M} :

Definition (Bakry-Émery criterion)

We assume that $\mathcal{M}=\operatorname{Ric}+\nabla^{2} V$ is uniformly bounded from below :

$$
\rho=\inf _{x \in M}\{\text { smallest eigenvalue of } \mathcal{M}\}>-\infty .
$$

An assumption on the potential \mathcal{M} :

Definition (Bakry-Émery criterion)

We assume that $\mathcal{M}=\operatorname{Ric}+\nabla^{2} V$ is uniformly bounded from below :

$$
\rho=\inf _{x \in M}\{\text { smallest eigenvalue of } \mathcal{M}\}>-\infty
$$

Proposition

Under $(B E)$, for all $x \in M$, for all $v \in T_{x} M$, for all $t \geq 0$, we have :

$$
\left|W_{t}(v)\right| \leq e^{-\rho t}|v| \text { a.s }
$$

$\longrightarrow \mathcal{C}^{0}$-semi-group \mathbf{Q}_{t} for continuous bounded 1-forms α :

$$
\mathbf{Q}_{t}(\alpha)=\mathbb{E}\left[\left\langle\alpha, W_{t} .\right\rangle \mathbb{1}_{t<\tau}\right]
$$

\longrightarrow Commutation formula :

$$
d \mathbf{P}_{t}(f)=\mathbf{Q}_{t}(d f)
$$

Theorem

If $\rho>0$, then for all $f, g \in \mathcal{C}_{c}^{\infty}(M)$, we have:

$$
\operatorname{Cov}_{\mu}(f, g) \leq \frac{1}{\rho}\|d f\|_{\infty}\|d g\|_{1}
$$

$$
\text { In } \mathbb{R}^{n}, V(x)=|x|^{4} / 4 . \mathcal{M}=2 x \cdot x^{t}+|x|^{2} \text { id } \geq 0 \text {. But not } \geq k \text { id }>0 \text { ! }
$$

problem

The intertwining by d does not lead to Poincaré inequality.

$$
\text { In } \mathbb{R}^{n}, V(x)=|x|^{4} / 4 . \mathcal{M}=2 x \cdot x^{t}+|x|^{2} \text { id } \geq 0 . \text { But not } \geq k \text { id }>0 \text { ! }
$$

problem

The intertwining by d does not lead to Poincaré inequality.

solution ?

Replace d by $\left(B^{*}\right)^{-1} d$, with $B: x \in M \rightarrow B_{x} \in G L\left(T_{x} M\right)$, smooth.
Metric : $\langle\cdot, \cdot\rangle_{B}=\left\langle B^{-1} \cdot, B^{-1} \cdot\right\rangle$.

$$
\operatorname{Cov}_{\mu}(f, g)=\int_{0}^{+\infty} \int_{M}\left\langle\left(B^{*}\right)^{-1} d \mathbf{P}_{t}(f),\left(B^{*}\right)^{-1} d g\right\rangle_{B} d \mu d t
$$

Twisted levels

Twisted deformed parallel translation above X^{x} :

$$
W_{t}^{B}=B\left(X_{t}\right) W_{t} B^{-1}(x)
$$

Twisted generator :

$$
L^{W, B}=\left(B^{*}\right)^{-1} L^{W} B^{*}
$$

Intertwinings?

$\left(B^{*}\right)^{-1} d L f=L^{W, B}\left(B^{*}\right)^{-1} d f$.
$L^{W, B}$ essentially self-adjoint: L^{2}-semi-group \mathbf{Q}^{B}.
With boundedness condition (on M_{B} but not only) : \mathcal{C}^{0}-semi-group but no intertwining proved.

Decomposition of the twisted generator

Recall $: L^{W}=L^{/ I}-\mathcal{M}$.

- L// symmetric non-positive
- \mathcal{M} potential

$$
L^{W, B}=\underbrace{L^{\prime \prime}+2\left(B^{*}\right)^{-1} \nabla B^{*} \cdot \nabla}_{L_{B}^{\prime \prime}}+\underbrace{\left(B^{*}\right)^{-1} L^{\prime \prime}\left(B^{*}\right)-\left(B^{*}\right)^{-1} \mathcal{M} B^{*}}_{-M_{B}} .
$$

Decomposition of the twisted generator

Recall $: L^{W}=L^{\prime \prime}-\mathcal{M}$.

- L// symmetric non-positive
- \mathcal{M} potential

$$
L^{W, B}=\underbrace{L^{\prime \prime}+2\left(B^{*}\right)^{-1} \nabla B^{*} \cdot \nabla}_{L_{B}^{\prime \prime}}+\underbrace{\left(B^{*}\right)^{-1} L^{\prime \prime}\left(B^{*}\right)-\left(B^{*}\right)^{-1} \mathcal{M} B^{*}}_{-M_{B}} .
$$

In favor!

- M_{B} is the drift of W_{t}^{B}
- "differential operator" + "potential"
- heuristic

Objections ?

No linked known process. No real comprehension of where it comes from.

Proposition

For all 1-forms α, β, we have :

$$
\int_{M}\left\langle\left(-L_{B}^{\prime \prime}\right) \alpha, \beta\right\rangle_{B} d \mu=\int_{M}\langle\nabla \alpha, \nabla \beta\rangle_{B} d \mu-\int_{M}\left\langle B^{*} \nabla \alpha, \mathcal{B}\left(B^{*} \beta\right)\right\rangle d \mu
$$

where $\mathcal{B}=\left(\left(\nabla B^{*}\right)\left(B^{*}\right)^{-1}\right)^{t}-\left(\nabla B^{*}\right)\left(B^{*}\right)^{-1}$.

Corollary

If $\mathcal{B}=0$, then $-L_{B}^{/ /}$is symmetric non-negative.

Example

$B(x)=b(x) \operatorname{id}_{T_{x} M}$. Then $M_{B}=\left(B^{*}\right)^{-1} \mathcal{M} B^{*}-b^{-1} L(b)$ id.

Intertwining

$\mathcal{B}=0: L_{B}^{/ /}$symmetric, non-positive and M_{B} symmetric.

$$
\rho_{B}=\inf _{x \in M}\left\{\text { smallest eigenvalue of } B^{*} M_{B}\left(B^{*}\right)^{-1}\right\}
$$

Intertwining

$\mathcal{B}=0: L_{B}^{/ \prime}$ symmetric, non-positive and M_{B} symmetric.

$$
\rho_{B}=\inf _{x \in M}\left\{\text { smallest eigenvalue of } B^{*} M_{B}\left(B^{*}\right)^{-1}\right\}
$$

Theorem (H., 2019)

If $\mathcal{B}=0$ and $-\infty<\rho_{B}$, then for all $f \in \mathcal{C}_{c}^{\infty}(M)$,

$$
\left(\left(B^{*}\right)^{-1} \mathbf{P}_{t}(f)=\mathbf{Q}_{t}^{B}\left(\left(B^{*}\right)^{-1} d f\right)\right.
$$

(Sketch of the proof)

$$
\left\{\begin{array}{l}
\partial_{t} F=L^{W, B} F \\
F(\cdot, 0)=G \in L^{2}(B, \mu)
\end{array}\right.
$$

\longrightarrow Uniqueness of strong solutions

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)
Assume that $\mathcal{B}=0$ and that $\rho_{B} \geq 0$, then for every $f \in \mathcal{C}_{c}^{\infty}(M)$, we have :

$$
\operatorname{Var}_{\mu}(f) \leq \int_{M}\left\langle d f,\left(\left(B^{*} M_{B}\left(B^{*}\right)^{-1}\right)^{-1} d f\right\rangle d \mu\right.
$$

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)
Assume that $\mathcal{B}=0$ and that $\rho_{B} \geq 0$, then for every $f \in \mathcal{C}_{c}^{\infty}(M)$, we have :

$$
\operatorname{Var}_{\mu}(f) \leq \int_{M}\left\langle d f,\left(\left(B^{*} M_{B}\left(B^{*}\right)^{-1}\right)^{-1} d f\right\rangle d \mu\right.
$$

Corollary (Poincaré inequality)

Assuming that $\mathcal{B}=0$ and that ρ_{B} is positive, for all $f \in \mathcal{C}_{c}^{\infty}(M)$, we have

$$
\operatorname{Var}_{\mu}(f) \leq \frac{1}{\rho_{B}} \int_{M}|d f|^{2} d \mu
$$

The condition $\mathcal{B}=0$ is not stable under perturbations.... But the results seems stable under perturbations.

The condition $\mathcal{B}=0$ is not stable under perturbations.... But the results seems stable under perturbations.

$$
\int_{M}\left\langle L_{B}^{\prime \prime} \alpha, \alpha\right\rangle_{B} d \mu=-\int_{M}\left|B^{*} \nabla \alpha\right|^{2} d \mu+\int_{M}\left\langle B^{*} \nabla \alpha, \mathcal{B}\left(B^{*} \alpha\right)\right\rangle d \mu
$$

The condition $\mathcal{B}=0$ is not stable under perturbations.... But the results seems stable under perturbations.

$$
\begin{aligned}
\int_{M}\left\langle L_{B}^{/ /} \alpha, \alpha\right\rangle_{B} d \mu & =-\int_{M}\left|B^{*} \nabla \alpha\right|^{2} d \mu+\int_{M}\left\langle B^{*} \nabla \alpha, \mathcal{B}\left(B^{*} \alpha\right)\right\rangle d \mu \\
& =-\int_{M}\left|B^{*} \nabla \alpha-\frac{1}{2} \mathcal{B} B^{*} \alpha\right|^{2} d \mu+\int_{M}\left\langle B^{*} \alpha, N_{B} B^{*} \alpha\right\rangle d \mu
\end{aligned}
$$

The condition $\mathcal{B}=0$ is not stable under perturbations.... But the results seems stable under perturbations.

$$
\begin{gathered}
\int_{M}\left\langle L_{B}^{\| /} \alpha, \alpha\right\rangle_{B} d \mu=-\int_{M}\left|B^{*} \nabla \alpha\right|^{2} d \mu+\int_{M}\left\langle B^{*} \nabla \alpha, \mathcal{B}\left(B^{*} \alpha\right)\right\rangle d \mu \\
=-\int_{M}\left|B^{*} \nabla \alpha-\frac{1}{2} \mathcal{B} B^{*} \alpha\right|^{2} d \mu+\int_{M}\left\langle B^{*} \alpha, N_{B} B^{*} \alpha\right\rangle d \mu \\
N_{B}(x)=\frac{1}{4} \mathcal{B}^{t}(x) \cdot \mathcal{B}(x) \in \operatorname{End}\left(T_{x}^{*} M\right) \\
\left.\tilde{\rho}_{B}=\inf _{x \in M}\left\{\text { smallest eigenvalue of }\left(B^{*} M_{B}\left(B^{*}\right)^{-1}\right)\right)^{s}-N_{B}\right\} .
\end{gathered}
$$

Theorem (H., 2019)

Assume that $\left.\left(B^{*} M_{B}\left(B^{*}\right)^{-1}\right)\right)^{s}-(1+\varepsilon) N_{B}$ is bounded from below for some $\varepsilon>0$. Then the semi-groups \mathbf{P} and \mathbf{Q}^{B} are intertwined by $\left(B^{*}\right)^{-1} d$, i.e for every $f \in \mathcal{C}_{c}^{\infty}(M)$ and $t \geq 0$ we have :

$$
\left(B^{*}\right)^{-1} d \mathbf{P}_{t} f=\mathbf{Q}_{t}^{B}\left(\left(\left(B^{*}\right)^{-1} d f\right) .\right.
$$

Theorem (H., 2019)

Assume that $\left.\left(B^{*} M_{B}\left(B^{*}\right)^{-1}\right)\right)^{s}-(1+\varepsilon) N_{B}$ is bounded from below for some $\varepsilon>0$. Then the semi-groups \mathbf{P} and \mathbf{Q}^{B} are intertwined by $\left(B^{*}\right)^{-1} d$, i.e for every $f \in \mathcal{C}_{c}^{\infty}(M)$ and $t \geq 0$ we have :

$$
\left(B^{*}\right)^{-1} d \mathbf{P}_{t} f=\mathbf{Q}_{t}^{B}\left(\left(\left(B^{*}\right)^{-1} d f\right) .\right.
$$

Theorem (Poincaré inequality - H., 2019)

Assume that for some $\left.\varepsilon>0,\left(B^{*} M_{B}\left(B^{*}\right)^{-1}\right)\right)^{s}-(1+\varepsilon) N_{B}$ is bounded from below and that $\tilde{\rho}_{B}$ is positive. Then for all $f \in \mathcal{C}_{c}^{\infty}(M)$, we have :

$$
\operatorname{Var}_{\mu}(f) \leq \frac{1}{\tilde{\rho}_{B}} \int_{M}|d f|^{2} d \mu
$$

$\ln \mathbb{R}^{2}, \sigma^{2}(x)=1+|x|^{2} \cdot \beta>1$
Measure :

$$
d \mu_{\beta}=Z\left(\sigma^{2}\right)^{-\beta} d x
$$

Generator :

$$
L_{\beta}=\sigma^{2}(x) \Delta_{E}-2(\beta-1) x \cdot \nabla_{E}
$$

$\ln \mathbb{R}^{2}, \sigma^{2}(x)=1+|x|^{2} . \beta>1$
Measure :

$$
d \mu_{\beta}=Z\left(\sigma^{2}\right)^{-\beta} d x
$$

Generator :

$$
L_{\beta}=\sigma^{2}(x) \Delta_{E}-2(\beta-1) x \cdot \nabla_{E}
$$

Metric change :

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}}{\sigma^{2}(x)}
$$

$\ln \mathbb{R}^{2}, \sigma^{2}(x)=1+|x|^{2} . \beta>1$
Measure :

$$
d \mu_{\beta}=Z\left(\sigma^{2}\right)^{-\beta} d x
$$

Generator :

$$
L_{\beta}=\sigma^{2}(x) \Delta_{E}-2(\beta-1) x \cdot \nabla_{E}
$$

Metric change :

$$
d s^{2}=\frac{d x_{1}^{2}+d x_{2}^{2}}{\sigma^{2}(x)}
$$

Appropriate polar coordinates:

$$
\begin{gathered}
\left(x_{1}, x_{2}\right)=(\sinh (r) \cos (\theta), \sinh (r) \sin (\theta)), \quad d s^{2}=d r^{2}+\operatorname{th}(r)^{2} d \theta^{2} \\
d \mu_{\beta}=Z \cosh ^{-2(\beta-1)} d \mathrm{vol} .
\end{gathered}
$$

Potential :

$$
V(r)=2(\beta-1) \ln (\cosh (r))
$$

Bakry-Émery?

$$
\mathcal{M}=\frac{2 \beta}{\sigma^{2}} \mathrm{id}
$$

Loss of strict convexity at ∞.
Twist :

$$
B=e^{\varepsilon V} \mathrm{id}
$$

$\rho_{B}(r)=2 \beta-4 \varepsilon(\beta-1)+\left[4 \varepsilon(1-\varepsilon)(\beta-1)^{2}-(2 \beta-4 \varepsilon(\beta-1))\right] \tanh ^{2}(r)$.

Corollary

The spectral gap of the operator L_{β} is bounded from below by :

$$
\lambda_{1}\left(L_{\beta}\right) \geq\left\{\begin{array}{llc}
(\beta-1)^{2} & \text { if } & 1<\beta \leq 1+\sqrt{2} \\
2 \sqrt{(\beta-1)^{2}-1} & \text { if } & 1+\sqrt{2} \leq \beta
\end{array}\right.
$$

Bobkov-Ledoux (2009) $\lambda_{1}\left(L_{\beta}\right) \geq \frac{2(\beta-1)}{\left(\sqrt{1+\frac{2}{\beta-1}}+\sqrt{\frac{2}{\beta-1}}\right)^{2}}, \beta \geq 2$.
Nguyen (2013) $\lambda_{1}\left(L_{\beta}\right)=2(\beta-1), \beta \geq 3$.
Bonnefont-Joulin-Ma (2016)

$$
\begin{array}{r}
\lambda_{1}\left(L_{\beta}\right)=(\beta-1)^{2} \quad \text { if } \quad 1<\beta \leq \frac{3+\sqrt{5}}{2} \\
\beta \leq \lambda_{1}\left(L_{\beta}\right) \leq 2(\beta-1) \quad \text { if } \quad \frac{3+\sqrt{5}}{2} \leq \beta
\end{array}
$$

(1) Twisted intertwining and Poincaré inequality

(2) Brenier-Schrödinger problem

- A fluid evolution problem
- Kinetic properties
- Existence of solutions

Euler equations - Newton principle :

$$
\begin{cases}\partial_{t} v+\nabla_{v} v+\nabla p=0, & (t, x) \in[0,1] \times M \\ \operatorname{div}(v)=0, & (t, x) \in[0,1] \times M \\ \langle v, v\rangle=0 & \\ v(0, \cdot)=v_{0}, & x \in M\end{cases}
$$

Euler equations - Newton principle :

$$
\begin{cases}\partial_{t} v+\nabla_{v} v+\nabla p=0, & (t, x) \in[0,1] \times M \\ \operatorname{div}(v)=0, & (t, x) \in[0,1] \times M \\ \langle v, v\rangle=0 & x \in M\end{cases}
$$

\Downarrow
Arnold minimisation problem - least action principle ('66) :

$$
\int_{[0,1] \times M}\left|\partial_{t} q_{t}(x)\right|^{2} d t d x \rightarrow \min ;\left[q_{t} \in G_{\mathrm{vol}}, \forall 0 \leq t \leq 1\right], q_{0}=\mathrm{id}, q_{1}=h
$$

Euler equations - Newton principle :

$$
\begin{cases}\partial_{t} v+\nabla_{v} v+\nabla p=0, & (t, x) \in[0,1] \times M \\ \operatorname{div}(v)=0, & (t, x) \in[0,1] \times M \\ \langle v, v\rangle=0 & \\ v(0, \cdot)=v_{0}, & x \in M\end{cases}
$$

\Downarrow
Arnold minimisation problem - least action principle ('66) :
$\int_{[0,1] \times M}\left|\partial_{t} q_{t}(x)\right|^{2} d t d x \rightarrow \min ;\left[q_{t} \in G_{\mathrm{vol}}, \forall 0 \leq t \leq 1\right], q_{0}=\mathrm{id}, q_{1}=h$,

$$
\Downarrow
$$

Brenier's relaxation ('89):
$\mathbb{E}_{Q}\left[\int_{0}^{1}\left|\dot{X}_{t}\right|^{2} d t\right] \rightarrow \min ; Q \in \mathcal{P}(\Omega),\left[Q_{t}=\operatorname{vol}, \forall 0 \leq t \leq 1\right], Q_{0,1}=\pi$,

Navier-Stokes Equations:

$$
\begin{cases}\partial_{t} v+\nabla_{v} v-a \square v+\nabla p=0, & (t, x) \in[0,1] \times M \\ \operatorname{div}(v)=0, & (t, x) \in[0,1] \times M \\ \langle v, v\rangle=0, & (t, x) \in[0,1] \times \partial M \\ v(0, \cdot)=v_{0}, & x \in M\end{cases}
$$

Navier-Stokes Equations :

$$
\begin{cases}\partial_{t} v+\nabla_{v} v-a \square v+\nabla p=0, & (t, x) \in[0,1] \times M \\ \operatorname{div}(v)=0, & (t, x) \in[0,1] \times M \\ \langle v, v\rangle=0, & (t, x) \in[0,1] \times \partial M \\ v(0, \cdot)=v_{0}, & x \in M\end{cases}
$$

viscosity term \square (Hodge - De Rahm Laplacian) : suggests Brownian processes.

Navier-Stokes Equations:

$$
\begin{cases}\partial_{t} v+\nabla_{v} v-a \square v+\nabla p=0, & (t, x) \in[0,1] \times M \\ \operatorname{div}(v)=0, & (t, x) \in[0,1] \times M \\ \langle v, v\rangle=0, & (t, x) \in[0,1] \times \partial M \\ v(0, \cdot)=v_{0}, & x \in M\end{cases}
$$

viscosity term \square (Hodge - De Rahm Laplacian) : suggests Brownian processes.

Notion of velocity? Stochastic velocities:

$$
\begin{aligned}
& \vec{v}_{t}^{P}=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \mathbb{E}_{P}\left[\overrightarrow{X_{t} X_{t+h \wedge \tau_{t}}} \mid X_{[0, t]}\right] \quad \text { (forward) } \\
& \stackrel{v}{v}_{t}^{P}=\lim _{h \rightarrow 0^{+}} \frac{1}{h} \mathbb{E}_{P}\left[\vec{X}_{t-h \wedge \tau_{t}} X_{t} \mid X_{[t, 1]}\right] \quad \text { (backward) }
\end{aligned}
$$

Link: stochastic kinetic energy \rightleftarrows entropy.

Link : stochastic kinetic energy \rightleftarrows entropy.

framework

- M compact manifold with boundary
- R law of the reflected Brownian motion

Definition (Brenier-Schrödinger problem)

$$
H(Q \mid R) \rightarrow \min , Q \in \mathcal{P}(\Omega),\left[Q_{t}=\mu_{t}, \forall t \in \mathcal{T}\right], Q_{01}=\pi
$$

Questions

- Link between solutions of both problems.
- Existence of solutions.

Definition (Regular solution)

$$
P=\exp \left(\eta\left(X_{0}, X_{1}\right)+\sum_{s \in \mathcal{S}} \theta_{s}\left(X_{s}\right)+\int_{\mathcal{T}} p_{t}\left(X_{t}\right) d t\right) R
$$

such that well-defined quantities and sufficient regularity.

Definition (Regular solution)

$$
P=\exp \left(\eta\left(X_{0}, X_{1}\right)+\sum_{s \in \mathcal{S}} \theta_{s}\left(X_{s}\right)+\int_{\mathcal{T}} p_{t}\left(X_{t}\right) d t\right) R
$$

such that well-defined quantities and sufficient regularity.

Question: Does a velocity satisfies Navier-Stokes equations.

Definition (Regular solution)

$$
P=\exp \left(\eta\left(X_{0}, X_{1}\right)+\sum_{s \in \mathcal{S}} \theta_{s}\left(X_{s}\right)+\int_{\mathcal{T}} p_{t}\left(X_{t}\right) d t\right) R
$$

such that well-defined quantities and sufficient regularity.

Question: Does a velocity satisfies Navier-Stokes equations.
Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) for $M=\mathbb{R}^{n}$ or $M=\mathbb{T}^{n}$.

Contributions : Manifold framework. Boundary behaviour

Theorem (Garcia Zelada, H., 2020)

For P_{0} almost all $y \in M$, the backward stochastic velocity ι^{y} satisfies :

$$
\begin{align*}
& \stackrel{\iota_{v}^{\prime}}{t}-\stackrel{\iota y}{v}_{t^{-}}=\theta_{t}(.), \\
& t \in S, z \in M, \\
& \left\langle\stackrel{L}{v}^{y}, v(z)\right\rangle=0 \text {, } \\
& \stackrel{\llcorner y}{v_{0}}=-\nabla \eta(., y) \text {, } \tag{1}\\
& z \in \partial M, \\
& z \in M \text {. }
\end{align*}
$$

Furthermore, there exist a scalar potential φ^{y} satisfying a second order Hamilton-Jacobi equation, such that

$$
\begin{equation*}
\stackrel{\iota}{v}_{t}^{P}(X)=-a \nabla \varphi_{t}^{X_{1}}\left(X_{t}\right), P-a . s . \tag{2}
\end{equation*}
$$

- As in \mathbb{R}^{n}, the forward velocity does not suit.
- Impermeability condition satisfied.
- Incompressibility is not reached.
- As in \mathbb{R}^{n}, the forward velocity does not suit.
- Impermeability condition satisfied.
- Incompressibility is not reached.

$$
\begin{gathered}
\overleftrightarrow{v}_{t}(z)=\mathbb{E}_{P}\left[X_{0} \rightharpoonup_{t} \mid X_{t}=z\right] \text { and } \overleftrightarrow{v}_{t}(z)=\mathbb{E}_{P}\left[\stackrel{\wedge}{v}_{t} \mid X_{t}=z\right] \\
v_{c u}=\frac{1}{2} \overleftrightarrow{v}_{t}+\frac{1}{2} \overleftrightarrow{v}_{t}
\end{gathered}
$$

Theorem (Garcia Zelada, H., 2020)

Assuming that $\mathcal{T}=[0,1]$, the current velocity $v_{c u}^{P}$ satisfies the continuity equation

$$
\partial_{t} \mu_{t}+\operatorname{div}\left(\mu_{t} v_{c u}\right)=0
$$

But does not satisfy Navier-Stokes equation.
$H(Q \mid R) \rightarrow \min , Q \in \mathcal{P}(\Omega),\left[Q_{t}=\operatorname{vol}, \forall t \in[0,1]\right], Q_{01}=\pi . \quad(B S)$

$$
\begin{equation*}
H(Q \mid R) \rightarrow \min , Q \in \mathcal{P}(\Omega),\left[Q_{t}=\text { vol, } \forall t \in[0,1]\right], Q_{01}=\pi . \tag{BS}
\end{equation*}
$$

Method: (Baradat, Léonard, 2020) If there exists a path measure Q such that $H(Q \mid R)<\infty, Q_{t}=\mu_{t}, \forall t \in \mathcal{T}$ and $Q_{01}=\pi$, then there exists a unique solution.

$$
\begin{equation*}
H(Q \mid R) \rightarrow \min , Q \in \mathcal{P}(\Omega),\left[Q_{t}=\text { vol, } \forall t \in[0,1]\right], Q_{01}=\pi . \tag{BS}
\end{equation*}
$$

Method: (Baradat, Léonard, 2020) If there exists a path measure Q such that $H(Q \mid R)<\infty, Q_{t}=\mu_{t}, \forall t \in \mathcal{T}$ and $Q_{01}=\pi$, then there exists a unique solution.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) $M=\mathbb{T}^{n}$ with the necessary and sufficient condition $H\left(\pi \mid R_{0,1}\right)<\infty$.

Symmetric spaces

(M, g) compact Riemaniann manifold. G group of isometries. $G \curvearrowright M$ transitive.

Symmetric spaces

(M, g) compact Riemaniann manifold. G group of isometries. $G \curvearrowright M$ transitive.

Examples: $\mathbb{S}^{n}, \mathbb{T}^{n}$.

Theorem (Garcia Zelada, H., 2020)
The Brenier-Schrödinger problem admits a unique solution if and only if $H\left(\pi \mid R_{01}\right)<\infty$.

Quotient spaces

$N=M / G$ with M Riemanian manifold and G reflection group. $q: M \rightarrow N$ quotient transport :

- volume measure
- Brownian motion to reflected Brownian motion
- Path measures satisfying marginals and entropy conditions

Theorem (Garcia Zelada, H., 2020)

Let π be a probability measure on $M \times M$ with both marginals equal to vol_{M} and such that $H\left(\pi \mid R_{01}\right)<\infty$. If $B S_{M, \pi}$ admits a solution, then $B S_{N,(q \times q) * \pi}$ admits a solution. In particular, if $H_{M, \pi}$ admits a solution for every such π, then $H_{N, \tilde{\pi}}$ admits a solution for every probability measure $\tilde{\pi}$ on $N \times N$ with both marginals equal to vol_{N} and such that $H\left(\tilde{\pi} \mid \tilde{R}_{01}\right)<\infty$.

Example - Hyper-rectangle

An n-dimensional rectangular box can be seen as quotient of a torus \mathbb{T}^{n}.

\longrightarrow Existence and uniqueness of solution if and only if finite entropy.

Example - Equilateral triangle

An equilateral triangle can be seen as quotient space of the torus \mathbb{T}^{2}.

\longrightarrow Existence and uniqueness of solution if and only if finite entropy.

Gaussian problem

$$
H(P \mid R) \rightarrow \min ;\left[P_{t}=\mathcal{N}(0,1 / 4 \mathrm{id}), \forall 0 \leq t \leq 1\right], P_{01}=\pi
$$

Theorem (Garcia Zelada, H., 2020)

The Brenier-Schrödinger problem $\left(B S_{\gamma}\right)$ admits a unique solution if and only if $H\left(\pi \mid R_{01}\right)<\infty$.

Merci de votre attention.

