Stochastic calculus on manifold and application to functional inequalities

Baptiste Huguet

PhD defense

17 Décembre 2020

Institut de Mathématiques de Bordeaux

Twisted intertwining and Poincaré inequality

- Intertwining The three levels
- Bakry-Émery criterion
- Twisting
- Symmetric case
- General case
- Application Cauchy measures

Framework

- *M* Riemannian manifold (smooth, complete);
- $V: M \to \mathbb{R}$ a potential (smooth);
- $\mu(dx) = e^{-V(x)}dx$ a probability measure (up to renormalisation).

Framework

- *M* Riemannian manifold (smooth, complete);
- $V: M \to \mathbb{R}$ a potential (smooth);
- $\mu(dx) = e^{-V(x)}dx$ a probability measure (up to renormalisation).

Goals

- Obtain functional inequalities;
- Understand the underlying stochastic processes.

Poincaré :

$$\operatorname{Var}_{\mu}(f) \leq \frac{1}{\rho} \int_{\mathbb{R}^n} |df|^2 d\mu.$$

Our tool : intertwining of semi-groups :

 ${\bf P}$ semi-group on functions, ${\bf Q}$ semi-group on 1-forms

P and **Q** are intertwined by the differential *d* if for all $f \in C_c^{\infty}(M)$,

 $d\mathbf{P}f = \mathbf{Q}df.$

Our tool : intertwining of semi-groups : **P** semi-group on functions, **Q** semi-group on 1-forms **P** and **Q** are intertwined by the differential *d* if for all $f \in C_c^{\infty}(M)$,

 $d\mathbf{P}f = \mathbf{Q}df$.

Assumptions : ergodicity i.e $\mathbf{P}_t f \rightarrow \mu(f)$ a.s.

$$\operatorname{Cov}_{\mu}(f,g) = \int_{0}^{+\infty} \int_{M} \langle d\mathbf{P}_{t}(f), dg \rangle \, d\mu \, dt.$$

Questions

- When is this true?
- How can we extend it?

Ground floor - Generators

Generator on $\mathcal{C}^{\infty}(M)$:

$$L = \Delta - \nabla V = \sum_{i} \frac{\partial^2}{\partial x_i^2} - \sum_{i} \frac{\partial V}{\partial x_i} \frac{\partial}{\partial x_i}.$$

L is symmetric with respect to μ :

$$\int L(f)g \, d\mu = -\int \langle df, dg
angle \, d\mu = \int f L(g) \, d\mu$$

Ground floor - Generators

Generator on $\mathcal{C}^{\infty}(M)$:

$$L = \Delta - \nabla V = \sum_{i} \frac{\partial^2}{\partial x_i^2} - \sum_{i} \frac{\partial V}{\partial x_i} \frac{\partial}{\partial x_i}.$$

L is symmetric with respect to μ :

$$\int L(f)g\,d\mu = -\int \langle df, dg
angle\, d\mu = \int fL(g)\,d\mu.$$

Intertwining

$$dLf = L^W df$$
.

Ground floor - Generators

Generator on $\mathcal{C}^{\infty}(M)$:

$$L = \Delta - \nabla V = \sum_{i} \frac{\partial^2}{\partial x_i^2} - \sum_{i} \frac{\partial V}{\partial x_i} \frac{\partial}{\partial x_i}.$$

L is symmetric with respect to μ :

$$\int L(f)g\,d\mu = -\int \langle df, dg
angle\, d\mu = \int fL(g)\,d\mu.$$

Intertwining

$$dLf = L^W df.$$

 L^W differential operator on 1-forms. Symmetric, non-positive.

$$L^W = L^{\#} - \mathcal{M},$$

- L^{\parallel} symmetric non-positive
- "matrix" potential $\mathcal{M} = \operatorname{Ric} + \nabla^2 V$.

 X^{\times} : diffusion with generator *L*, starting from \times

$$f(X_t) \stackrel{(m)}{=} f(x) + \int_0^t Lf(X_s) ds.$$

Example : $L = \Delta$ for Brownian motion

 X^{\times} : diffusion with generator *L*, starting from *x*

$$f(X_t) \stackrel{(m)}{=} f(x) + \int_0^t Lf(X_s) ds.$$

Example : $L = \Delta$ for Brownian motion

W : deformed parallel translation Diffusion on *TM*, above X^x

$$DW_t = -\mathcal{M}W_t dt.$$

 X^{\times} : diffusion with generator *L*, starting from *x*

$$f(X_t) \stackrel{(m)}{=} f(x) + \int_0^t Lf(X_s) ds.$$

Example : $L = \Delta$ for Brownian motion

W : deformed parallel translation Diffusion on *TM*, above X^{\times}

 $DW_t = -\mathcal{M}W_t dt.$

Generator (on 1-forms) : L^W .

 X^{\times} : diffusion with generator *L*, starting from *x*

$$f(X_t) \stackrel{(m)}{=} f(x) + \int_0^t Lf(X_s) ds.$$

$$\label{eq:example} \begin{split} \mathsf{Example}:\ L = \Delta \ \text{for Brownian} \\ \mathsf{motion} \end{split}$$

W : deformed parallel translation Diffusion on *TM*, above X^{\times}

 $DW_t = -\mathcal{M}W_t dt.$

Generator (on 1-forms) :
$$L^W$$
.

Intertwining

W is the spacial derivative of an appropriate flow X :

$$W_t = \nabla X_t$$
.

Upper floor - Semi-groups

L generates a C^0 -semi-group

$$\mathbf{P}_t f(x) = \mathbb{E}[f(X_t^x) \mathbb{1}_{t < \tau_x}].$$

Intertwining?

More assumptions are needed... even for the definition of the C^0 -semi-group associated to L^W (bounded forms are NOT bounded).

Upper floor - Semi-groups

L generates a C^0 -semi-group

$$\mathbf{P}_t f(x) = \mathbb{E}[f(X_t^x) \mathbb{1}_{t < \tau_x}].$$

Intertwining?

More assumptions are needed... even for the definition of the C^0 -semi-group associated to L^W (bounded forms are NOT bounded).

L^W generates a L^2 -semi-groups **Q**.

Intertwining?

More assumptions are still needed...

An assumption on the potential $\ensuremath{\mathcal{M}}$:

Definition (Bakry-Émery criterion)

We assume that $\mathcal{M}=Ric+\nabla^2 V$ is uniformly bounded from below :

$$\rho = \inf_{x \in \mathcal{M}} \{ \text{smallest eigenvalue of } \mathcal{M} \} > -\infty.$$

An assumption on the potential ${\boldsymbol{\mathcal{M}}}$:

Definition (Bakry-Émery criterion)

We assume that $\mathcal{M}=Ric+\!\nabla^2 V$ is uniformly bounded from below :

$$\rho = \inf_{x \in \mathcal{M}} \{ \text{smallest eigenvalue of } \mathcal{M} \} > -\infty.$$

Proposition

Under (BE), for all $x \in M$, for all $v \in T_xM$, for all $t \ge 0$, we have :

$$|W_t(v)| \le e^{-\rho t} |v| \ a.s$$

 $\longrightarrow \mathcal{C}^0$ -semi-group \mathbf{Q}_t for continuous bounded 1-forms α :

$$\mathbf{Q}_t(lpha) = \mathbb{E}\left[\langle lpha, W_t.
angle \mathbb{1}_{t < au}
ight]$$
 ,

 \longrightarrow Commutation formula :

$$d\mathbf{P}_t(f) = \mathbf{Q}_t(df).$$

Theorem

If $\rho > 0$, then for all $f, g \in \mathcal{C}^\infty_c(M)$, we have:

$$\operatorname{Cov}_{\mu}(f,g) \leq \frac{1}{\rho} \|df\|_{\infty} \|dg\|_{1}.$$

In
$$\mathbb{R}^n$$
, $V(x) = |x|^4/4$. $\mathcal{M} = 2x \cdot x^t + |x|^2$ id ≥ 0 . But not $\geq k$ id > 0 !

problem

The intertwining by d does not lead to Poincaré inequality.

In
$$\mathbb{R}^n$$
, $V(x) = |x|^4/4$. $\mathcal{M} = 2x \cdot x^t + |x|^2$ id ≥ 0 . But not $\ge k$ id > 0 !

problem

The intertwining by d does not lead to Poincaré inequality.

solution ?

Replace d by $(B^*)^{-1}d$, with $B: x \in M \to B_x \in GL(T_xM)$, smooth.

 $\mathsf{Metric}:\ \langle\cdot,\cdot\rangle_B=\langle B^{-1}\cdot,B^{-1}\cdot\rangle.$

$$\operatorname{Cov}_{\mu}(f,g) = \int_{0}^{+\infty} \int_{M} \langle (B^{*})^{-1} d\mathbf{P}_{t}(f), (B^{*})^{-1} dg \rangle_{B} d\mu dt$$

Twisted levels

Twisted deformed parallel translation above X^{\times} :

$$W_t^B = B(X_t) W_t B^{-1}(x).$$

Twisted generator :

$$L^{W,B} = (B^*)^{-1} L^W B^*$$

Intertwinings?

$$(B^*)^{-1}dLf = L^{W,B}(B^*)^{-1}df.$$

 $L^{W,B}$ essentially self-adjoint : L^2 -semi-group \mathbf{Q}^B . With boundedness condition (on M_B but not only) : C^0 -semi-group but no intertwining proved.

Decomposition of the twisted generator

Recall : $L^W = L^{\parallel} - \mathcal{M}$.

- $L^{/\!\!/}$ symmetric non-positive
- $\bullet \ \mathcal{M}$ potential

$$L^{W,B} = \underbrace{L^{\#} + 2(B^*)^{-1}\nabla B^* \cdot \nabla}_{L^{\#}_{B}} + \underbrace{(B^*)^{-1}L^{\#}(B^*) - (B^*)^{-1}\mathcal{M}B^*}_{-M_{B}}.$$

Decomposition of the twisted generator

Recall : $L^W = L^{\#} - \mathcal{M}$.

- $L^{/\!\!/}$ symmetric non-positive
- ${\mathcal M}$ potential

$$L^{W,B} = \underbrace{L^{\#} + 2(B^*)^{-1}\nabla B^* \cdot \nabla}_{L^{\#}_{B}} + \underbrace{(B^*)^{-1}L^{\#}(B^*) - (B^*)^{-1}\mathcal{M}B^*}_{-M_{B}}.$$

In favor!

- M_B is the drift of W_t^B
- "differential operator" + "potential"
- heuristic

Objections ?

No linked known process. No real comprehension of where it comes from 2^{-1}

Proposition

For all 1-forms α , β , we have :

$$\begin{split} &\int_{M} \left\langle (-L_{B}^{/\!\!/}) \alpha, \beta \right\rangle_{B} \, d\mu = \int_{M} \langle \nabla \alpha, \nabla \beta \rangle_{B} \, d\mu - \int_{M} \langle B^{*} \nabla \alpha, \mathcal{B}(B^{*}\beta) \rangle \, d\mu \\ & \text{where } \mathcal{B} = \left((\nabla B^{*})(B^{*})^{-1} \right)^{t} - (\nabla B^{*})(B^{*})^{-1}. \end{split}$$

Corollary

If
$$\mathcal{B} = 0$$
, then $-L_B^{/\!\!/}$ is symmetric non-negative.

Example

$$B(x) = b(x) \operatorname{id}_{T_x M}$$
. Then $M_B = (B^*)^{-1} \mathcal{M} B^* - b^{-1} L(b) \operatorname{id}$.

Intertwining

$$\mathcal{B}=0$$
 : $L_B^{/\!\!/}$ symmetric, non-positive and M_B symmetric.

$$\rho_B = \inf_{x \in M} \left\{ \text{smallest eigenvalue of } B^* M_B(B^*)^{-1} \right\}.$$

Intertwining

$$\mathcal{B}=0$$
 : $L_B^{/\!\!/}$ symmetric, non-positive and M_B symmetric.

$$\rho_B = \inf_{x \in M} \left\{ \text{smallest eigenvalue of } B^* M_B(B^*)^{-1} \right\}.$$

Theorem (H., 2019)

If $\mathcal{B} = 0$ and $-\infty < \rho_B$, then for all $f \in \mathcal{C}^{\infty}_{c}(M)$,

$$((B^*)^{-1}\mathbf{P}_t(f) = \mathbf{Q}_t^B((B^*)^{-1}df).$$

(Sketch of the proof)

$$\begin{cases} \partial_t F = L^{W,B} F \\ F(\cdot,0) = G \in L^2(B,\mu) \end{cases}$$

 \longrightarrow Uniqueness of strong solutions

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)

Assume that $\mathcal{B} = 0$ and that $\rho_B \ge 0$, then for every $f \in \mathcal{C}^{\infty}_{c}(M)$, we have :

$$\operatorname{Var}_{\mu}(f) \leq \int_{M} \langle df, \left((B^* M_B(B^*)^{-1})^{-1} df \right) d\mu.$$

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)

Assume that $\mathcal{B} = 0$ and that $\rho_B \ge 0$, then for every $f \in \mathcal{C}^{\infty}_{c}(M)$, we have :

$$\operatorname{Var}_{\mu}(f) \leq \int_{\mathcal{M}} \langle df, \left((B^* M_B(B^*)^{-1})^{-1} df \right) d\mu.$$

Corollary (Poincaré inequality)

Assuming that $\mathcal{B} = 0$ and that ρ_B is positive, for all $f \in \mathcal{C}^{\infty}_{c}(M)$, we have

$$\operatorname{Var}_{\mu}(f) \leq \frac{1}{\rho_{B}} \int_{M} |df|^{2} d\mu,$$

$$\int_{M} \langle L_{B}^{/\!\!/} \alpha, \alpha \rangle_{B} \, d\mu = - \int_{M} |B^{*} \nabla \alpha|^{2} \, d\mu + \int_{M} \langle B^{*} \nabla \alpha, \mathcal{B}(B^{*} \alpha) \rangle \, d\mu$$

$$\int_{M} \langle L_{B}^{/\!\!/} \alpha, \alpha \rangle_{B} \, d\mu = -\int_{M} |B^{*} \nabla \alpha|^{2} \, d\mu + \int_{M} \langle B^{*} \nabla \alpha, \mathcal{B}(B^{*} \alpha) \rangle \, d\mu$$
$$= -\int_{M} \left| B^{*} \nabla \alpha - \frac{1}{2} \mathcal{B} B^{*} \alpha \right|^{2} \, d\mu + \int_{M} \langle B^{*} \alpha, N_{B} B^{*} \alpha \rangle \, d\mu$$

$$\int_{M} \langle L_{B}^{/\!\!/} \alpha, \alpha \rangle_{B} \, d\mu = -\int_{M} |B^{*} \nabla \alpha|^{2} \, d\mu + \int_{M} \langle B^{*} \nabla \alpha, \mathcal{B}(B^{*} \alpha) \rangle \, d\mu$$
$$= -\int_{M} \left| B^{*} \nabla \alpha - \frac{1}{2} \mathcal{B} B^{*} \alpha \right|^{2} \, d\mu + \int_{M} \langle B^{*} \alpha, N_{B} B^{*} \alpha \rangle \, d\mu$$

$$N_B(x) = \frac{1}{4}\mathcal{B}^t(x) \cdot \mathcal{B}(x) \in \operatorname{End}(T_x^*M).$$

 $\tilde{\rho}_B = \inf_{x \in M} \left\{ \text{smallest eigenvalue of } \left(B^* M_B(B^*)^{-1} \right) \right)^s - N_B \right\}.$

Theorem (H., 2019)

Assume that $(B^*M_B(B^*)^{-1}))^s - (1+\varepsilon)N_B$ is bounded from below for some $\varepsilon > 0$. Then the semi-groups **P** and **Q**^B are intertwined by $(B^*)^{-1}d$, i.e for every $f \in C_c^{\infty}(M)$ and $t \ge 0$ we have :

$$(B^*)^{-1} d\mathbf{P}_t f = \mathbf{Q}_t^B \left(((B^*)^{-1} df) \right).$$

Theorem (H., 2019)

Assume that $(B^*M_B(B^*)^{-1}))^s - (1+\varepsilon)N_B$ is bounded from below for some $\varepsilon > 0$. Then the semi-groups **P** and **Q**^B are intertwined by $(B^*)^{-1}d$, i.e for every $f \in C_c^{\infty}(M)$ and $t \ge 0$ we have :

$$(B^*)^{-1}d\mathbf{P}_t f = \mathbf{Q}_t^B\left(((B^*)^{-1}df\right)$$

Theorem (Poincaré inequality - H., 2019)

Assume that for some $\varepsilon > 0$, $(B^*M_B(B^*)^{-1}))^s - (1+\varepsilon)N_B$ is bounded from below and that $\tilde{\rho}_B$ is positive. Then for all $f \in C_c^{\infty}(M)$, we have :

$$\operatorname{Var}_{\mu}(f) \leq \frac{1}{\tilde{\rho}_B} \int_M |df|^2 d\mu.$$

In \mathbb{R}^2 , $\sigma^2(x) = 1 + |x|^2$. $\beta > 1$

Measure :

$$d\mu_{\beta} = Z(\sigma^2)^{-\beta} dx$$

Generator :

$$L_{\beta} = \sigma^2(x)\Delta_E - 2(\beta - 1)x.\nabla_E$$

In \mathbb{R}^2 , $\sigma^2(x) = 1 + |x|^2$. $\beta > 1$

Measure :

$$d\mu_{\beta} = Z(\sigma^2)^{-\beta} dx$$

Generator :

$$L_{\beta} = \sigma^2(x)\Delta_E - 2(\beta - 1)x.\nabla_E$$

Metric change :

$$ds^2 = \frac{dx_1^2 + dx_2^2}{\sigma^2(x)}$$

In \mathbb{R}^2 , $\sigma^2(x) = 1 + |x|^2$. $\beta > 1$

Measure :

$$d\mu_{\beta} = Z(\sigma^2)^{-\beta} dx$$

Generator :

$$L_{\beta} = \sigma^2(x)\Delta_E - 2(\beta - 1)x.\nabla_E$$

Metric change :

$$ds^2 = \frac{dx_1^2 + dx_2^2}{\sigma^2(x)}$$

Appropriate polar coordinates :

$$(x_1, x_2) = (\sinh(r)\cos(\theta), \sinh(r)\sin(\theta)), \quad ds^2 = dr^2 + th(r)^2 d\theta^2$$
$$d\mu_\beta = Z \cosh^{-2(\beta-1)} d \operatorname{vol}.$$

Potential :

$$V(r) = 2(\beta - 1)\ln(\cosh(r)).$$

Bakry-Émery?

$$\mathcal{M}=rac{2\beta}{\sigma^2}\,\mathrm{id}\,.$$

Loss of strict convexity at ∞ .

Twist :

$$B = e^{\varepsilon V} \operatorname{id}.$$
$$\rho_B(r) = 2\beta - 4\varepsilon(\beta - 1) + [4\varepsilon(1 - \varepsilon)(\beta - 1)^2 - (2\beta - 4\varepsilon(\beta - 1))] \operatorname{tanh}^2(r).$$

Corollary

The spectral gap of the operator ${\it L}_\beta$ is bounded from below by :

$$\lambda_1(L_{\beta}) \geq \begin{cases} (\beta-1)^2 & \text{if} \quad 1 < \beta \le 1 + \sqrt{2} \\ 2\sqrt{(\beta-1)^2 - 1} & \text{if} \quad 1 + \sqrt{2} \le \beta \end{cases}$$

$$\mathsf{Bobkov-Ledoux} \text{ (2009) } \lambda_1(L_\beta) \geq \frac{2(\beta-1)}{\left(\sqrt{1+\frac{2}{\beta-1}} + \sqrt{\frac{2}{\beta-1}}\right)^2}, \ \beta \geq 2.$$

Nguyen (2013) $\lambda_1(L_{\beta}) = 2(\beta - 1), \ \beta \ge 3.$

Bonnefont-Joulin-Ma (2016)

$$\begin{array}{rll} \lambda_1(L_\beta) = & (\beta - 1)^2 & \text{if} & 1 < \beta \leq \frac{3 + \sqrt{5}}{2} \\ \beta & \leq \lambda_1(L_\beta) \leq & 2(\beta - 1) & \text{if} & \frac{3 + \sqrt{5}}{2} \leq \beta \end{array}$$

.

Twisted intertwining and Poincaré inequality

2 Brenier-Schrödinger problem

- A fluid evolution problem
- Kinetic properties
- Existence of solutions

Euler equations - Newton principle :

$$\begin{cases} \partial_t v + \nabla_v v + \nabla p = 0, & (t, x) \in [0, 1] \times M \\ \operatorname{div}(v) = 0, & (t, x) \in [0, 1] \times M \\ \langle v, v \rangle = 0 & \\ v(0, \cdot) = v_0, & x \in M \end{cases}$$

Euler equations - Newton principle :

$$\begin{cases} \partial_t v + \nabla_v v + \nabla p = 0, & (t, x) \in [0, 1] \times M, \\ \operatorname{div}(v) = 0, & (t, x) \in [0, 1] \times M, \\ \langle v, v \rangle = 0 & \\ v(0, \cdot) = v_0, & x \in M \end{cases}$$

Arnold minimisation problem - least action principle ('66) :

 $\int_{[0,1]\times M} |\partial_t q_t(x)|^2 dt dx \to \min; [q_t \in G_{\text{vol}}, \forall 0 \le t \le 1], q_0 = \text{id}, q_1 = h,$

∜

Euler equations - Newton principle :

$$\begin{cases} \partial_t v + \nabla_v v + \nabla p = 0, & (t, x) \in [0, 1] \times M, \\ \operatorname{div}(v) = 0, & (t, x) \in [0, 1] \times M, \\ \langle v, v \rangle = 0 & \\ v(0, \cdot) = v_0, & x \in M \end{cases}$$

Arnold minimisation problem - least action principle ('66) :

$$\int_{[0,1]\times M} |\partial_t q_t(x)|^2 dt dx \to \min; [q_t \in G_{\text{vol}}, \ \forall 0 \le t \le 1], q_0 = \text{id}, q_1 = h,$$

∜

∜

Brenier's relaxation ('89):

$$\mathbb{E}_{Q}\left[\int_{0}^{1}|\dot{X}_{t}|^{2}\,dt\right]\rightarrow\mathsf{min};\,Q\in\mathcal{P}(\Omega)\text{, }\left[Q_{t}=\mathrm{vol}\text{, }\forall0\leq t\leq1\right]\text{, }Q_{0,1}=\pi\text{,}$$

Navier-Stokes Equations :

$$\begin{cases} \partial_t v + \nabla_v v - a \Box v + \nabla p = 0, & (t, x) \in [0, 1] \times M \\ \operatorname{div}(v) = 0, & (t, x) \in [0, 1] \times M \\ \langle v, v \rangle = 0, & (t, x) \in [0, 1] \times \partial M \\ v(0, \cdot) = v_0, & x \in M \end{cases}$$

Navier-Stokes Equations :

$$\begin{cases} \partial_t v + \nabla_v v - a \Box v + \nabla p = 0, & (t, x) \in [0, 1] \times M \\ \operatorname{div}(v) = 0, & (t, x) \in [0, 1] \times M \\ \langle v, v \rangle = 0, & (t, x) \in [0, 1] \times \partial M \\ v(0, \cdot) = v_0, & x \in M \end{cases}$$

viscosity term \Box (Hodge - De Rahm Laplacian) : suggests Brownian processes.

Navier-Stokes Equations :

$$\begin{cases} \partial_t v + \nabla_v v - a \Box v + \nabla p = 0, & (t, x) \in [0, 1] \times M \\ \operatorname{div}(v) = 0, & (t, x) \in [0, 1] \times M \\ \langle v, v \rangle = 0, & (t, x) \in [0, 1] \times \partial M \\ v(0, \cdot) = v_0, & x \in M \end{cases}$$

viscosity term \Box (Hodge - De Rahm Laplacian) : suggests Brownian processes.

Notion of velocity? Stochastic velocities :

$$\overrightarrow{v}_{t}^{P} = \lim_{h \to 0^{+}} \frac{1}{h} \mathbb{E}_{P} \left[\overrightarrow{X_{t} X_{t+h \wedge \tau_{t}}} | X_{[0,t]} \right] \quad \text{(forward)}$$

$$\overrightarrow{v}_{t}^{P} = \lim_{h \to 0^{+}} \frac{1}{h} \mathbb{E}_{P} \left[\overrightarrow{X_{t-h \wedge \tau_{t}}} \overrightarrow{X_{t}} | X_{[t,1]} \right] \quad \text{(backward)}$$

Link : stochastic kinetic energy \rightleftharpoons entropy.

Link : stochastic kinetic energy \rightleftharpoons entropy.

framework

- M compact manifold with boundary
- R law of the reflected Brownian motion

Definition (Brenier-Schrödinger problem)

$$H(Q|R) \rightarrow \min, \ Q \in \mathcal{P}(\Omega), \ [Q_t = \mu_t, \ \forall t \in \mathcal{T}], \ Q_{01} = \pi.$$
 (BS)

Questions

- Link between solutions of both problems.
- Existence of solutions.

Definition (Regular solution)

$$P = \exp\left(\eta(X_0, X_1) + \sum_{s \in S} \theta_s(X_s) + \int_{\mathcal{T}} p_t(X_t) dt\right) R,$$

such that well-defined quantities and sufficient regularity.

Definition (Regular solution)

$$P = \exp\left(\eta(X_0, X_1) + \sum_{s \in \mathcal{S}} \theta_s(X_s) + \int_{\mathcal{T}} p_t(X_t) dt\right) R,$$

such that well-defined quantities and sufficient regularity.

Question : Does a velocity satisfies Navier-Stokes equations.

Definition (Regular solution)

$$P = \exp\left(\eta(X_0, X_1) + \sum_{s \in S} \theta_s(X_s) + \int_{\mathcal{T}} p_t(X_t) dt\right) R,$$

such that well-defined quantities and sufficient regularity.

Question : Does a velocity satisfies Navier-Stokes equations.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) for $M = \mathbb{R}^n$ or $M = \mathbb{T}^n$.

Contributions : Manifold framework. Boundary behaviour

Theorem (Garcia Zelada, H., 2020)

For P_0 almost all $y \in M,$ the backward stochastic velocity $\stackrel{\leftarrow y}{v}$ satisfies :

$$\begin{cases} \left(\partial_{t} + \nabla_{\overrightarrow{v}}\right) \stackrel{\leftarrow}{v}^{y} = \frac{a}{2} \square \stackrel{\leftarrow}{v}^{y} - \mathbb{1}_{\mathcal{T}}(t) \nabla ap, & 0 \le t < 1, t \notin S, z \in M, \\ \stackrel{\leftarrow}{v}_{t} - \stackrel{\leftarrow}{v}_{t}^{y} = \theta_{t}(.), & t \in S, z \in M, \\ \left\langle \stackrel{\leftarrow}{v}, v(z) \right\rangle = 0, & z \in \partial M, \\ \stackrel{\leftarrow}{v}_{0}^{y} = -\nabla \eta(., y), & z \in M. \end{cases}$$

$$(1)$$

Furthermore, there exist a scalar potential φ^y satisfying a second order Hamilton-Jacobi equation, such that

$$\overset{\leftarrow P}{v}_{t}(X) = -a\nabla\varphi_{t}^{X_{1}}(X_{t}), P\text{-}a.s.$$
(2)

- As in \mathbb{R}^n , the forward velocity does not suit.
- Impermeability condition satisfied.
- Incompressibility is not reached.

- As in \mathbb{R}^n , the forward velocity does not suit.
- Impermeability condition satisfied.
- Incompressibility is not reached.

$$\overrightarrow{v}_{t}(z) = \mathbb{E}_{P} \begin{bmatrix} X_{0} \\ v \\ t \end{bmatrix} X_{t} = z$$
 and
$$\overrightarrow{v}_{t}(z) = \mathbb{E}_{P} \begin{bmatrix} -X_{1} \\ v \\ t \end{bmatrix} X_{t} = z$$
$$v_{cu} = \frac{1}{2} \overrightarrow{v}_{t} + \frac{1}{2} \overrightarrow{v}_{t} .$$

Theorem (Garcia Zelada, H., 2020)

Assuming that $\mathcal{T}=[0,1],$ the current velocity v_{cu}^{P} satisfies the continuity equation

$$\partial_t \mu_t + \operatorname{div}(\mu_t v_{cu}) = 0.$$

But does not satisfy Navier-Stokes equation.

$H(Q|R) \rightarrow \min, \ Q \in \mathcal{P}(\Omega), \ [Q_t = \operatorname{vol}, \ \forall t \in [0, 1]], \ Q_{01} = \pi.$ (BS)

$$H(Q|R) \rightarrow \min, \ Q \in \mathcal{P}(\Omega), \ [Q_t = \operatorname{vol}, \ \forall t \in [0, 1]], \ Q_{01} = \pi.$$
 (BS)

Method : (Baradat, Léonard, 2020) If there exists a path measure Q such that $H(Q|R) < \infty$, $Q_t = \mu_t$, $\forall t \in \mathcal{T}$ and $Q_{01} = \pi$, then there exists a unique solution.

$$H(Q|R) \rightarrow \min, \ Q \in \mathcal{P}(\Omega), \ [Q_t = \operatorname{vol}, \ \forall t \in [0, 1]], \ Q_{01} = \pi.$$
 (BS)

Method : (Baradat, Léonard, 2020) If there exists a path measure Q such that $H(Q|R) < \infty$, $Q_t = \mu_t$, $\forall t \in \mathcal{T}$ and $Q_{01} = \pi$, then there exists a unique solution.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) $M = \mathbb{T}^n$ with the necessary and sufficient condition $H(\pi | R_{0,1}) < \infty$.

Symmetric spaces

(M,g) compact Riemaniann manifold. G group of isometries. $G \curvearrowright M$ transitive.

Symmetric spaces

(M,g) compact Riemaniann manifold. G group of isometries. $G \curvearrowright M$ transitive.

Examples : \mathbb{S}^n , \mathbb{T}^n .

Theorem (Garcia Zelada, H., 2020)

The Brenier-Schrödinger problem admits a unique solution if and only if $H(\pi | R_{01}) < \infty$.

Quotient spaces

 $N=M/\,G$ with M Riemanian manifold and G reflection group. $q:M\to N$ quotient transport :

- volume measure
- Brownian motion to reflected Brownian motion
- Path measures satisfying marginals and entropy conditions

Theorem (Garcia Zelada, H., 2020)

Let π be a probability measure on $M \times M$ with both marginals equal to vol_M and such that $H(\pi|R_{01}) < \infty$. If $BS_{M,\pi}$ admits a solution, then $BS_{N,(q \times q)_*\pi}$ admits a solution. In particular, if $H_{M,\pi}$ admits a solution for every such π , then $H_{N,\tilde{\pi}}$ admits a solution for every probability measure $\tilde{\pi}$ on $N \times N$ with both marginals equal to vol_N and such that $H(\tilde{\pi}|\tilde{R}_{01}) < \infty$.

Example - Hyper-rectangle

An *n*-dimensional rectangular box can be seen as quotient of a torus \mathbb{T}^n .

 \longrightarrow Existence and uniqueness of solution if and only if finite entropy.

Example - Equilateral triangle

An equilateral triangle can be seen as quotient space of the torus \mathbb{T}^2 .

 \rightarrow Existence and uniqueness of solution if and only if finite entropy.

Gaussian problem

$$H(P|R) \rightarrow \min; [P_t = \mathcal{N}(0, 1/4 \operatorname{id}), \forall 0 \le t \le 1], P_{01} = \pi \qquad (BS_{\gamma})$$

Theorem (Garcia Zelada, H., 2020)

The Brenier-Schrödinger problem (BS_{γ}) admits a unique solution if and only if $H(\pi|R_{01}) < \infty$.

Merci de votre attention.