
Stochastic calculus on manifold and application to
functional inequalities

Baptiste Huguet

PhD defense

17 Décembre 2020

1 / 35



Twisted intertwining and Poincaré inequality

1 Twisted intertwining and Poincaré inequality
Intertwining - The three levels
Bakry-Émery criterion
Twisting
Symmetric case
General case
Application - Cauchy measures

2 Brenier-Schrödinger problem

2 / 35



Twisted intertwining and Poincaré inequality

Framework
M Riemannian manifold (smooth, complete);
V : M → R a potential (smooth);
µ(dx) = e−V (x)dx a probability measure (up to renormalisation).

Goals
Obtain functional inequalities;
Understand the underlying stochastic processes.

Poincaré :
Varµ(f ) ≤

1
ρ

∫
Rn
|df |2 dµ.
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Twisted intertwining and Poincaré inequality

Our tool : intertwining of semi-groups :
P semi-group on functions, Q semi-group on 1-forms
P and Q are intertwined by the differential d if for all f ∈ C∞

c (M),

dPf = Qdf .

Assumptions : ergodicity i.e Pt f → µ(f ) a.s.

Covµ(f , g) =
∫ +∞

0

∫
M
〈dPt(f ), dg〉 dµ dt.

Questions
When is this true?
How can we extend it?
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Twisted intertwining and Poincaré inequality Intertwining - The three levels

Ground floor - Generators
Generator on C∞(M) :

L = ∆−∇V = ∑
i

∂2

∂x2i
−∑

i

∂V
∂xi

∂

∂xi
.

L is symmetric with respect to µ :∫
L(f )g dµ = −

∫
〈df , dg〉 dµ =

∫
fL(g) dµ.

Intertwining

dLf = LW df .

LW differential operator on 1-forms. Symmetric, non-positive.
LW = L� −M,

L� symmetric non-positive
"matrix" potentialM = Ric+∇2V .
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Twisted intertwining and Poincaré inequality Intertwining - The three levels

Basement - Stochastic processes

X x : diffusion with generator L,
starting from x

f (Xt)
(m)
= f (x) +

∫ t

0
Lf (Xs)ds.

Example : L = ∆ for Brownian
motion

W : deformed parallel translation
Diffusion on TM, above X x

DWt = −MWtdt.

Generator (on 1-forms) : LW .

Intertwining
W is the spacial derivative of an appropriate flow X :

Wt = ∇Xt .
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Twisted intertwining and Poincaré inequality Intertwining - The three levels

Upper floor - Semi-groups

L generates a C0-semi-group

Pt f (x) = E[f (X x
t )1t<τx ].

Intertwining?
More assumptions are needed... even for the definition of the
C0-semi-group associated to LW (bounded forms are NOT bounded).

LW generates a L2-semi-groups Q.

Intertwining?
More assumptions are still needed...
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Twisted intertwining and Poincaré inequality Bakry-Émery criterion

An assumption on the potentialM :

Definition (Bakry-Émery criterion)
We assume thatM = Ric+∇2V is uniformly bounded from below :

ρ = inf
x∈M
{smallest eigenvalue ofM} > −∞.

Proposition
Under (BE ), for all x ∈ M, for all v ∈ TxM, for all t ≥ 0, we have :

|Wt(v)| ≤ e−ρt |v | a.s

−→ C0-semi-group Qt for continuous bounded 1-forms α :

Qt(α) = E [〈α,Wt .〉1t<τ] ,

−→ Commutation formula :

dPt(f ) = Qt(df ).
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Twisted intertwining and Poincaré inequality Bakry-Émery criterion

Theorem
If ρ > 0, then for all f , g ∈ C∞

c (M), we have:

Covµ(f , g) ≤ 1
ρ
‖df ‖∞‖dg‖1.
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Twisted intertwining and Poincaré inequality Twisting

In Rn, V (x) = |x |4/4. M = 2x .x t + |x |2 id ≥ 0. But not ≥ k id > 0!

problem
The intertwining by d does not lead to Poincaré inequality.

solution ?
Replace d by (B∗)−1d , with B : x ∈ M → Bx ∈ GL(TxM), smooth.

Metric : 〈·, ·〉B = 〈B−1·,B−1·〉.

Covµ(f , g) =
∫ +∞

0

∫
M
〈(B∗)−1dPt(f ), (B∗)−1dg〉B dµ dt
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Twisted intertwining and Poincaré inequality Twisting

Twisted levels

Twisted deformed parallel translation above X x :

W B
t = B(Xt)WtB−1(x).

Twisted generator :
LW ,B = (B∗)−1LWB∗

Intertwinings?
(B∗)−1dLf = LW ,B(B∗)−1df .

LW ,B essentially self-adjoint : L2-semi-group QB.
With boundedness condition (on MB but not only) : C0-semi-group but no
intertwining proved.
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Twisted intertwining and Poincaré inequality Twisting

Decomposition of the twisted generator
Recall :LW = L� −M.

L� symmetric non-positive
M potential

LW ,B = L� + 2(B∗)−1∇B∗.∇︸ ︷︷ ︸
L�

B

+ (B∗)−1L�(B∗)− (B∗)−1MB∗︸ ︷︷ ︸
−MB

.

In favor!
MB is the drift of W B

t

"differential operator" + "potential"
heuristic

Objections ?
No linked known process. No real comprehension of where it comes from.
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Twisted intertwining and Poincaré inequality Twisting

Proposition
For all 1-forms α, β, we have :∫

M

〈
(−L�

B)α, β
〉

B
dµ =

∫
M
〈∇α,∇β〉B dµ−

∫
M
〈B∗∇α,B(B∗β)〉 dµ

where B =
(
(∇B∗)(B∗)−1

)t − (∇B∗)(B∗)−1.

Corollary
If B = 0, then −L�

B is symmetric non-negative.

Example
B(x) = b(x) idTx M . Then MB = (B∗)−1MB∗ − b−1L(b) id.
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Twisted intertwining and Poincaré inequality Symmetric case

Intertwining

B = 0 : L�
B symmetric, non-positive and MB symmetric.

ρB = inf
x∈M

{
smallest eigenvalue of B∗MB(B∗)−1

}
.

Theorem (H., 2019)
If B = 0 and −∞ < ρB, then for all f ∈ C∞

c (M),

((B∗)−1Pt(f ) = QB
t
(
(B∗)−1df

)
.

(Sketch of the proof) {
∂tF = LW ,BF
F (·, 0) = G ∈ L2(B, µ)

−→ Uniqueness of strong solutions
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Twisted intertwining and Poincaré inequality Symmetric case

Poincaré inequality

Theorem (Generalized Brascamp-Lieb inequality - H., 2019)
Assume that B = 0 and that ρB ≥ 0, then for every f ∈ C∞

c (M), we have :

Varµ(f ) ≤
∫

M
〈df ,

(
(B∗MB(B∗)−1

)−1 df 〉 dµ.

Corollary (Poincaré inequality)
Assuming that B = 0 and that ρB is positive, for all f ∈ C∞

c (M), we have

Varµ(f ) ≤
1

ρB

∫
M
|df |2 dµ,
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Twisted intertwining and Poincaré inequality General case

The condition B = 0 is not stable under perturbations....
But the results seems stable under perturbations.

∫
M
〈L�

Bα, α〉B dµ

= −
∫

M
|B∗∇α|2 dµ +

∫
M
〈B∗∇α,B(B∗α)〉 dµ

= −
∫

M

∣∣∣∣B∗∇α− 1
2BB

∗α

∣∣∣∣2 dµ +
∫

M
〈B∗α,NBB∗α〉 dµ

NB(x) =
1
4B

t(x) · B(x) ∈ End(T ∗x M).

ρ̃B = inf
x∈M

{
smallest eigenvalue of

(
B∗MB(B∗)−1)

)s −NB

}
.
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Twisted intertwining and Poincaré inequality General case

Theorem (H., 2019)
Assume that

(
B∗MB(B∗)−1)

)s − (1+ ε)NB is bounded from below for
some ε > 0. Then the semi-groups P and QB are intertwined by (B∗)−1d,
i.e for every f ∈ C∞

c (M) and t ≥ 0 we have :

(B∗)−1dPt f = QB
t
(
((B∗)−1df

)
.

Theorem (Poincaré inequality - H., 2019)
Assume that for some ε > 0,

(
B∗MB(B∗)−1)

)s − (1+ ε)NB is bounded
from below and that ρ̃B is positive. Then for all f ∈ C∞

c (M), we have :

Varµ(f ) ≤
1

ρ̃B

∫
M
|df |2 dµ.
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Twisted intertwining and Poincaré inequality Application - Cauchy measures

In R2, σ2(x) = 1+ |x |2. β > 1

Measure :
dµβ = Z (σ2)−βdx

Generator :
Lβ = σ2(x)∆E − 2(β− 1)x .∇E

Metric change :

ds2 = dx21 + dx22
σ2(x)

Appropriate polar coordinates :

(x1, x2) = (sinh(r ) cos(θ), sinh(r ) sin(θ)) , ds2 = dr2 + th(r )2dθ2

dµβ = Z cosh−2(β−1) d vol .

Potential :
V (r ) = 2(β− 1) ln(cosh(r )).
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Twisted intertwining and Poincaré inequality Application - Cauchy measures
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Twisted intertwining and Poincaré inequality Application - Cauchy measures

Bakry-Émery?
M =

2β

σ2 id .

Loss of strict convexity at ∞.

Twist :
B = eεV id .

ρB(r ) = 2β− 4ε(β− 1)+ [4ε(1− ε)(β− 1)2− (2β− 4ε(β− 1))] tanh2(r ).
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Twisted intertwining and Poincaré inequality Application - Cauchy measures

Corollary
The spectral gap of the operator Lβ is bounded from below by :

λ1(Lβ) ≥
{

(β− 1)2 if 1 < β ≤ 1+
√
2

2
√
(β− 1)2 − 1 if 1+

√
2 ≤ β

.

Bobkov-Ledoux (2009) λ1(Lβ) ≥ 2(β−1)(√
1+ 2

β−1+
√

2
β−1

)2 , β ≥ 2.

Nguyen (2013) λ1(Lβ) = 2(β− 1), β ≥ 3.

Bonnefont-Joulin-Ma (2016)

λ1(Lβ) = (β− 1)2 if 1 < β ≤ 3+
√
5

2
β ≤ λ1(Lβ) ≤ 2(β− 1) if 3+

√
5

2 ≤ β
.
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Brenier-Schrödinger problem

1 Twisted intertwining and Poincaré inequality

2 Brenier-Schrödinger problem
A fluid evolution problem
Kinetic properties
Existence of solutions
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Brenier-Schrödinger problem A fluid evolution problem

Euler equations - Newton principle :
∂tv +∇vv +∇p = 0, (t, x) ∈ [0, 1]×M
div(v) = 0, (t, x) ∈ [0, 1]×M
〈v , ν〉 = 0
v(0, ·) = v0, x ∈ M

⇓
Arnold minimisation problem - least action principle (’66) :∫
[0,1]×M

|∂tqt(x)|2 dtdx → min; [qt ∈ Gvol, ∀0 ≤ t ≤ 1], q0 = id, q1 = h,

⇓
Brenier’s relaxation (’89):

EQ

[∫ 1

0
|Ẋt |2 dt

]
→ min;Q ∈ P(Ω), [Qt = vol, ∀0 ≤ t ≤ 1] ,Q0,1 = π,
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Brenier-Schrödinger problem A fluid evolution problem

Navier-Stokes Equations :
∂tv +∇vv − a�v +∇p = 0, (t, x) ∈ [0, 1]×M
div(v) = 0, (t, x) ∈ [0, 1]×M
〈v , ν〉 = 0, (t, x) ∈ [0, 1]× ∂M
v(0, ·) = v0, x ∈ M

viscosity term � (Hodge - De Rahm Laplacian) : suggests Brownian
processes.

Notion of velocity? Stochastic velocities :

⇀v
P
t = lim

h→0+
1
hEP

[−−−−−−→
XtXt+h∧τt |X[0,t]

]
(forward)

↼v
P
t = lim

h→0+
1
hEP

[−−−−−−→
Xt−h∧τtXt |X[t,1]

]
(backward)
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Brenier-Schrödinger problem A fluid evolution problem

Link : stochastic kinetic energy � entropy.

framework
M compact manifold with boundary
R law of the reflected Brownian motion

Definition (Brenier-Schrödinger problem)

H(Q|R)→ min, Q ∈ P(Ω), [Qt = µt , ∀t ∈ T ], Q01 = π. (BS)

Questions
Link between solutions of both problems.
Existence of solutions.

25 / 35



Brenier-Schrödinger problem A fluid evolution problem

Link : stochastic kinetic energy � entropy.

framework
M compact manifold with boundary
R law of the reflected Brownian motion

Definition (Brenier-Schrödinger problem)

H(Q|R)→ min, Q ∈ P(Ω), [Qt = µt , ∀t ∈ T ], Q01 = π. (BS)

Questions
Link between solutions of both problems.
Existence of solutions.

25 / 35



Brenier-Schrödinger problem Kinetic properties

Definition (Regular solution)

P = exp
(

η(X0,X1) + ∑
s∈S

θs(Xs) +
∫
T
pt(Xt) dt

)
R,

such that well-defined quantities and sufficient regularity.

Question : Does a velocity satisfies Navier-Stokes equations.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) for
M = Rn or M = Tn.

Contributions : Manifold framework. Boundary behaviour
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Brenier-Schrödinger problem Kinetic properties

Theorem (Garcia Zelada, H., 2020)

For P0 almost all y ∈ M, the backward stochastic velocity
↼y
v satisfies :

(
∂t +∇↼y

v

)
↼y
v =

a
2�

↼y
v −1T (t)∇ap, 0 ≤ t < 1, t /∈ S , z ∈ M,

↼y
v t −

↼y
v t−= θt(.), t ∈ S, z ∈ M,

〈
↼y
v , ν(z)〉 = 0, z ∈ ∂M,

↼y
v 0= −∇η(., y), z ∈ M.

(1)
Furthermore, there exist a scalar potential ϕy satisfying a second order
Hamilton-Jacobi equation, such that

↼v
P
t (X ) = −a∇ϕX1

t (Xt), P-a.s. (2)
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Brenier-Schrödinger problem Kinetic properties

As in Rn, the forward velocity does not suit.
Impermeability condition satisfied.
Incompressibility is not reached.

↪→v t (z) = EP

[
X0⇀v t |Xt = z

]
and ←↩v t (z) = EP

[
↼X1v t |Xt = z

]
.

vcu =
1
2

↪→v t +
1
2
←↩v t .

Theorem (Garcia Zelada, H., 2020)
Assuming that T = [0, 1], the current velocity vP

cu satisfies the continuity
equation

∂tµt + div(µtvcu) = 0.

But does not satisfy Navier-Stokes equation.
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Brenier-Schrödinger problem Existence of solutions

H(Q|R)→ min, Q ∈ P(Ω), [Qt = vol, ∀t ∈ [0, 1]], Q01 = π. (BS)

Method : (Baradat, Léonard, 2020) If there exists a path measure Q such
that H(Q|R) < ∞, Qt = µt , ∀t ∈ T and Q01 = π, then there exists a
unique solution.

Previous results : (Arnaudon, Cruzeiro, Léonard, Zambrini, 2020) M = Tn

with the necessary and sufficient condition H(π|R0,1) < ∞.
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Brenier-Schrödinger problem Existence of solutions

Symmetric spaces

(M, g) compact Riemaniann manifold. G group of isometries. G y M
transitive.

Examples : Sn, Tn.

Theorem (Garcia Zelada, H., 2020)
The Brenier-Schrödinger problem admits a unique solution if and only if
H(π|R01) < ∞.
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Brenier-Schrödinger problem Existence of solutions

Quotient spaces

N = M/G with M Riemanian manifold and G reflection group.
q : M → N quotient transport :

volume measure
Brownian motion to reflected Brownian motion
Path measures satisfying marginals and entropy conditions

Theorem (Garcia Zelada, H., 2020)
Let π be a probability measure on M ×M with both marginals equal to
volM and such that H(π|R01) < ∞. If BSM,π admits a solution, then
BSN,(q×q)∗π admits a solution. In particular, if HM,π admits a solution for
every such π, then HN,π̃ admits a solution for every probability measure π̃
on N ×N with both marginals equal to volN and such that
H(π̃|R̃01) < ∞.
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Brenier-Schrödinger problem Existence of solutions

Example - Hyper-rectangle

An n-dimensional rectangular box can be seen as quotient of a torus Tn.

−→ Existence and uniqueness of solution if and only if finite entropy.
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Brenier-Schrödinger problem Existence of solutions

Example - Equilateral triangle

An equilateral triangle can be seen as quotient space of the torus T2.

−→ Existence and uniqueness of solution if and only if finite entropy.
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Brenier-Schrödinger problem Existence of solutions

Gaussian problem

H(P |R)→ min; [Pt = N (0, 1/4 id), ∀0 ≤ t ≤ 1],P01 = π (BSγ)

Theorem (Garcia Zelada, H., 2020)
The Brenier-Schrödinger problem (BSγ) admits a unique solution if and
only if H(π|R01) < ∞.
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Brenier-Schrödinger problem Existence of solutions

Merci de votre attention.
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